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Preface 

Transport phenomena in porous media continues to be an area of intensive research activity 
and this is primarily due to the fact that it plays an important role in a large variety of 
engineering and technological applications which span from the transport processes in 
biomechanical systems, such as blood flow in the pulmonary alveolar sheet, to the large 
scale circulation of brine in a geothermal reservoir. The acceleration in the progress in 
science and in the improvement in the design, efficiency and reliability of heat transfer 
equipment in power engineering, chemical, oil and gas industries are directly associated 
with the effective use of the modern tools of heat transfer analysis and measurement, 
predictive correlation equations, and with the sharing of the practical experience on the 
operation of all types of thermal equipment. This has caused a rapid expansion of research 
in diversified areas of heat transfer, including also porous media, and this has produced a 
huge amount of theoretical and experimental work. 

The first volume of this book series, published in 1998, met with a very favourable 
reception within the porous media community, showing that there was a large demand for 
a series of books that emphasizes both the fundamentals and the applications of research 
in porous media. This has encouraged us to prepare the present second volume. In doing 
so, we have maintained the original concept of including a wide and diverse range of 
topics. In choosing the material we have also been influenced by the needs of the practical 
applications of porous media. Also, the book provides an up-to-date review of the current 
state-of-the-art in the various topics of heat transfer in porous media, presenting both the 
fundamental and experimental results of very active and internationally well-recognized 
authors. Thus, the book is primarily aimed at advanced researchers in porous media, 
and these may be applied mathematicians, physicists, geologists, chemists and practicing 
engineers. 

All of the chapters in this book are very much interrelated. Further, some of the views 
expressed by some of the authors are contradictory and controversial, and therefore it was 
not easy to decide how best to order the chapters. 

In Chapter 1, Nield has produced a very provoking and wide-ranging review of non-
Darcy models, including comments on inertial effects, boundary friction, non-Newtonian 
fluids, viscous dissipation, rotation, magnetic field, radiation, and porous-medium/clear-
fluid interface conditions. The solution of these model equations may be performed 
using many of the standard techniques, e.g., finite differences, finite elements, etc., but in 
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Chapter 2 Skerget and Jecl describe an alternative method which is becoming ever more 
popular, namely the boundary element method. 

The work described in Chapters 1 and 2 assumes that the flows are stable and therefore in 
the next three chapters the stability of various fluid flows are investigated. In Chapter 3, 
Rees presents an overview of recent work on the onset of instabilities in thermal boundary-
layer flows. In Chapter 4, Ty vand investigates the linear stability in three dimensions for 
the onset of Rayleigh-Benard convection in finite porous bodies. In Chapter 5, Mamou 
looks at the stability of double-diffusive convection and finite amplitude flows in a tilted 
porous enclosure. 

In Chapter 6, Howie investigates buoyancy-driven convection and notes the discrepancy 
that can exist between theoretical and laboratory results. This can be as a result of an 
instability or that the medium is not spatially homogeneous. Wang, in Chapter 7, further 
investigates the effects of the micromechanics of ordered, unidirectional heterogeneous 
materials. 

In Chapters 8 and 9, the effects of turbulence are discussed. Lage, de Lemos and Nield, 
in Chapter 8, review four available methodologies for developing microscopic turbulence 
models for single-phase flow in rigid, fully-saturated porous media. Masuoka and Takatsu, 
in Chapter 9, experimentally and theoretically investigate the turbulence characteristics 
and discuss the mechanism for the production and thermal dissipation. 

In Chapters 10 to 13, the effects of phase change, bubble growth, solidification and 
surface reactions are considered. In Chapter 10, Chang and Weng review coupled heat 
and moisture transfer in porous material with applications in the drying and storage of 
grain. In Chapter 11, Bories and Prat investigate the nucleation and bubble growth which 
are important in processes where there is pressure depletion and boiling. In Chapter 12, 
Riahi discusses the effects of rotation on convection adjacent to the solid-liquid interface 
during the solidification of a binary alloy. In Chapter 13, Pop, Merkin and Ingham 
investigate the effects of exothermic catalytic reactions which take place on a surface next 
to a porous medium. 

In Chapters 14 to 16, problems involving porosity, either within or on the surface of the 
Earth, are considered. In Chapter 14, Bejan, Rocha and Cherry review the work that has 
been performed on the generation and flow of methane gas through a porous medium 
impregnated with solid clathrate hydrates. In Chapter 15, Woods develops a hierarchy of 
models to describe gravity driven flows in porous rocks, including the effects of layering, 
reaction, boiling and double advection. Finally, in Chapter 16, Lane and Hardy highlight 
the basic limitations of traditional treatments of complex bed geometries and vegetation in 
traditional models of river flows and the need for a more sophisticated porosity approach. 

In the preparation of this volume, we have collaborated with a large number of researchers. 
Thus, our thanks go first to all the twenty-six authors, who have kindly accepted to 
contribute a chapter to the realization of the present volume, for their patience and dedicated 
effort. We would also like to express our sincere thanks to Professors P. J. Heggs and A. 
Nakayama who have throughout the preparation of the book given their support generously. 
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The formatting of this book and the preparation of the figures were performed by Dr Julie 
M. Harris and Dr Simon D. Harris and we are deeply indebted to them for all of their 
care and attention, and the patience that they have shown in both the preparation and the 
proof reading. Finally, but most sincerely, our grateful appreciation is extended to Mr 
Keith Lambert, Senior Publishing Editor, not only for his thoughtfulness, but also for his 
constant encouragement throughout the preparation of this book. 

LEEDS/CLUJ D . B . INGHAM & I. POP 

DECEMBER, 2001 
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1 MODELLING FLUID FLOW IN 
SATURATED POROUS MEDIA 
AND AT INTERFACES 

D. A. NIELD 

Department of Engineering Science, University of Auckland, Private Bag 92019, 
Auckland, New Zealand 

email: d.nieldOauckland.ac.nz 

Abstract 

Since the days of Darcy, many refinements have been made to the equations used to model 
single-phase fluid flow and heat transfer in a saturated porous medium, to allow for such basic 
things as inertial effects, boundary friction and viscous dissipation, and additional effects such 
as those due to rotation or a magnetic field or due to radiative heat transfer. In this chapter 
all these developments are reviewed. Also reviewed are approaches to modelling flow at a 
porous-medium/clear-fluid interface. 

Keywords: porous medium, interface, inertial effects, boundary friction, viscous 
dissipation, rotation, magnetic field, non-Newtonian fluid, radiative heat transfer 

1.1 INTRODUCTION 

Shenoy (1994) gives a two-page list of applications of the present subject under the 
headings Biomechanics, Ceramic engineering. Chemical engineering. Food technology. 
Geophysics, Groundwater hydrology, Industrial engineering, Mechanical engineering. 
Petroleum engineering, and Soil mechanics. 

A porous medium is a fixed (or almost fixed) solid matrix with a connected void space 
through which a fluid can flow. The fraction of void space to total volume is called 
the porosity. Most naturally occurring porous media have porosities less than 0.6 (an 
exception is hair), but man-made materials, such as metallic foam, can have porosities up 
to 0.99. 

The observations of Henry Darcy (1856) on the public water supply at Dijon and ex-
periments on steady state unidirectional flow suggested Darcy's law, which in its refined 

1 
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modern form can be expressed as follows: 

ox k 

where dp/dx is the pressure gradient, v is the filtration velocity, /i is the fluid viscosity 
and K is the permeability (the dimension are length squared). The filtration velocity 
V (velocity averaged over the medium) is related to the intrinsic velocity V (velocity 
averaged over the pore space) hy v — (f)V, where 0 is the porosity. In order to tie in 
with Darcy's results, the pressure here has to be an intrinsic quantity, i.e., the pressure 
is averaged only over the pore space. The permeability K depends on the pore size (or 
particle diameter) Dp, the porosity, and also on the detailed geometry. A useful estimate is 
given by the Carman-Kozeny relationship, derived for a packed bed of uniform spherical 
particles, namely 

K= ^ ^. (1.2) 
iso{i-(t)y 

Darcy's law means that the drag is linearly proportional to the velocity. This holds for small 
velocities (namely when the Reynolds number, based on the pore scale, is less than unity). 
However, this 'law' breaks down for larger velocities. Dupuit (1863) and Forchheimer 
(1901) found empirically, for larger velocities, that the drag is a quadratic function of 
the velocity, and a detailed historical account has been given by Lage (1998), and what 
is commonly called the Forchheimer equation should really be called the Dupuit-Darcy 
equation. 

1.2 THE BRINKMAN-FORCHHEIMER EQUATION 

A modern refinement (see, for example, Hsu and Cheng, 1990 and Vafai and Kim, 1990) 
is the following equation: 

^dv 1 , ^ ; 
= - V p -f l^e^^V - ^ V - ^J^VV. (1.3) 

This applies to an incompressible fluid of density p, where v denotes |t;|, the magnitude of 
the Darcy velocity, while /ig is an effective viscosity and cp is a dimensionless Forchheimer 
coefficient. The inertial terms, on the left-hand side of equation (1.3), result from formal 
averaging. The first viscous term is the Brinkman term, and the last term is the Forchheimer 
term. We now consider the significance of the various terms in equation (1.3). 

1.2.1 The local time-derivative inertial term 

This is derived on the assumption that a spatial averaging process commutes with a 
derivative with respect to time and this breaks down when the porous medium has a 
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macroscopic structure, such as a system of tubes. The decay of a transient is more 
rapid in narrow tubes than in wide tubes. Nield (1991) suggested in this case that the term 
(1/0) dv/dt be replaced by Ca • dv/dt, where Ca is a constant tensor, which is determined 
mainly by the nature of the pores of largest cross-sections. In any case, the ratio of the 
time-derivative term to the Darcy resistance is CapK/^T, where T is a characteristic time 
of the process being investigated, and this ratio is normally very small. However, it is 
essential to retain the time-derivative term when modelling certain convective instability 
problems, see Vadasz (1999a, 1999b). 

1.2.2 Advective inertial term 

Joseph et ah (1982) argued that, when modelling dense media, the advective (or convec-
tive) term involving (v • V) v should be omitted because the inertial effects are already 
accounted for in the quadratic drag term involving vv. This arises as a result of the 
form drag on the solid particles. The drag is independent of the viscosity and acts in a 
direction opposite to v. Nield (1991) argued that the inclusion of the {v 'V)v term leads 
to the prediction that longitudinal momentum can, unimpeded by the fixed solid matrix, 
be transmitted transversely, but this conflicts with expectation based on basic physics. 

This is related to the difficulty of spin-up which is achieved by just rotating a solid 
boundary, and the absence of true macroscopic turbulence (involving a cascade of energy 
from large eddies to smaller eddies), in a dense porous medium. The averaging process 
leads to misleading results because it leads to a loss of vital information about the way in 
which the geometry of the solid matrix affects the flow by reducing the coherence of the 
fluid momentum pattern. 

