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Foreword to Allen Hunt’s First Book

Though a sledge hammer may be wonderful for breaking rock, it is a poor
choice for driving a tack into a picture frame. There is a fundamental, though
often subtle, connection between a tool and the application. When Newton
and Leibniz developed the Calculus they created a tool of unprecedented
power. The standard continuum approach has served admirably in the de-
scription of fluid behavior in porous media: the conservation of mass and
linear response to energy gradients fit conveniently, and are solid foundations
upon which to build. But to solve these equations we must characterize the
up-scaled behavior of the medium at the continuum level. The nearly univer-
sal approach has been to conceive the medium as a bundle of capillary tubes.
Some authors made the tubes porous, so they could fill and drain through
their walls; others “broke and reconnected” them so each tube had a range of
diameters along its length. In the end it must be admitted that the marriage
of tool (capillary tube bundles) and task (to derive the constitutive relations
for porous media) has not yet proven to be entirely satisfactory. Lacking in
these conceptual models is a framework to describe the fluid-connected net-
works within the medium which evolve as functions of grain size distribution,
porosity, saturation, and contact angle. This is fundamentally a geometry
problem: how to concisely describe the particular nature of this evolving,
sparse, dendritic, space-filling network.

Recognizing this basic problem, the community flocked to the fractal mod-
els as they became better understood in the 1990s. But fractals alone were
not enough, as the real problem was to understand not the geometry of the
medium, but the geometry of the fluids within the medium, and moreover,
to correctly identify the geometry of the locations that control the flow.

I met Allen Hunt in the late 1990s, and over coffee he described his ideas
about critical path analysis for the development of constitutive relationships
for unsaturated conductivity. I was immediately sold: it was transparent that
the geometric model (with the equally important framework for mathemat-
ical analysis) was ideally suited to the problem at hand. Since resistance to
flow is a function of the fourth power of the pore aperture, clearly the key
was to systematize the determination of the “weak link” to compute overall
resistance to flow. Paths that had breaks were irrelevant; and paths that con-
tained very small pores provided negligible contribution. The permeability
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should be proportional to the fourth power of the radius of the smallest pore
in the connected path which has the largest small pore. Read that sentence
twice: we are looking for the path of least resistance, and that path’s re-
sistance will be a function of the smallest pore in that path. Allen had the
tool to identify this path as a function of fluid content. A very useful, ap-
propriately sized, hammer had arrived for our nail. Over the following years
Allen’s work showed the power of using the right tool: he could explain the
relationship between the geometry of the medium and liquid content versus
permeability, residual fluid content, electrical resistance, diffusion of solutes,
and even the thorny issues of the scale of a representative elementary unit.
Critical path analysis is not a panacea, but due to the focus on the control-
ling geometric features, it provides a remarkably concise parameterization of
fluid–medium relationships based on physically measurable properties that
accurately predict many of the basic ensemble properties.

A fundamental problem in having these results be broadly understood and
adopted is sociological. Consider how much time we spend learning calculus
to solve the occasional differential equation. Critical path analysis requires
calculus, but also understanding of the mathematics of fractals, and the geo-
metric strategy of percolation theory. When Allen started his remarkably
productive march into flow through porous media he deftly employed these
tools that none of our community had mastered. There is a natural inertia
to any discipline since re-tooling requires major investments of time. From
this perspective I have long encouraged Allen to help the community make
use of this essential set of tools by providing a primer on their application to
flow though porous media. In this book Allen has once again moved forward
strategically, and with great energy. He has provided an accessible tutorial
that not only provides the bridge for the hydrologist to these new tools, but
also the physicist a window into the specialized considerations of flow through
natural porous media.

Learning new mathematical constructs is much like learning a new lan-
guage. There is a great deal of investment, and the early effort has few re-
wards. Ultimately, however, without language there is no communication.
Without mathematics, there is no quantitative prediction. If understanding
the behavior of liquids in porous media is central to your work, I urge you
to make the investment in learning this material. By way of this book Allen
provides a direct and efficient avenue in this venture. Your investment will
be well beyond repaid.