From the vector identity (i; • V) v = V [v'^ 12) H-1; x (V x v), it was noted by Nield 
(1994) that at least the irrotational part, V [v'^ /2) , of the term (i; • V) v needs to be retained 
in order to account for the phenomenon of choking in high speed flow of a compressible 
fluid, but he suggested that the rotational part, involving the intrinsic vorticity, should 
be deleted. His argument was based on the expectation that a medium of low porosity 
will allow scalar entities, such as fluid speed, to be freely advected, but it will inhibit 
the advection of vector quantities such as the vorticity. Nield and Bejan (1999) went a 
step further and suggested that even when the vorticity is being continuously produced, 
e.g., by the buoyancy force, one would expect that it would be destroyed by a momentum 
dispersion process due to the solid obstructions. 

An argument providing further support for this point of view was presented by Nield 
(2001a). There are some subtleties about the effect of the inertial terms on the fluid 
motion in a porous medium. The power of the total drag force per unit volume is equal 
to the rate of viscous dissipation per unit volume, see below. Although the Forchheimer 
drag term appears to be independent of the viscosity, it does contribute to the viscous 
dissipation. The effect of inertia is mediated via a change in the pressure distribution 
and the fluid velocity distribution. The flip side of the coin is that when one closes 
the system of equations by introducing a Forchheimer drag term then one should not 
assume that the advective inertia term that remains in the momentum equation is identical 
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with that obtained by formal volume-averaging. After integration, it should lead to the 
correct expression for the averaged kinetic energy, which involves the magnitude but 
not the direction of the fluid velocity, and this means that the irrotational part of the 
volume-averaged advective inertial term must be unchanged, but the rotational part is not 
determined by the averaging process, and there is no inconsistency in setting it to be zero 
as part of the closure process. 

In the process of performing the closure, after volume-averaging, it has been traditional 
to adjust for the contribution to the overall drag force that includes a quadratic drag force, 
but to ignore the fact that one also needs to adjust for the fact that the overall moment of 
the force system has to be zero. Nield (2001c) suggested that an appropriate adjustment 
is simply to set to zero the rotational part of the volume-averaged advective inertial term. 

It has sometimes been claimed that the retention of the advective inertial term is necessary 
in order to account for the formation of hydrodynamic boundary layers in channel flow, 
and in order to estimate the entrance length. However, this is not correct. The formation 
of such layers is primarily due to the action of viscous diffusion and the entrance length 
can be estimated by using the time-derivative inertial term. 

In many practical situations it does not matter computationally whether the advective 
inertial term is included or not because, relative to the quadratic drag term, it is of 
the order of magnitude K^^'^ICF4>^L, where L is a characteristic length scale, and this 
expression is normally small. Lage (1992) verified numerically that the advective inertial 
term has a negligible effect on thermal convection in most cases of interest. 

This topic is related to the question of how best to model turbulence in a porous medium. 
This is currently a controversial topic; see, for example, Nield (2001c) and the chapter in 
this book by Lage, de Lemos and Nield. 

1.2.3 Brinkman viscous term 

Brinkman (1947) introduced the Laplacian viscous term in a restricted context but its 
global use is due to other authors. The global treatment may fail to deal adequately with 
the distinctive features of flow in a porous medium. The ratio of the Brinkman term to 
the Darcy term is of the order Da — K/L'^, where L is the appropriate macroscopic 
length scale, and therefore Da -^ oo corresponds to a fluid clear of solid material. In 
most practical cases the magnitude of Da will be very small and the Brinkman term will 
have a significant effect only in thin layers which are within a dimensional distance of the 
order K^^'^ from a solid wall. In many cases the reduction in the fluid velocity in this thin 
layer will be masked by an increase in velocity, namely the channeling effect, due to the 
increase in porosity near the wall where solid particles cannot pack as tightly as they can 
in the interior of the porous medium. 

It is important to note that the Brinkman equation cannot be rigorously justified, except 
when the porosity is close to unity. The self consistent formulation of Brinkman breaks 
down when 0 becomes less than 0.6 and there is an uncertainty about the effective 
viscosity /Xg. Brinkman simply took /ig = /i, but the process of formal averaging. Bear 



D. A. NIELD 5 

and Bachmat (1990), leads to /Xg = A^/0T, where T is the tortuosity. Whitaker (1999, 
p. 173) ignores the tortuosity and he emphasizes that the Brinkman correction essentially 
involves the intrinsic velocity, so that when the correction is written in terms of the Darcy 
velocity then this immediately leads to fie = fx/cj). Until comparatively recently it had 
not been possible to check the alternative estimates of /Xg against experiment because all 
the available experimental data pertained to media whose porosity was outside the range 
for which the theoretical results are valid. Givler and Altobelli (1994), using a Nuclear 
Magnetic Resonance technique, found /Xg ^ 8^ for water flowing through a rigid foam 
material (0 =^ 0.972), and it is clear that averaging is inadequate in this case. 

It is worth noting that in the case of porous media of very high porosity then there is no 
theoretical limit on the value of the Darcy number K/L'^, but for such media the value 
of K that appears in the Brinkman equation cannot be determined solely from a simple 
Darcy-type experiment which involves a measurement of the ratio of the volume flux to 
the applied pressure gradient. 

1.2.4 Dupuit-Forchheimer (form drag) term 

The term [CFP/K^^^) VV in equation (1.3) is in the form recommended by Joseph et al 
(1982). The scalar form is due to Ward (1964), who thought that cp might be a universal 
constant which takes the value 0.55 but subsequent experimenters found that CF is ap-
proximately constant for a particular family of materials, e.g., cp — 0.1 for foamed metal 
fibres. A semi-empirical derivation of an estimate for cp was reported by Joseph et al 
(1982). They emphasized that the drag is quadratic and in a direction opposed to v. This 
means that one cannot write down uncoupled equations for the x- and y-components of v. 
In fact, a cubic drag term arises in two circumstances. First, Lage et al (1997) pointed out, 
when complications resulting from transition to turbulence are taken into account, that the 
coefficient of the quadratic term varies slowly with the velocity, and so the overall drag 
is effectively cubic in the velocity within a restricted range of Reynolds number. Second, 
Mei and Auriault (1991), and others, have pointed out that in the weak inertial regime, one 
for which the pore Reynolds number is less than unity, the variation from the linear term 
is in fact cubic, rather than quadratic. However, Lage and Antohe (2000) have shown that 
the experimental data are best fitted by a quadratic expression. This result indicates that as 
the Reynolds number increases then any cubic term is quickly dominated by a quadratic 
term. 

Lage and Antohe (2000) have argued that the factor K^f^ in the Dupuit-Forchheimer 
term is better replaced by another quantity which has the dimensions of length, namely a 
typical particle diameter. Accordingly, they replace the factor CFJK^I'^ with a quantity 
C which has the dimensions of the reciprocal of the length. These authors note that the 
permeability relates essentially to the effective surface area of the solid porous matrix, 
whereas their form parameter C depends on the 'form' of the porous medium (defined as 
the variation of the cross-sectional area of the solid matrix). The present author prefers 
to retain the formulation in terms of the coefficient cp with the understanding that cp 
depends on the geometry of the porous medium. This choice is based simply on the fact 
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that cp is dimensionless. In other words, the factor K^^'^ is included simply because it 
is immediately available as a length scale for the quadratic drag term. The mathematical 
form of the expression for the Dupuit-Forchheimer term that appears in the equation (1.3) 
is not very important. What is important is making sure that one uses the most appropriate 
form of the Reynolds number in the correlation of the experimental results. The most 
important practical consideration is the magnitude of the Dupuit-Forchheimer form drag 
term relative to the Darcy term in the equation of motion. If [/ is a characteristic Darcy 
velocity then the relevant ratio is represented by the Reynolds number cppK^I^Ujv. It is 
important to note that many authors have used a Reynolds number defined with the factor 
CF left out. In other words, they have used a Reynolds number that is based solely on the 
permeability of the medium. 

Lage and Antohe (2000) have pointed out that there is a need to investigate how the 
geometry of the porous matrix affects the form drag effect, because very little is known 
in this regard. In numerical investigations, many authors have been content to use a 
relationship between cp and K that is based on semi-empirical formulae, giving those two 
quantities in terms of the porosity, as obtained by Ergun (1952). This relationship leads 
to the formula 

^^ ^ 150V2^3/2- (1-4) 

The reader should appreciate that the above expression is ad hoc. The Ergun expressions, 
and hence this one, are appropriate for a bed of spherical solid particles, but are less 
appropriate for other types of porous media. The reader is also warned that some authors 
have used equation (1.4) in association with a momentum equation in which an extra factor 
(/> was incorporated in the Forchheimer term of the momentum equation, a procedure that 
is clearly inconsistent. This pitfall was pointed out by Nield (2001b). 

There are several subtleties associated with the form drag term. One is the contribution to 
viscous dissipation, see below. Another is the contribution of the drag force on the kinetic 
energy of the fluid in a porous medium. There is a temptation to think of the drag as being 
just a surface effect, but in the case of a porous medium that is an oversimplification. 
The effect of viscosity acts throughout the fluid phase of the porous medium, and this 
means that the viscous dissipation, and hence the total drag, involves a volume integral 
over a representative elementary volume, not just a surface integral. This means that, in 
effect, the drag force acts on a particle having as its velocity the Darcy velocity, despite 
the no-slip condition holding on the pore boundaries. 

Another point worthy of note is that the dichotomy into the Darcy drag and the form 
(Forchheimer) drag is not arbitrary, as might be thought from the way in which some 
early workers have added terms to an empirical relationship between pressure drop and 
velocity. Rather, the two terms arise naturally once a decision is made to include two 
terms, a term linear in the velocity and one quadratic in the velocity. It is then inevitable, 
on dimensional grounds, that the Darcy term will appear with the viscosity as a coefficient, 
whereas the Forchheimer term will not explicitly involve the viscosity. The absence of the 
viscosity as a factor in the Forchheimer term is inevitably related to the overall process 
of the production of increased drag by wake formation. Another point to note is that 
the Forchheimer drag term and the Darcy term are intrinsically linked. While it may 
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make mathematical sense to treat the asymptotic case where the flow is so rapid that the 
Forchheimer term dominates the Darcy term, as several authors have done, the results may 
not have much physical significance, at least in the absence of careful interpretation. 

In the light of the argument resolving the apparent paradox about viscous dissipation given 
below, a further observation can be made. For the flow past a single solid obstacle in an 
unbounded region, the size of the region in which velocity gradients are large can grow 
without limit, but in the case of a porous medium a limit is set by the pore size. For 
example, in the case of a porous medium with a spatially periodic structure, the limiting 
region is a period cell. This suggests, at very large velocities, that the rate of increase 
of the drag with an increase of the fluid velocity may fall below that predicted by the 
Forchheimer expression with an unchanged constant. The situation is complicated by the 
transition to unsteady and chaotic flow regimes, but it is interesting that Kaviany (1995, 
p. 49) refers to experimental results reported in Macdonald et al. (1979) and Dybbs and 
Edwards (1984) indicating an asymptotic behaviour in which the normalized pressure 
drop does not change with the Reynolds number. 

1.3 MODELLING A POROUS-MEDIUM/CLEAR-FLUID INTERFACE 

Since the differential equations for the two regions are of second-order in spatial deriva-
tives, four matching conditions are needed if the Brinkman equation is employed. These 
involve the continuity of tangential velocity, normal velocity, tangential stress and normal 
stress. The velocity matching causes no problems, but with the stress matching it is dif-
ferent. Consider the matching of tangential stress. Over the pore portion of the interface 
the velocity shear, and hence the tangential stress, is continuous. Over the solid portion 
the tangential shear expression (viscosity times velocity gradient) is not continuous. It is 
clearly zero in the solid, but has some indeterminate nonzero value in the adjacent clear 
fluid (that is matched by the shear stress in the solid). Thus authors who have matched 
velocity shears have overdetermined the system of equations. 

When one uses the Darcy equation (instead of the Brinkman equation) in the porous 
medium then the difficulty can be side-stepped. Now one needs only three matching 
conditions; two of these are the continuity of the tangential fluid velocity and the nor-
mal velocity, and the third is the Beavers-Joseph (Beavers and Joseph, 1967) boundary 
condition 

duf as J . s .. ^. 

Here the clear fluid occupies the region t/ > 0, and Uf is the fluid velocity, Uf and duf/dy 
are evaluated at y = 0"̂  and the Darcy velocity Um is evaluated at some small distance 
from y = 0. The Beavers-Joseph constant asj is dimensionless and independent of the 
fluid viscosity, but it depends on the structure of the porous material within the boundary 
region. Sahraoui and Kaviany (1992) have shown that the value of a ^ j depends on the flow 
direction at the interface, the Reynolds number, the precise choice of the interfacial location 
at which the boundary condition is applied, and nonuniformities in the arrangement of 
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the solid material at the surface. In the present author's opinion asj should be regarded 
as simply an empirical constant, to be determined experimentally. Its presence in the 
boundary condition provides the needed flexibility in modelling the tangential stress 
requirement. 

The situation with respect to the normal stress is similar but there is an additional factor 
involved. The normal stress is the sum of the pressure and a viscous stress term. Some 
authors have argued that the pressure, being an intrinsic quantity, has to be continuous 
across the interface. They have failed to realize that the interface is an idealization of a thin 
layer in which the pressure can change substantially because of the presence of the solid 
material. In practice, the viscous term in the normal stress may be small compared with 
the pressure and in this case the continuity of normal stress does reduce to the approximate 
continuity of pressure. Also, for an incompressible fluid, the continuity of normal stress 
does reduce to the continuity of pressure if one takes the effective Brinkman viscosity 
equal to the fluid viscosity, as shown by Chen and Chen (1992). It should be noted that 
several authors who have formulated a problem in terms of stream function and vorticity 
have failed to deal properly with the normal stress boundary condition, see Nield (1997). 
For a more soundly based procedure for numerical simulation, and for a further discussion 
of this matter, the reader is referred to Gartling et al. (1996). 

Ochoa-Tapia and Whitaker (1995a, 1995b) have expressly matched the Darcy and Stokes 
equations using the volume-averaging procedure. This approach produces a jump in 
the stress, but not in the fluid velocity, and involves a parameter which has to be fitted 
experimentally. They also explored the use of a variable porosity model as a substitute for 
the jump condition and they concluded that the latter approach does not lead to a successful 
representation of all the experimental data but it provides insight into the complexity of the 
interface region. Kuznetsov (1996) applied the jump condition to flows in parallel-plate 
and cylindrical channels which are partially filled with a porous medium. Kuznetsov 
(1997) reported an analytical solution for flow near an interface. Kuznetsov and Xiong 
(1999) have investigated the limitations of the 'single domain' approach, in which the 
same equations (but with different coefficients) are used in the fluid region as are used in 
the porous medium region. They concluded that the single-domain approach results in the 
correct matching of the shear stress only if the adjustable coefficient in the representation 
for the excess stress equals zero and if also the effective viscosity is equal to the fluid 
viscosity. 

Salinger et al. (1994) found that a Darcy-slip, finite element formulation produced so-
lutions which were more accurate and more economical to compute than those obtained 
using a Brinkman formulation. 

For the case of forced convection in a composite channel between parallel plates, Alazmi 
and Vafai (2001) have reported the results, based on a Brinkman-Forchheimer formulation, 
of numerical calculations on the effects of varying the boundary conditions imposed at the 
interface. They found, as one would expect, that the changes had a more prominent effect 
on the velocity field, a less prominent effect on the temperature field, and thus an even 
less prominent effect on the Nusselt number. The effect of the changes increased with an 
increase in the Reynolds number and with an increase in the Darcy number. 
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Published studies of the interface problem have concentrated on situations where the basic 
flow is tangential to the interface. In fact, very little has been reported on situations 
in which the basic flow is normal to the interface. An exception is the dissertation by 
Fadda (1996), who investigated flow in a channel with a clear fluid upstream and a porous 
medium downstream. His numerical work confirmed the prediction of an analytic study by 
the present author (unpublished) for a porous medium of moderate or low Darcy number, 
namely that the presence of the porous medium would be felt several channel widths 
upstream of the interface, and he verified this with a flow visualization experiment. In 
this situation, one would expect that the precise form of the boundary condition at the 
interface would not be important, and Fadda confirmed that this was so. 

1.4 NON-NEWTONIAN FLUID 

Shenoy (1994) reviewed studies of flow of non-Newtonian fluids in porous media, which 
reveal that the various authors have concentrated on power-law fluids. Shenoy suggested, 
on the basis of volumetric averaging, that the Darcy term be replaced by {/j,* /K*) v^~^v, 
the Brinkman term by 

i n - l "i 

A/S A : Al (1.6) 

for an Ostwald-de Waele fluid, and the Forchheimer term be left unchanged, because it is 
independent of the viscosity. Here n is the power-law index, /x* reflects the consistency 
of the fluid, K* is a modified permeability, and A is the deformation tensor. The present 
author agrees with Shenoy's suggestion, but in the Brinkman term he would replace /i* /(j)'^ 
by an equivalent coefficient. Applications to natural, forced and mixed convection heat 
transfer have been discussed by Shenoy (1992,1993) and others. 

1.5 EFFECT OF ROTATION 

The effect of rotation is to add two extra body-force terms to the momentum equation, 
reflecting the centrifugal and Coriolis effects. In the context of natural convection, this 
topic has been discussed in papers reviewed by Vadasz (1998). The left-hand side of 
equation (1.3) is now replaced by 

T - ^ + T? (^ • ^ ^ ) + -c*^ X V -\- u; X {u X X) 
(p at (p'^ (p 

(1.7) 

where u; is the angular velocity of the rotating frame of reference and x is the position 
vector relative to that frame. The ratio of the Coriolis term to the Darcy term is of order 
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£ ~ \ where the Ekman-Darcy number E is given by 

E = %—, where Ek = 7 - ^ and Da = — . (1.8) 
Da 2ujpL^ L^ 

Here L is a characteristic length. In general, in most practical situations E is large since 
the Darcy number Da is small, and therefore the Coriolis term is usually not important. 
However, Vadasz points out, in the case of a heterogeneous medium, that the Coriolis 
acceleration distorts the direction of any existing flow and generates vortices in a plane 
perpendicular to the fluid flow. For the case of isothermal fluids, the centrifugal term, then 
being irrotational, merely affects a reduced pressure, but for free convection this term may 
be important. 

Many authors have wrongly omitted the factor 0 from the Coriolis term. As Nield (1999) 
pointed out, they have failed to realize that the pressure in Darcy's equation is an intrinsic 
quantity and hence the velocity appearing in an inertial term must also be an intrinsic 
quantity. 

1.6 EFFECT OF A MAGNETIC FIELD 

The technique of volume-averaging leads to the prediction that the effect of a magnetic 
field is to add a body force term cr (t; x JB) x Bjcp to the right-hand side of equation (1.2). 
Here o is the electrical conductivity of the fluid and B is the applied magnetic induction, 
see, for example, Raptis and Perdikis (1987). In the case of two-dimensional flow and 
with the magnetic induction in the plane of that flow, the extra body force reduces to 
-aB'^v/ct). Thus the effect of the magnetic field is then simply to add an additional drag 
force. The ratio of the magnetic drag to the Darcy drag is aB'^K/ficj), a parameter called 
the Chandrasekhar-Darcy number, and in most practical cases this number is very small, 
and therefore the effect of the magnetic field is negligible. Again, it should be noted that 
many authors have in error omitted the factor (p from their Chandrasekhar-Darcy number. 

1.7 A REFORMULATION OF THE MOMENTUM EQUATION 

Because so many people have been misled on the matter of modelling inertial terms, it 
is worthwhile considering in detail why the pressure in the traditional Darcy differential 
equation is necessarily an intrinsic quantity rather than a seepage quantity. It is also 
worthwhile investigating whether a reformulated equation would be less confusing. The 
reader should note that the original Darcy equation (relating to Darcy's experiments), 
in the form 'pressure drop divided by length of column equals constant times seepage 
velocity', leads directly to the modem differential equation for sufficiently slow flow. 
For the purpose of deriving this differential equation, the REV (representative elementary 
volume) is properly regarded as a miniature column to which Darcy's result can be applied. 
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As well as the assumptions of steady flow and incompressible fluid, three other important 
assumptions are made, namely, 

(i) the porous medium is assumed to be homogeneous, 

(ii) the macroscopic (REV scale) flow is assumed to be unidirectional, 

(iii) a continuum assumption is made. 

A consequence of the first assumption is that no distinction need be made between surface 
porosity and volume porosity. A consequence of the second assumption is that there is no 
flow out of the sides of the miniature column, so the situation in that column is the same 
as in the large column. A consequence of the third assumption is that it is permissible to 
consider the mathematical limit as the length of the miniature column tends to zero. In 
Darcy's experiments, the pressure drop was a^w/Jpressure drop measured in the usual way 
by a pair of manometers placed outside the porous medium. Each manometer measured 
the fluid pressure at the point at which it was placed and no cross-sectional average was 
involved. Rather, because of assumptions (i) and (ii) above, the pressure could be regarded 
as uniform, and so the pressure measured at one point was representative of the whole 
cross- section occupied by fluid, so the pressure measured by Darcy is an intrinsic pressure. 
It follows that, after the appropriate limit of length of the miniature column tending to 
zero is taken, the pressure in the modern differential equation is also an intrinsic quantity. 
This means that the pressure gradient at the REV level is effectively the average of the 
microscopic (pore scale) fluid pressure gradient averaged over just the fluid portion of the 
REV. Professor J. L. Lage has pointed out to the author in a personal communication that 
Darcy measured the pressure just outside the porous medium, rather than just inside it, and 
this means that an entrance and exit effect is involved, and this affects the permeability 
value measured in his experiments. In the argument presented here it is assumed that this 
effect is negligible. 