Corvallis, Oregon John Selker
April, 2005



Preface

The focus of research in porous media is largely on phenomena. How do you
explain fingering? What causes preferential flow? What “causes” the scale
effect on the hydraulic conductivity? Why can the incorporation of 5% of hy-
drophobic particles into soil make the soil water repellent? Where do long tails
in dispersion come from? These are merely a few examples of a very long list of
questions addressed. The approach to “solving” problems is frequently to (1)
take standard differential equations such as the advection–diffusion equation
for solute transport, or Richards’ equation for water transport; (2) substitute
results for what are called constitutive relations such as the hydraulic con-
ductivity, K, molecular diffusion constants, or air permeability as functions
of saturation, and pressure-saturation curves, including hysteresis, etc.; (3)
apply various models for the variability and the spatial correlations of these
quantities at some scale; and (4) solve the differential equations numerically
according to prescribed initial and/or boundary conditions. In spite of contin-
uing improvement in numerical results, this avenue of research has not led to
the hoped-for increase in understanding. In fact there has been considerable
speculation regarding the reliability of the fundamental differential equations
(with some preferring fractional derivatives in the advection–diffusion equa-
tion, and some authors questioning the validity of Richards’ equation) while
others have doubted whether the hydraulic conductivity can be defined at
different scales.

Although other quite different approaches have thus been taken, let us
consider these “constitutive” relations. The constitutive relationships used
traditionally are often preferred because (1) they generate well-behaved func-
tions and make numerical treatments easier; (2) they are flexible. This kind
of rationale for using a particular input to a differential equation is not likely
to yield the most informative solution. The most serious problem associated
with traditional constitutive relations is that researchers use such concepts as
connectivity and tortuosity (defined in percolation theory) as means to ad-
just theory to experimental results. But the appropriate spatial “averaging”
scheme is inextricably connected to the evaluation of connectivity. In fact,
when percolation theory is used in the form of critical path analysis, it is not
the spatial “average” of flow properties which is relevant, but the most resis-
tive elements on the most conductive paths, i.e. the dominant resistances on
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the paths of least resistance. An additional problem is that usual constitutive
relations often cover simultaneous moisture regimes in which the represented
physics is not equilibrium, and thus time-dependent, as well as those mois-
ture regimes where the dominant physics is equilibrium, so that they must
be overprescribed (while still not describing temporal effects). Finally, there
has been no progress in making the distributions and spatial correlations of,
e.g. K, consistent with its values at the core scale, because there is no sys-
tematic treatment of the connectivity of the optimally conducting regions
of the system. This book shows a framework that can be used to develop a
self-consistent and accurate approach to predict these constitutive relation-
ships, their variability, spatial correlations and size dependences, allowing use
of standard differential equations in their continuum framework (and, it is
hoped, at all spatial scales).

Although applications of percolation theory have been reviewed in the
porous media communities (e.g. Sahimi, 1993; Sahimi and Yortsos, 1990)
(in fact, percolation theory was invented for treating flow in porous media,
Broadbent and Hammersley, 1957) it tends to be regarded as of limited ap-
plicability to real systems. This is partly a result of these summaries them-
selves, which state for example that “Results from percolation theory are
based on systems near the percolation threshold and the proximity of real
porous rocks to the threshold and the validity of the critical relationships
away from the threshold are matters of question,” (Berkowitz and Balberg,
1993). However, it is well-known that percolation theory provides the most
accurate theoretical results for conduction also, in strongly disordered sys-
tems far above the percolation threshold (using critical path analysis). The
novelty in this course is the combined use of both scaling and critical path
applications of percolation theory to realistic models of porous media; us-
ing this combination it is possible to address porous media under general
conditions, whether near the percolation threshold or not.

This book will show how to use percolation theory and critical path analy-
sis to find a consistent and accurate description of the saturation dependence
of basic flow properties (hydraulic conductivity, air permeability), the electri-
cal conductivity, solute and gas diffusion, as well as the pressure–saturation
relationships, including hysteresis and non-equilibrium effects. Using such
constitutive relationships, results of individual experiments can be predicted
and more complex phenomena can be understood. Within the framework of
the cluster statistics of percolation theory it is shown how to calculate the
distributions and correlations of K. Using such techniques it becomes easy
to understand some of the phenomena listed above, such as the “scale” effect
on K, as well.

This work does not exist in a vacuum. In the 1980s physicists and petro-
leum engineers addressed basic problems by searching for examples of scaling
that could be explained by percolation theory, such as Archie’s law (Archie,
1942) for the electrical conductivity, or invasion percolation for wetting front
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behavior, hysteresis, etc. or by using the new fractal models for porous media.
The impetus for further research along these lines has dwindled, however, and
even the basic understanding of hysteresis in wetting and drainage developed
in the 1980s is lacking today, at least if one inquires into the usual literature.
In addition, the summaries of the work done during that time suggest that
the percolation theoretical treatments are not flexible enough for Archie’s law
(predict universal exponents), or rely on non-universal exponents from con-
tinuum percolation theory without a verifiable way to link those exponents
with the medium and make specific predictions. An identifiable problem has
been the inability of researchers to separate connectivity effects from pore-
size effects. This limitation is addressed here by applying percolation scaling
and critical path analysis simultaneously. While there may have been addi-
tional problems in the literature of the 1980s (further discussed here in the
Chapter on hysteresis), it is still not clear to me why this (to me fruitful)
line of research was largely abandoned in the 1990s. This book represents an
attempt to get percolation theory for porous media back “on track.”