Conversely, one can start with the differential equation and deduce an expression for the 
Darcy pressure drop. Because of assumptions (i) and (ii), macroscopic transverse pressure 
gradients are zero. Further, by mass conservation, the seepage velocity is independent 
of the longitudinal coordinate and so the same must be true of the longitudinal pressure 
gradient. For an integration over a volume, one can treat the medium as a continuum, 
in which no distinction need be made between the fluid and solid phases. This means 
that mathematically one can average over the entire cross-section of the Darcy column, 
and integrate between the ends of the column, and thereby recover the original Darcy 
expression for the pressure drop. In fact, since the pressure gradient is uniform over the 
whole column, the mathematics involved is very simple. In this process one starts with 
a fluid pressure gradient and ends up with a fluid pressure drop. Thus the argument is 
consistent. 

There is overwhelming experimental evidence that the conventional differential equation, 
with P denoting an intrinsic quantity and K the standard permeability, is correct. If P 
were an REV averaged quantity but with K unchanged, then a factor (j) would have to 
appear in the buoyancy term in the momentum equation, and consequently in the definition 
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of Rayleigh number, see, for example, in the last term of equation (6.4) and equation (6.19) 
of Nield and Bejan (1999). There would then be a discrepancy with the well established 
experimental value for the critical Rayleigh number for the Horton-Rogers-Lapwood 
problem, see Nield and Bejan (1999, Section 6.9.1), to give just one example. Elder 
(1967) obtained the experimental value 40 with an estimated experimental error of 10%, 
in comparison with the theoretical value of 39.48. In his experiment he used a bed of 
packed spheres, and so the porosity was about 0.4. A critical Rayleigh number of 40/0.4 
is incompatible with the experimental results. 

When the conventional definition of permeability was introduced about 1920 (for refer-
ences, see Lage, 1998), a definition which was popularized by the writings of Muskat 
(1937), workers had the option of invoking the Dupuit-Forchheimer relationship and 
expressing Darcy's law in terms of intrinsic velocity, effectively defining a different per-
meability which incorporates the factor 0, but they did not do so. The mixture of intrinsic 
pressure and seepage velocity in the conventional equation is unfortunate. Lage (1998) 
recognized this, and wrote an equation in terms of a seepage pressure and seepage velocity. 
Nield (1999) suggested that it is better to write the entire equation in terms of intrinsic 
quantities. In order to avoid possible confusion, he introduced a new quantity with a 
different name, symbol and dimensions from the permeability K. He wrote the Darcy 
differential equation in the form 

V P - f / / i ? y = 0, (1.9) 

where Rdenotes the 'retardability', which has dimensions (length)~ and is thus measured 
in terms of the unit m~^, and is defined in terms of the standard permeability K and porosity 
(j)hy R — (p/K, while P is the intrinsic pressure and V is the intrinsic velocity. A major 
advantage of the new form is that it generalizes in a natural way to the Brinkman equation, 

V P + fiRV - fieV^V = 0, (1.10) 

where /Xg is an effective viscosity. Volume averaging over an REV gives the estimate 
/ie = /i (rather than ///</)). Clearly, the porosity (f) does not appear explicitly in the 
equation, but is incorporated into the geometrical factor R, Other terms like the Coriolis 
term can be added and expressed in terms of V, and again the porosity does not appear 
in these terms. For the case of buoyancy, the term to be added to the left hand side of 
equation (1.9) is —p^, where g is the gravitational acceleration. A minor bonus is that the 
division solidus does not appear in the equation. 

For the Brinkman-Forchheimer equation, Nield (1999) proposed the form 

V P + fiRV - HeV^V + CNPR^^^VV - 0. (1.11) 

The new non-dimensional Forchheimer coefficient CN is related to the Forchheimer 
coefficient CF used in equation (1.3) by CN = (p^^'^cr- There is evidence which suggests 
that CN may be closer to being a universal constant than is cp- For example. Beavers 
and Sparrow (1969) noted, for their fibrous foam metal materials, that cp was about 
0.1, compared with the value 0.55 obtained with beds of spheres (Beavers et al, 1973). 
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Unfortunately the porosity values are not reported in Beavers and Sparrow (1969), but 
plausible ballpark values are 0.9 for the fibrous materials and 0.4 for the beds of spheres, 
and these values yield the CN values 0.085 for the fibrous material and 0.14 for the beds 
of spheres. 

1.8 VISCOUS DISSIPATION 

For convection problems one must supplement the momentum equation by a thermal 
energy equation, which in steady state form is given by 

pcpv • VT = V • {kmVT) + ^ , (1.12) 

where km is the effective thermal conductivity of the porous medium and ^ is the viscous 
dissipation term. This last term is generally negligible but, in general, it is given by the 
power of the drag force per unit volume, i.e., v • F, where F is the drag force. In the case 
where the Forchheimer term is added to the Darcy term we have the following: 

^ = ^V'V + ^ \ v \ v ' V . (1.13) 

The remarkable thing is that the last term in equation (1.13) does not involve the viscosity 
as a factor, despite the fact that it contributes to the viscous dissipation term, and this 
paradox was resolved by Nield (2001a). The explanation of the apparent paradox lies in 
the recognition that, as pointed out by Joseph et al. (1982), the Forchheimer drag term 
models essentially a form drag effect, and involves the separation of boundary layers and 
wake formation behind solid obstacles. In fact, the basic idea goes back at least as far 
as Bakhmeteff and Feodoroff (1937). The inertial effects are mediated by the pressure 
distribution and this affects the velocity field and hence the drag in a complex fashion. 
The pore scale advective inertial effects contributing to the form drag lead to a substantial 
modification of the velocity field and, in particular, to an enlargement of the macroscopic 
region in which pore scale velocity gradients are large. This leads to an increase in the 
total viscous dissipation, which is summed over the whole region occupied by fluid and 
hence, because of the fundamental equality of viscous dissipation within a given volume 
and the power of the drag force on that volume, to the increase in the drag. Lage (1998) 
has emphasized the distinction between porous media of a bluff-body type and those of 
a conduit type. Therefore it is worthwhile pointing out that the above argument applies 
to both types of porous media. In the case of bluff bodies the separation of the boundary 
layers and wake formation occur behind the bodies, while in the case of conduits of 
converging-diverging type these phenomena occur downstream of the shoulders. 

In their study of natural convection, Fand et al. (1994) argued, in the case of high flow rates, 
that the boundary layers are sufficiently thin as to render viscous dissipation negligible 
compared to conduction at the heated surface. We can now see that their argument is 
invalid, and that in their problem viscous dissipation should be important for both large 
values and small values of the Rayleigh number. 
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If the Brinkman model is employed, and so the drag is modelled by the term {fi/K) v -
fieV^v, then the viscous dissipation is given by 

$ = ^v ' V - iieV • V^v. (1.14) 

(The reader should note that this expression is based on averages taken over a representative 
elementary volume and hence one should not expect to recover from equation (1.14) an 
expression for the viscous dissipation in a clear fluid in the limit of porosity tending to 
unity.) 

Finally, it should be noted that the viscous dissipation term in the thermal energy equation 
is of the order of magnitude fj.U'^/Kcp. On the other hand, the thermal conduction term, 
that appears in the same equation, is of the order of magnitude A; AT/L^, where U, L and 
AT are the characteristic velocity, length and temperature difference scales, respectively, 
and k is the thermal conductivity. Hence the viscous dissipation is negligible if 

i V < l , (1.15) 

where 
, , /XC/2L2 EcPr Br ^^ ^^^ 

where Ec, Pr, Da and Br are the Eckert number, Prandtl number, Darcy number and 
Brinkman number defined respectively by 

In most situations the Darcy number is small and therefore the viscous dissipation is 
important at even modest values of the Eckert number. The circumstances in which 
viscous dissipation is important are those involving flows of relatively large velocity and 
the author believes that the expression given in equation (1.13), or equation (1.14), is 
likely to be applicable in the context of particle bed nuclear reactors. 

In the case of forced convection, a suitable choice for the characteristic velocity U is clear. 
In the case of natural convection, scale analysis arguments, such as those employed in Nield 
and Bejan (1999, Section 7.1.1), lead to the estimate that U ^ (am/L) Ro}^'^, where a ^ 
is the effective thermal diffusivity of the porous medium and Ra is the Rayleigh-Darcy 
number which is defined by 

Ra=^I^^I^, (1.18) 

where ̂  is the coefficient of thermal expansion, and in this case we have 

Ec^Pr-^DaGe, (1.19) 
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where Ge is the Gebhart number, which is defined by 

Ge ^ ^ , (1.20) 
cp 

and the condition (1.15) becomes 
Ge <^ 1, (1.21) 

in agreement with the statement made by Nield and Bejan (1999, p. 25). The analysis 
of Nakayama and Pop (1989) and Murthy and Singh (1997) confirms that a Gebhart 
number, which was denoted in those papers by the symbol e, is the pertinent group in 
natural convection problems, in the Darcy flow case. Murthy and Singh (1997) found 
that the Nusselt number decreases as a result of the viscous dissipation, by a fraction 
approximately equal to Ge, for small values (0.01 and 0.1) of Ge. 

The above comments on forced convection are made on the assumption that the Peclet 
number Pe = UL/am is not large. If it is large, then the proper comparison is one 
between the magnitudes of the viscous dissipation term and the convective transport term 
in the thermal energy equation. This ratio is of the order of Ec Pr/Da Pe — Ec/Da Re, 
where the Reynolds number Re = UL/u. 

Another significant paper in which viscous dissipation is correctly modelled is that by 
Ingham et al (1990). The reader is warned that several papers have been published 
recently in which viscous dissipation has not been correctly modelled. 

1.9 RADIATION 

The topic of radiative heat transfer in porous media, and in particular in packed beds, is 
well covered in Kaviany (1995, Chapter 5) and recent work has been reviewed by Howell 
(2000). The methodology involved with radiation is somewhat different from that involved 
with convection, and only a limited number of investigations have been concerned with 
combined radiation and convection in porous media. Most porous media are opaque to 
radiation, and for them the effect of radiation is felt only in thin surface layers. Boundary 
layer analyses have been made by Chandrasekhara and Nagaraju (1988, 1993), Hossain 
and Pop (1997), Mansour (1997), Yih (1999) and Mohammadien and El-Amin (2000a, 
2000b). In the recent papers the effect of radiation has been modelled by the addition 
of a particular volumetric distribution of heat sources. The present author would like to 
see more attention paid to volumetric heat sources having layered distributions of more 
general form. 

1.10 CONCLUSION 

A review has been made of the many refinements that over the years have been made to 
the equations used to model single-phase fluid flow and heat transfer in a saturated porous 
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medium, to allow for such basic things as inertial effects, boundary friction and viscous 
dissipation, and additional effects such as those due to rotation or a magnetic field or due 
to radiative heat transfer. Approaches to modelling flow at a porous-medium/clear-fluid 
interface have also been reviewed. It has been demonstrated that the modelling of fluid 
flow in a porous medium involves some subtle matters, but substantial progress has been 
made in dealing with these. There are at least a couple of areas where further investigation 
is desirable. The first such area is the modelling of high speed fluid flow in a porous 
medium. In particular, the proposal about the advective inertial term made by Nield and 
Bejan (1999) has not been refuted, but neither has it been supported by other workers. 
Also, the author would like to see some experimental work done on the 'spin-up' problem 
in a porous medium, to provide results for comparison with alternative models. The 
second area where further work is desirable is the problem of modelling the interface 
between a clear fluid and a mushy zone, where the porosity varies with distance from 
the interface. Some preliminary analysis by David E. Loper of Florida State University 
(private communication) and some by the present author has been done. The analysis 
involves Airy functions or modified Bessel functions of order 1/3. 
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Abstract 

New computational methods and techniques have allowed us to model and simulate various 
phenomena in porous medium, and thus a deeper understanding of them is being gained on a 
perpetual basis. The aim of the present work is to obtain the numerical solution of the governing 
equations describing the flow of viscous incompressible fluid flow in a porous medium using an 
appropriate extension of the boundary element method (BEM). A basic description of the BEM 
is included based on a simple example of potential flow in porous medium. The results obtained 
on the basis of the Brinkman equations are discussed and the comparison and the suitability 
of the developed boundary domain integral method (BDIM) with other most commonly used 
numerical methods employed for this type of problem is evaluated. 

Keywords: boundary element method, boundary domain integral method, porous 
medium, Brinkman equation, natural convection, velocity-vorticity formulation, 
diffusion-convective, subdomain technique 

2.1 INTRODUCTION 

Fluid transport phenomena in porous medium refers to the processes related to and ac-
companied with the transport of fluid momentum, mass and heat, through the given porous 
medium. These processes which are encountered in many different branches of science 
and technology, e.g., hydrology, geomechanics, and civil, petroleum, chemical and me-
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chanical engineering, etc. are commonly subject to theoretical treatments which are based 
upon the methods traditionally developed in classical fluid dynamics. Over recent decades, 
fluid flows in porous medium have been studied both experimentally and theoretically. 
Different numerical methods were used for obtaining the solutions of some transport phe-
nomena in porous media, e.g., the finite-difference method (FDM), finite element method 
(FEM), finite volume method (FVM), as well as the boundary element method (BEM). 
The main comparative advantage of the BEM, the application of which requires the given 
partial differential equation to be mathematically transformed into the equivalent integral 
equation representation, which is latter to be discretized, over the discrete approximative 
methods is demonstrated in cases where this procedure results in boundary integral equa-
tions only. This turns out to be possible only for potential problems, e.g., inviscid fluid 
flow, heat conduction, etc. In general, the procedure results in boundary domain integral 
equations and therefore several techniques were developed to extend the classical BEM. 
The dual reciprocity boundary element method (DRBEM) represents one of the possibili-
ties for transforming the domain integrals into a finite series of boundary integrals, see for 
example Blobner et al (2000) and Perez-Gavilan and Aliabadi (2000). The key point of the 
DRBEM is the approximation of the field in the domain by a set of global approximation 
functions and the subsequent representation of the domain integrals of these global func-
tions by boundary integrals. The discretization of the domain is represented only by grid 
points (poles of global approximation functions) in contrast to FDM meshes. However, the 
discretization of the geometry and fields on the boundary is piecewise polygonal, which 
gives the method greater flexibility over the FDM methods in coping with the boundary 
quantities. In the DRBEM all calculations reduce to the evaluation of boundary integrals 
only. Another more recent extension of the BEM is the so-called boundary domain in-
tegral method (BDIM), see Skerget et al (1989, 1999) and Jecl et al (2001). Here, the 
integral equations are given in terms of the variables on the integration boundaries as well 
as within the domain of the integration. This situation arises when we are dealing with 
strongly nonlinear problems with prevailing domain-based effects, for example diffusion-
convection problems. The Navier-Stokes equations are commonly used as a framework 
for the solution of such a problems since they provide a mathematical model of physical 
conservation laws of mass, momentum and energy. The velocity-vorticity formulation of 
these equations results in the computational decoupling of the kinematics and kinetics of 
the fluid motion from the pressure computation, see Wu (1982). Since the pressure does 
not appear explicitly in the field functions conservation equations, the difficulty connected 
with the computation of the boundary pressure values is avoided. The main advantage of 
the BDIM, as compared to the classical domain type numerical techniques, is that it offers 
an effective way of dealing with boundary conditions on the solid walls when solving 
the vorticity equation. Namely, the boundary vorticity in the BDIM is computed directly 
from the kinematic part of the computation and not through the use of some approximate 
formulae. One of the few drawbacks of the BDIM are considerable CPU time and memory 
requirements, but they can be drastically reduced by the use of a subdomain technique, see 
Hribersek and Skerget (1996). Convection-dominated fluid flows suffer from numerical 
instabilities. In domain-type numerical techniques upwinding schemes of different orders 
are used to suppress such instabilities while in BDIM the problem can be avoided by the 
use of Green's functions of the appropriate linear differential operators which results in a 
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very stable and accurate numerical description of coupled diffusion-convective problems. 
There are no oscillations in the numerical solutions, which would have to be eliminated 
by using some artificial techniques, e.g., upwinding, artificial viscosity, as is the case with 
other approximation methods. 

2.2 GOVERNING EQUATIONS 

Due to the general complexity of the fluid transport process in porous medium, our work 
is based on a simplified mathematical model in which it is assumed that: 

• the solid phase is homogeneous, non-deformable, and does not interact chemically 
with respect to the fluid. 

• the fluid is single phase and Newtonian; its density does not depend on pressure 
variations, but only on variations of the temperature, 

• the two average temperatures, Ts for the solid phase and Tf for the fluid phase are 
assumed to be identical and the porous medium is in thermodynamic equilibrium, 
that means it is described by a single equation for the average temperature T — 
Ts = T/, 

• no heat sources or sinks exist in the fluid; thermal radiation and Rayleigh dissipation 
are negligible, 

• the natural convection effect is considered by using the Boussinesq approximation, 
where the temperature influence on the density is considered only in the term 
describing the body force, while in all the other terms the density is assumed to be 
constant. 

Under these assumptions, having in mind that we are dealing with time dependent incom-
pressible viscous fluid flow through porous medium, we may write the macroscopic set 
of equations, commonly called the modified Navier-Stokes equations or the Brinkman 
equations, as follows: 

continuity equation 

momentum equation 

1 ^ = 0, (2.1) 
OXj 

Idvj ^ 1 dvjVj ^ IdP ^ ^ 7 ^ ^ 7 d'^^i 2̂ 2) 
(/> dt (jP- dxj pdxj * K ^ 4)dxjdxj' 

> ^ ^ ^ V ' 

Darcy law Brinkman 
extension 
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dT_ dvjT_ _ ^ ( ST 
dt dxj dxj \ dxj ^ 

where the vector field functions Vi, gi and xi are the filtration velocity, gravity and position, 
respectively. The scalar quantity P z=z p — pg^n is the modified pressure, while p and 0 
stand for the density and porosity. The quantities 7, K, a and a are the kinematic viscosity 
coefficient, permeability, thermal diffusivity and the heat capacity ratio, which is defined 
by the expression 

^ = 0 + ^ ^ ^ ( 1 - 0 ) , (2.4) 
pcp 

where the subscript s denotes the solid part of porous medium. The following general 
expression for the density variation can be used: p = po{l -\- F), where the function F is 
frequently defined as follows: 

F = - / ? T ( T - T O ) , (2.5) 

PT denotes the thermal volume expansion coefficient, and po is the reference density at 
the temperature To. 

The Brinkman extension expresses the viscous resistance or viscous drag force exerted by 
the solid phase on the flowing fluid at their contact surfaces. With the Brinkman equation 
one is able to satisfy the no-slip boundary conditions on an impermeable surfaces that 
bounds the porous medium, see for example Tong and Subramanian (1985), Lauriat and 
Prasad (1987), Kladias and Prasad (1989), Mamou et al (1992), etc. It is important 
to stress that the Brinkman equation is essentially an interpolation scheme between the 
Navier-Stokes and the Darcy equations. It is well known, see Vasseur et al (1990), 
that in the limit when the porosity approaches unity ((/> -> 1), and consequently the 
permeability tends to infinity {K -> 00), then the Brinkman equation transforms into the 
classical Navier-Stokes equation for a pure fluid, while when the permeability tends to 
zero {K -^ 0), the Brinkman term becomes negligible and the Darcy law is then recovered. 

As we mentioned previously, our goal is to solve the Brinkman equations (2.1) - (2.3) 
using the boundary domain integral method (BDIM). To show the differences of the BDIM 
as compared with classical boundary element method (BEM) let us start with the basic 
description of the BEM. 

2.3 BOUNDARY ELEMENT METHOD FOR POTENTIAL FLOW IN POROUS 
MEDIUM 

The numerical methods used in continuum mechanics can be classified into three main 
approaches, e.g., finite-difference, finite element and boundary element approaches, see 
Becker (1992). The first two approaches may be treated as domain methods where the user 
is required to represent the geometry of the object under consideration by elements which 
themselves represent a volume. However, in the boundary element approach the user 
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models only the surface (or boundary) of the body. So for two-dimensional applications, 
the elements are lines and for three-dimensional applications the elements are surfaces. 
The boundary of the body is modelled by joining these elements together edge-to-edge, as 
though they were being pasted onto the surface of the 3D body, until the entire body has 
been covered with non-overlapping elements. Since the user is required to model only the 
boundary, the amount of data which one has to supply is reduced substantially. By using 
lines to model 2D geometries and patches to model 3D geometries, the dimensionality 
of the problem is reduced by one in all cases. This greatly simplifies the data input 
and minimises the errors introduced at this early stage of the analysis. The boundary 
element approach implies that the governing differential equations may be transformed 
into integral equations which are applicable over the surface or boundary. These integrals 
are numerically solved over the boundary and provided that the boundary conditions are 
satisfied, a system of algebraic equations emerges for which a solution may be obtained. 