It is interesting that many topics dealt with as a matter of course by
hydrologists, but in a rather inexact manner, are explicitly treated in perco-
lation theory. Some examples are:

1. upscaling the hydraulic conductivity = calculating the conductivity from
microscopic variability,

2. air entrapment = lack of percolation of the air phase,
3. residual water, oil residuals = critical moisture content for percolation,

sum of cluster numbers,
4. grain supported medium = percolation of the solid phase;
5. Representative Elementary Volume = the cube of the correlation length

of percolation theory,
6. tortuosity = tortuosity,
7. flow channeling = critical path.

These concepts and quantities are not, in general, treatable as optimiza-
tion functions or parameters in percolation theory because their dependences
are prescribed. Note that in a rigorous perspective for disordered systems,
however, one does not “upscale” K. The difficulty here is already contained
within the language; what is important are the optimal conducting paths,
not the conductivities of certain regions of space. The conductivity of the
system as a whole is written in terms of the rate-limiting conductances on
the optimal paths and the frequency of occurrence of such paths. Defining
the conductivity of the system as a whole in terms of the conductivities of
its components is already a tacit assumption of homogeneous transport. Fur-
ther, some elementary rigorous results of percolation theory are profoundly
relevant to understanding flow in porous media. In two-dimensional systems
it is not possible for even two phases to percolate simultaneously (in a grain-
supported medium there is no flow or diffusion!), while in three dimensions a
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number of phases can percolate simultaneously. As percolation thresholds are
approached, such physical quantities as the correlation length diverge, and
these divergences cause systematic dependences of flow and transport prop-
erties on system size that can only be analyzed through finite-size scaling.
Thus it seems unlikely that treatments not based on percolation theory can
be logically generalized from 2D to 3D.

I should mention that a book with a similar title, “Percolation Models
for Transport in Porous Media,” by Selyakov and Kadet (1996) also noted
that percolation theory could have relevance further from the percolation
threshold, but overlooked the existing literature on critical path analysis, and
never mentioned fractal models of the media, thereby missing the importance
of continuum percolation as well. As a consequence, these authors did not
advance in the same direction as this present course.

The organization of this book is as follows. The purpose of Chap. 1 is to
provide the kind of introduction to percolation theory for hydrologists which
(1) gives all the necessary basic results to solve the problems presented later;
and which (2) with some effort on the part of the reader, can lead to a
relatively solid foundation in understanding of the theory. The purpose of
Chap. 2 is to give physicists an introduction to the hydrological science liter-
ature, terminology, experiments and associated uncertainties, and finally at
least a summary of the general understanding of the community. This general
understanding should not be neglected as, even in the absence of quantita-
tive theories, some important concepts have been developed and tested. Thus
these lecture notes are intended to bridge the gap between practicing hydrol-
ogists and applied physicists, as well as demonstrate the possibilities to solve
additional problems, using summaries of the background material in the first
two chapters. Subsequent chapters give examples of critical path analysis for
concrete system models Chap. 3; treat the “constitutive relationships for un-
saturated flow,” including a derivation of Archie’s law Chap. 4; hysteresis,
non-equilibrium properties and the critical volume fraction for percolation
Chap. 5; applications of dimensional analysis and apparent scale effects on K
Chap. 6; spatial correlations and the variability of the hydraulic conductivity
Chap. 7; and multiscale heterogeneity Chap. 8.

I wish to thank several people for their help in my education in hydrology
and soil physics, in particular: Todd Skaggs, whose simulation results have
appeared in previous articles and also in this book; John Selker, who showed
me the usefulness of the Rieu and Sposito model for the pore space; Glendon
Gee, who helped me understand experimental conditions and obtain data
from the Hanford site; Eugene Freeman for providing additional Hanford
site data; Bill Herkelrath, again for data; Toby Ewing, whose simulations
for diffusion were invaluable; Tim Ellsworth for showing me the relevance of
the experiments of Per Moldrup; Per Moldrup for giving me permission to
republish his figures; Max Hu for providing me with his diffusion data; and
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Sally Logsdon for her data on soil structure; Alfred Huebler for giving me a
forum among physicists to discuss these ideas. I also thank my wife, Beatrix
Karthaus-Hunt, for her support.

Dayton Allen G. Hunt
April, 2005
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