2.3.1 Potential flow 

In order to illustrate a typical boundary element derivation, all the necessary steps involved 
to obtain a solution are shown for a simple governing equation. Therefore we first consider 
the problem in which we may neglect the inertial force, the viscous resistance to the flow 
inside the fluid that saturate the porous medium domain, assume a constant fluid density 
and introduce the piezometric head i/;, namely 

^ = z - f - , (2.6) 
P9 

that expresses the mechanical energy due to gravity and the pressure of the fluid. In such 
a case, the momentum equation (2.2) transforms into the so-called Darcy's law, see Bear 
and Bachmat (1991), in the form 

. , = - K | ^ , (2.7) 
OXi 

where the coefficient X is a second-rank symmetrical tensor, called the hydraulic con-
ductivity, defined as follows: 

K = K-, (2.8) 
7 

and the term dip/dxi is called the hydraulic gradient. The hydraulic conductivity K 
depends on the properties of both the fluid phase ( I /7 , often referred to as the fluidity, 
is equal to the reciprocal of the kinematic viscosity of the fluid), and the solid matrix 
(through the permeability K). Darcy's law in the form of equation (2.7) states that 
the relative specific discharge is proportional to the hydraulic gradient. For flow in an 
isotropic, homogeneous, fixed and non-deformable porous medium, K — constant, and 
for p — constant and 7 — constant the flow as defined by equation (2.7) is referred to 
as potential flow. The boundary element method is therefore an ideal method for solving 
this particular partial differential equation in order to find the solution of the unknown 
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piezometric head in the porous medium domain. By taking the divergence of the Darcy 
equation (2.7), the Laplace equation is obtained in the form 

^ "̂  - 0 in f], (2.9) 
dxidxi 

taking into account the mass conservation equation (2.1) and ft being a two- or three-
dimensional domain, see Figure 2.1. The solution of equation (2.9) is obtained by 
assuming that the boundary T consists of two parts, namely Fi and F2 on which the 
Dirichlet (essential) boundary conditions for the piezometric head and the Neumann 
(natural) boundary conditions or the normal derivative of the piezometric head, namely 

i; = iP on Tu q=^=q on T2, (2.10) 
on 

are known, with n being the outward normal vector to the boundary F (F = Fi -f- F2) and 
the bar indicates that values of V? and q are known on Fi and F2, respectively. 

2.3.2 Integral equation 

The boundary element method is a weighted residual method for solving partial differential 
equations, characterised by choosing an appropriate fundamental solution as a weighting 
function and by using the Green's formula for the complete transform of one, or more, of 
the partial differential operators to the weighted function. The Laplace equation (2.9) is 
solved by using the weighted residual principle, see for example Banerjee and Butterfield 
(1981) and Brebbia and Dominquez (1992), to obtain 

/ 5 ^ ^ * d " ^ / {Q-q)u'dr- [ {^|J-^)q*d^, (2.11) 

q = q 

Figure 2.1 Schematic diagram of the geometry and boundary conditions of the 
problem under consideration 
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where u* is a weighting function and q — du*" Jdn its derivative on the boundary. Inte-
grating twice by parts the left-hand side of the equation (2.11) we obtain 

[ -^—^xljdn = - [ ^ix*dr- / gii*dr-h [ ipq*dT-i- [ t/ig*dr. (2.12) 
JQ oxidxi JY^ JY, Jr2 Jr, 

This equation is the starting point for the application of the boundary element method and 
our aim is now to render the equation (2.12) into a boundary integral equation. This is 
done by using a special type of weighting function u*, called the fundamental solution, 
which satisfies the Laplace equation, namely u* is the solution of the following equation: 

+ S{^,s) = 0. (2.13) 
dxidxi 

The fundamental solution u* represents the field generated by a concentrated unit charge 
acting at a source point ^, while s denotes the reference point. The effect of this charge 
is transferred from source point to infinity without any consideration of the boundary 
conditions. Further, the function S (^, s) represents the Dirac delta function which tends 
to infinity at the source point and is equal to zero everywhere else. The integral of a Dirac 
delta function multiplied by any other function is equal to the value of the latter at the 
point ^. Therefore equation (2.12) can be written as follows: 

c (OV^(0+ / V^9*dr-f f iPq''dT= f qu* dr-\- I qu"" dT, (2.14) 
JT2 "'Ti JT2 •'Ti 

or 

ciOi^iO + I i^q'dT = I U'qdT, (2.15) 

which is valid for the whole boundary F = Fi -f r2 before any boundary conditions have 
been applied. For an isotropic three-dimensional domain, the fundamental solution of 
equation (2.13) is given by 

u* = . ) . -, (2.16) 
47rr (^, s) 

and for a two-dimensional isotropic domain it is given by 

u* = ^\n-l—, (2.17) 
27r r (^, s) 

where r (^, s) is the distance from the source point ^ (from the point of application of 
the delta function) to the reference point s (any point under consideration), see Brebbia 
and Dominquez (1992). The equation (2.15) is valid for any point within the domain ft 
because of the geometrically dependent free term c (^), which accounts for the Cauchy 
type singularity of the integral on the left-hand side of equation (2.15). The geometrical 
coefficient c (^) denotes the fundamental solution related coefficient depending on the 
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position of the source point and it takes the following values: 

c{^) = 0 when ^ is outside the domain J1, 
c{^) — 1 when ^ is inside the domain H, 
c (^) = 1/2 when ^ lies on the smooth boundary F, 
c (^) = iS/27r when ^ lies on the non-smooth boundary T where ^ is the internal angle 

of the boundary at the point ^. 

2.3.3 Discretization 

Searching for an approximate numerical solution, the integral equation (2.15) is written 
in a discretized manner in which the integrals over the boundary are approximated by a 
sum of integrals over individual boundary elements. Therefore the boundary F is divided 
into N segments or elements. The points which define the geometry of these elements 
are called 'mesh points' which are always placed at the corners and midpoints of the 
elements. The points where the unknown values are considered are called 'nodes'. Unlike 
the finite element method, the mesh points do not necessarily coincide with the nodes. 
The mesh points define only the geometry and the nodes define the values of the unknown 
function, or its derivative, on the element. Two different types of elements are basically 
used, namely continuous and discontinuous elements. Continuous elements have nodes 
on the edges and comers of the element, which are shared with neighbouring elements. 
Discontinuous elements do not share nodes with neighbouring elements, and the nodes are 
therefore not at the edges and corners of the element, but are displaced towards the element 
centroid. The number of nodes on an element varies according to the user requirements. 
For constant elements there is only one node (taken to be in the middle of the element) for 
each element, linear elements are those for which the nodes are at the ends of the elements, 
and quadratic elements (curved elements) are those for which a further mid-element node 
is required. In what follows, the description of different continuous elements is given. For 
constant elements, the values of the unknown function, in our case the piezometric head 
xp, and the values of the derivative of this function are assumed to be constant over each 
element and equal to the value at the mid-element node, see Figure 2.2. 

A" 
F 

Point (1) Node(O) Point (2) 

1/2 1/2 
< X • 

^ = - 1 ^=0 ^=1 

Figure 2.2 Constant element definitions 
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Node(l) Node (2) 

1/2 
-^^4-

1/2 

^ = - 1 <; = 0 (^=1 

Figure 2.3 Linear element definitions 

For this type of element, the boundary is always smooth as the node is at the centre of the 
element, and hence the factor c {£) of the unknown value in equation (2.20) is equal to 
1/2. 

For linear elements, the linear variation of the unknown function and its derivative is 
assumed and the nodes are considered to be at the ends of the element, see Figure 2.3. 

The values of the unknown function and their derivatives at any point on the element can 
be defined in terms of their nodal values and two linear interpolation functions (j)\ and 02, 
which are given in terms of the homogeneous dimensionless coordinate ^ as follows: 

0 1 = ^ ( 1 - 0 , 0 2 - ^ ( l + < ^ ) . (2.18) 

It is usually more convenient for an arbitrary geometry to implement some type of curvi-
linear elements. The simplest of these are the three-noded quadratic elements, which are 
shown in Figure 2.4. 

\|/ or ^ variation 

Node (1) Node (2) 

1/2 

^ = - 1 C = 0 

Reference system 

1/2 

Node (3) 

^ = 1 

Figure 2.4 Quadratic element definitions 
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Similarly, as before, the values of the unknown function and their derivatives at any point 
on that element is defined in terms of their nodal values and three quadratic interpolation 
functions, namely (/>!, (/>2 and 03 given in terms of the coordinate <; as follows: 

'^i = ^ ' ^ ( ^ - i ) , h = {I-<;){! + <;), <i>3 = \<;{! + <;). (2.19) 

The final solution of the equation (2.15) clearly depends on the type of the elements used 
in the discretization. For example, when using constant elements then the equation (2.15) 
can be discretized before applying any boundary conditions as follows: 

1 ^ r ^ r 
2V̂ (0 + E / ^9*dr = ̂ / n*gdr, (2.20) 

where Tj is the boundary of the ' j ' element. The V̂  and q values can be taken out of 
the integrals as they are constant over each element and they are called tp^ and q^ for the 
element ' j ' . Hence we obtain 

\i> (0 + E ( ^ 9* dr j v̂  = E f ̂  «* dr j q^. (2.21) 

Introducing the influence coefficients hj and QJ, representing the integrals which relate 
the ^ node, where the fundamental solution is acting, to any other j node as follows: 

hj = [ q* dr, 9, = [ u^ dr, h, = h ^ 1 f' J ̂  {' (2.22) 

then the equation (2.21) can be written as follows: 

N N 

If we now write the equation (2.23) for all Â  boundary nodes, the resulting equations can 
be expressed in the matrix form as follows: 

H'll) = GQ, (2.24) 

where H, G are two N x N matrices and ip, Q are vectors of length N. Here the Â i 
values of ip and Â2 values of q are known on the boundaries Fi and F2, respectively (the 
boundary conditions are given by equation (2.10)), so that there are only N unknowns in 
the system of equations (2.24). To introduce these boundary conditions into the final set 
of equations then one has to rearrange the system of equations by moving the columns of 
the H and G matrices from one side to the other side. Once all the unknowns are passed 
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to the left-hand side of the equation then we can write 

AX = F, (2.25) 

where X is a vector of the unknowns of the functions ip and q. It should be mentioned 
that the vector F may be determined by multiplying the corresponding columns of the 
equation (2.25) by the known values of ^ or q. It is interesting to note that the unknowns 
are now a mixture of the potential and its derivative, rather than the potential only as in the 
finite element method. This is a consequence of the boundary element being of a 'mixed' 
formulation and this gives an important advantage to the boundary element method over 
the finite element method. Equation (2.25) can now be solved and all the boundary values 
are then known. Once this is done then it is possible to calculate any internal value of Tp, 
or its derivative q, using equation (2.15) for c{^) = 1. 

Integrals, such as hj and gj in the expression (2.22), can be calculated analytically 
or by using a numerical integration formulae, such as the Gauss quadrature scheme, 
for the case ^ ^^ j . For the element ^ = j , the presence of the singularity due to 
the fundamental solution requires a more accurate integration. For these integrals it is 
recommended to use a higher-order integration scheme or a special formula, such as the 
logarithmic transformation. However, when other types of boundary elements are used in 
the discretization, then the integrals are more difficult to evaluate as the known function 
and its derivative vary linearly or quadratically over each part of the boundary Vj. Hence it 
is not possible to take them out of the integrals as done in equation (2.21), see for example 
Banerjee and Butterfield (1981) or Brebbia and Dominquez (1992). 

Here the procedure of the classical BEM has been described for the most simple governing 
equation, namely the Laplace equation. This equation is often used for water seepage 
through porous medium, for which the examples can be found in the literature, see Cheng 
(1984) and da Veiga et aL (1994). 

2.4 BOUNDARY DOMAIN INTEGRAL METHOD 

So far we have explained the basic principles of the boundary element method (BEM), 
which is an ideal tool for solving potential problems involving the Laplace or Poisson 
equation. However, when the problems are more complicated, such as the diffusion-
convective equations then the method must be extended in a way that we need to carry 
out integrals in the domain as well as on the boundary. In what follows we give all the 
necessary steps which are required to determine the solution of such an equation, e.g., a 
system of diffusion-convective equations, using the boundary domain integral method. 

2.4.1 Velocity-vorticity formulation 

Following the concept of BEM, the governing equations (2.1) - (2.3) are further trans-
formed by using the velocity-vorticity variable formulation (VVF), according to Guj and 
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Stella (1993). Defining the vorticity vector uji, which represents the curl of the velocity 
field, as follows: 

(^i = eijk-g—, (2.26) 

where eijk is the unit tensor, and applying the velocity-vorticity approach, the fluid motion 
computation scheme is partitioned into its kinematic and kinetic parts so that the continuity 
and the momentum equations are replaced by the equations of kinematics and kinetics, 
see Skerget et al (1989). With a slight modification of the momentum equation, i.e., 
introducing the new variable Ty {jy = t/(j)), and taking the curl of equation (2.2), then 
the kinetics is governed by the following parabolic kinetic equation, namely the vorticity 
transport equation: 

dui duji dvi d'^Ui ^ ^^ ^^7 .^ o-rx 

which describes the redistribution of the vorticity vector in the fluid flow field. The 
quantity Ty is the so-called modified vorticity time step which is introduced only as a 
necessary mathematical step allowing one to use the VVF principle in the momentum 
equation (2.2). 

Applying the curl operator direcdy to the vorticity defined in equation (2.26), and using 
the continuity equation (2.1), then the kinematics can be formulated in the form of an 
elliptic Poisson equation for the velocity vector, namely 

-E—^~- + ^ijk -^— = 0̂  (2-28) 
OXjOXj OXj 

which represents the compatibility, or the restriction condition between the velocity and the 
vorticity fields, at any given point in space and time. In order to improve the convergence 
of the coupled velocity-vorticity iterative scheme, then instead of using equation (2.28), 
we have used the following parabolized kinematic equation, see for example Guj and 
Stella (1993): 

d'^Vj 1 dvj ^^^ =Q (229) 
dxjdxj a dt "̂̂  dxj 

which is extended with the fictitious velocity accumulation term which smoothes out the 
numerical oscillations, and a is a relaxation parameter. The velocity equation, as given by 
equation (2.28), is exactly satisfied in the steady state {t -)• oo) when the time derivatives 
vanish. Defining the modified temperature time step Trp (r^ = t/a), the energy equation 
(2.3) may be rewritten in the form of a diffusion-convective equation which represents 
the energy transport equation 

dT dT d'^T , , ,^ , 
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2.4.2 Boundary conditions 

The boundary conditions assigned to the elliptic kinematic velocity equation (2.28) are 
the general Dirichlet (essential) and Neumann (natural) conditions which may be defined 
as in equation (2.10), by assuming the division of the boundary T into two parts, namely 
Fi and r2 , see Skerget and Rek (1995), as follows: 

dvj _ dvj^ 
dxj "̂  dn 

on Ti, -^nj = -^ on T2. (2.31) 

In general, the most commonly used physical boundary conditions arise when the velocity 
is prescribed over the whole surface of the domain F. In this case, the normal derivatives 
of the components of the velocity are the unknown boundary values in the set of kinematic 
equations, assuming a known vorticity distribution in the solution domain. Additional 
difficulties appear when the velocity vector is not known a priori over a part of the 
surface, e.g., outflow regions. In such cases then a reasonable choice for the boundary 
conditions is to assume that the values of the velocity gradient, or some other kind of 
outflow boundary conditions through a specific part of the boundary, say F3, are zero, e.g., 

dVi dVi dVi r. r- rn ao^ 
^ - = 0 or - ^ + ^ 2 - ^ - ^ 0 on F3, (2.32) 
on at an 

where Vi is the mean outflow velocity and the whole boundary F is now the sum of three 
parts, namely F = Fi H- F2 + F3. 
The mathematical description of the energy kinetics, as given by equation (2.30), is 
completed by providing suitable natural (Dirichlet), essential (Neumann) and mixed type 
(Cauchy) boundary conditions on the boundary F = Fi 4- F2 + F3, as well as some initial 
conditions in the domain H, namely 

dT 
T = T on Fi, -Xp-—=q on F2, 

axj 

dT ^ . ^ ^ x ^^ P (2.33) 
-Xp— = ariT -Tf) on F3, 

T = fo in fi, 

where ar and Tf are the heat transfer coefficient and the ambient temperature, respectively. 

In a general case, the only boundary condition associated with the vorticity kinetic equation 
(2.28) is the vorticity definition written for the whole boundary F of the solution domain 
ft, namely 

eijk-^=oJ on F, (2.34) 
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which is determined after the velocity field has been obtained from the kinematic part of 
the computation. The vorticity normal fluxes are given by 

duji dui 

and they are the only unknown boundary values in the vorticity kinetics equation (2.28). 

The momentum equation (2.2) is coupled with the energy equation (2.3) through the body 
force, defined with the normalised density-temperature variation function F, see equation 
(2.5). On the other hand the energy equation (2.3) is coupled with the momentum equation 
(2.2) through the velocity field, which is related to the vorticity defined in equation (2.26). 
Consequently a coupled iterative solution of the nonlinear system, given by equations 
(2.27), (2.29) and (2.30), with the corresponding boundary conditions prescribed by 
equations (2.31) - (2.34) is required. 

2.4.3 Integral representation of a diffusion-convective equation 

In general, the set of partial differential equations (2.27), (2.29) and (2.30) have to be 
transformed, using the Green's identities or weighted residual techniques in combination 
with appropriate fundamental solutions, into boundary domain integral equations, see 
Zagar and Skerget (1995). As we can clearly observe, these equations contain inertial, 
diffusive and convective terms and consequently the integral equations consist of the 
boundary as well as domain integrals. 

In order to illustrate the techniques used to solve these governing equations, we consider 
a general nonlinear time dependent diffusion-convective equation for an arbitrary conser-
vative scalar field function u (velocity, vorticity, or temperature) referred to as a potential 
in the form 

du du _ d f du\ 
dt ''dxj dxj \ dxj J 

where lu is the source term. Taking the expression for the variation of the diffusivity 
expressed as a constant part a and a variable part a, so that a — a-\- a, then the equation 
(2.36) can be partitioned into a linear as well as a nonlinear part in the following manner: 

du du _ d'^u d (^ du 
dt ^ dxj dxjdxj dxj \ dxj J 

This equation represents a parabolic initial boundary value problem and therefore some 
boundary and initial conditions have to be known a priori in order to complete its mathe-
matical description, namely 

du 
u — u on Fi, —^T,— — Q. on r2, U — UQ in Vt. (2.38) 

OXj 
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The parameters a and k are defined according to the considered conservation laws and 
corresponding constitutive hypothesis. 

Due to the mixed parabolic-hyperbolic type of the diffusion-convective partial differential 
equation (PDE), it is very important, in the context of determining the appropriate boundary 
domain integral representation, to separate the governing PDE into a linear homogeneous 
and a non-homogeneous part, see Skerget and Rek (1995), as follows: 

Z[u]-^b = 0, (2.39) 

where 3 [ • ] is a linear differential operator and the non-homogeneous part b stands for 
the pseudo body force or source term. Since the final results, namely the convergence of 
the iterative process, are strongly dependent on the appropriate fundamental solution, or 
the Green's functions, used in the transformation of the partial differential equations into 
integral ones, we consider two different non-homogeneous PDEs as follows: 

• a modified Helmholtz PDE for the kinematic part, taking into account the diffusion 
and initial conditions; 

• a diffusion-convective PDE for the kinetic part in the computation, taking into 
account the diffusion, convection and initial conditions. 

The basic idea of using different fundamental PDEs is that more transport processes may 
be included into general equation represents more stable and accurate integral formulation 
and later on also the discretized equation. 

Formulation for the modified Helmholtz PDE 

By using a finite-difference approximation for the time derivative of the field function, 
where the time increment is defined as ^t — tp — ^ F - I » then we have the following: 

at At 

and equation (2.37) can be rewritten, in a non-homogeneous modified Helmholtz PDE 
form, as follows: 

^ - ^ - -I3u + b = 0, (2.41) 
OXjOXj 

along with the following corresponding integral representation: 

c (0 ̂  (0 + / ^ 5 ^ dr = / l^u* dr + / bu* dn, (2.42) 
JY on JY on JQ 

where the variable u* is the modified Helmholtz fundamental solution and /? is defined 
as /? := 1/dAt. Equating the pseudo body force term b with the nonlinear diffusion. 
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convection, source terms as well as the initial conditions in the form 

b=\~ U^-v^v] + :^ +/?t.f-i, (2.43) 
aoxj \ oxj ) a 

then the following integral representation of equation (2.42) is obtained: 

O' JQ\ dxj J dxj 

r / luu* d^ + p [ UF-iu* dQ, 
(^ JQ JQ 

c 

wherein = Vj^j. 

The modified Helmholtz fundamental solution u* is the solution of the equation 

dxjdxj 
pu*+6{^,s)=0, (2.45) 

and it is represented by the well-known Green's function, given by the expression u* — 

{1/2TT)KO (V?r) , for the two-dimensional case, and W* = ^^/^ (STTV)'"^'^^ A'1/2 (v^ r ) 
for the three-dimensional case, see Brebbia and Dominquez (1992). Here KQ, i^i/2 are 
the modified Bessel functions of the second kind of order 0 and 1/2, respectively, 6 (^, s) 
is the Dirac delta function, ^ and s are the source and reference field points, and r is the 
magnitude of the vector from the source to the reference point, i.e., r = \xi {^ - Xi (s) \. 

Formulation for the dijfusion-convective PDE 

The most adequate and stable integral representation, which is particularly useful at high 
Reynolds numbers, can be formulated by using the fundamental solution for the steady 
diffusion-convectivePDE with a reaction term. Since it exists only for the case of constant 
coefficients, the velocity field has to be decomposed into an average constant vector Vi and 
a perturbed vector Vi , such that Vi = vi -{-vi, see Zagar and Skerget (1995). Once again, 
the use of a non-symmetric, finite-difference approximation of the time derivative permits 
us to rewrite equation (2.37) into the following non-homogeneous diffusion-convective 
form: 

d^u dvjU 

dxjdxj dxj At 

with the following integral formulation: 

"" +6 = 0, (2.46) 

c ( 0 u{0+o, f u ^ dr= f (d^ - uvn^ u*dr+ f bu"" dfi, (2.47) 
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where u* is now the fundamental solution of the steady diffusion-convective PDE with a 
first-order reaction term. The pseudo body term b includes the nonlinear diffusion flux, 
the convective flux for the perturbed velocity field as well as the source term and the initial 
conditions and it can be expressed as follows: 

Thus equation (2.47) can be written in the following form: 

+ l/U-a|^)f^dl^ (2.49) 
aJaK dxjj dxj 

+ - [ luU* AQ. + I3 I UF-iU* A9., 
a Jn Jn 

where f„ = VjUj = Vn + Vn, 0 = 1/aAt and the variable U* is the product of the 
diffusion-convective fundamental solution u* and the constant part of the diffusivity a, 
i.e., U* = au*. 

The diffusion-convective fundamental solution u* is the solution of the following equation 
with constant coefficients: 

- ^ ' "* + ^ - i f c o u * + 5 ( ^ , 5 ) = 0. (2.50) 
dxjdxj dxj 

This equation is represented by the known Green's function, which is given by the expres-
sion 

^ _ j (l/27ra) Ko {fJ>r) exp (vjrj/2a) for the two-dimensional case, 

1 (l/inra) exp {vjrj/2a — jir) for the three-dimensional case, 

see Okamoto (1988). Here the parameter ji is defined as 

^l = \l{vl2af -f ko/a = y{v/2af + /?, 

where v'^ = Vj^j^ P — l/aAt and all the other parameters have already been defined. 

2.4.4 Integral representation of the modified Navier-Stokes equations 

The integral representations for the velocity, vorticity and temperature, can be readily 
obtained following the integral formulation developed above for the general transport 
equation (2.37). Each component of the velocity vector vi, given by equation (2.29), 
satisfies the non-homogeneous equation (2.41), subjected to the corresponding boundary 
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and initial conditions, as given by equation (2.31), is given by the following equation: 

dxjdxj 
^Vi + b^=0, (2.51) 

where the non-homogeneous term bi stands for the pseudo body force vector and is given 
by the expression 

bi = pVi^F-i + eijk -w— • (2.52) 
dxj 

Using the integral formulation, given by equation (2.42), we finally can write the boundary 
domain integral formulation for the kinematics as follows: 

Vi— dT = ( " ^ "̂  eijkUJkrij j u* dT 

- / eijkUJk^—d^-\- P / Vi^F-iu''dfl, 
Jn dxj JQ 

(2.53) 

where the parameter ^ is a positive number defined as ^ = 1/aAt, u* is the modified 
Helmholtz fundamental solution, and a is a relaxation parameter, see equation (2.29). 
The boundary domain integral representation, given by equation (2.53), describes the 
restriction condition between the velocity vi and the vorticity Ui fields (following the 
vorticity definition for the known vorticity field only one corresponding velocity field 
exists) in an integral formulation. 

Each component of the vorticity ui, as described by equation (2.27), satisfies the non-
homogeneous equation (2.46), subject to the boundary conditions as given by equations 
(2.32) and (2.34), is given by the equation 

, d'^(^i _ y . ^ _ _ ^ + 6- =rO (2 54) 
dxjdxj "̂  dxj ATy 

where the pseudo body force vector bi includes the convection due to the perturbed part 
of the velocity, deformation, buoyancy source terms, vorticity change due to the porous 
medium properties and the initial conditions as follows: 

d{vjUJi) d{ujVi) 2 ^P <̂ 7̂ , ^ i ,F-i .^ ^^. 
dxj dxj dxj K AT^ V 
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Applying the integral formulation given by equation (2.49), we obtain the boundary 
domain integral formulation for the vorticity kinetics as follows: 

-r- / f ^~^ - ^i'^n - ViUn + (jP'eijkQkFrij \ U* dT 

-1? I ^̂ f̂ * dn-hp [ LUi^F-iU' dft, 
^ JQ JQ 

(2.56) 

where [/* == (jyyu*, ^ is now given by y5 = l/cfryAry and u* is the elliptic diffusion-
convective fundamental solution. 

Considering that the temperature T, as described by equation (2.30), satisfies the non-
homogeneous equation (2.46), subject to the boundary conditions as given by equation 
(2.33), is the solution of the following equation: 

OXjOXj OXj l\Trp 

where the pseudo body force 6, which includes convection due to the perturbed part of the 
velocity, then the nonlinear diffusion part and the initial conditions is given by 

dvjT ^_d_f.^ dT_\ ^ TF-1 
dxj dxj \ ^dxjj ATJ^ b = — ^ + TT- I ^ P ^ - ) + -T^- (2.58) 

Applying the integral formulation, given by equation (2.49), we obtain the boundary 
domain integral formulation for the temperature kinetics as follows: 

=«)r(o + /^T^dr = i./^(a,^-T.„)!;-dr 

O'P JQ\ "^dxjj dxj 

+ P [ Tp-iU^dn, 
JQ 

where C/* = apU*, P is now the parameter defined as Ŝ = l/apAr^^, and u* is the 
elliptic diffusion-convective fundamental solution. The coefficient ap is the constant part 
of the thermal diffusivity and dp is the perturbed part of thermal diffusivity, such that 
dp = dp + dp, where the thermal diffusivity is calculated as ap = Xp/pc, and Ap is 
the heat conductivity of the porous medium, defined as Ap — (1 - 0) Â  + 0A with Â  
denoting the heat conductivity of the solid. 
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2.4.5 Numerical solution of the difrusion--conyectiye integral equation 

Comparing the equations (2.44) and (2.49), we can observe that they are almost identical 
and that is the reason why we present the discretization procedure only once. The govern-
ing partial differential equations for the velocity, vorticity and temperature was previously 
written in an integral formulation but the solution of those equation is still confined to 
simple cases, e.g., elementary geometries, basic forms of the boundary conditions, etc. 
The lack of an appropriate analytical solutions of those equations is the main reason for 
the use of the boundary element method. For the numerical approximate solution of the 
field functions, namely the velocity, vorticity, and temperature, then the corresponding 
boundary domain integral representation is written in a discretized manner in which the 
integrals over the boundary and domain are approximated by a sum of the integrals over E 
boundary elements and over C internal cells. The regions of integration, called cells, can 
now be employed to compute the domain integrals. The cells are surface elements which 
cover the boundary of the solution domain. They are usually of two types: triangular or 
quadrilateral and both can be flat or curved. The potential and its derivative, and functions 
which describe the geometry of the cell can be constant over the element or vary linearly, 
being second-order functions and others which produce a curved element. For example, 
the zero-order constant quadrilateral cell is defined with one point in the centre of the 
cell which is bounded by four boundary elements, the second-order bilinear quadrilateral 
cell is defined with four points placed in the corners of the cell, etc., see Brebbia and 
Dominquez (1992) for more details. 

The integral equation (2.44) can be written as the sum of the boundary and domain integrals 
as follows: 

Itf du \ du* 
+ -y I [uvj - d^— i ^— dn 

C/JL j J (J Jb j 

c c 

(2.60) 

The variation of the field functions, or their products within each boundary element or 
internal cell, is defined in terms of their nodal values and by the use of the interpolation 
polynomials V ' or ' ^ ' with respect to the boundary or domain nodal function values, 
which are similar to those obtained for the potential problem, e.g., we have 
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(2.62) 

where n and m refer to the number of nodes in each boundary element and internal cell, 
and the superscript T is used for transposition. Considering the above discretization, the 
equation (2.60) can be rewritten as follows: 

c c 

+ 

1 • 

(2.63) 

The integrals of the general form, e.g., written for the fundamental solution denoted by 
u*, are defined as follows: 

dTj 

(2.64) 

dQc 

These integrals are functions of the geometry, time increment, material properties and 
constant velocity vector, representing the integration over individual boundary elements 
and internal cells, respectively. The following discretized equation can be written, corre-
sponding to equation (2.63), as follows: 

e=l e = l ^ ^ 

1 C fi ^ 

c=l c=l 

(2.65) 
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and it represents the matrix form of the boundary domain integral equation used for the 
computation of the potential function u, the velocity, vorticity or temperature fields. 

Formally, identical integral representations can be derived using the integral formulation 
(2.49). 

2.4.6 Numerical solution of the modified Navier-Stokes equations 

The discretized integral representations for the conservation field functions can be readily 
obtained following the solution procedure developed above for the general diffusion-
convective transport equation. Based on equation (2.44), the following discretized formu-
lation for the kinematics, i.e., the velocity field, can be obtained: 

E E ^ r\ N n 

c (0 î (0 + Yl ^^}^ ^̂ ^̂ "̂  ̂  IZ {̂ ^̂  I a^ "̂  eijkUJkTij > 
e = l e = l ^ '^ e-

C C 

c = l c = l 

(2.66) 

while the discretized vorticity and energy kinetic representations can be formulated, using 
the integral equation (2.49), as follows: 

E 
, T r i n 

e=l 

'=' (2.67) 
1 

c = l c = l 
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2.4.7 Solution procedure 

In the phase of testing and evaluating the developed numerical scheme, we are often 
satisfied with the two-dimensional solution, which enables us to perform numerous cal-
culations in order to obtain very accurate solutions. Therefore the computer program is 
written for searching for the solution of two-dimensional problems (2D code). Because 
of the reduction from three to two dimensions, the following simplifications can be used: 

• the velocity vector has only two components Vi {vx ̂ Vy^O), 

• the vorticity vector has only one component and it is therefore reduced to the scalar 
function cji = (0,0, a;), 

• all the derivatives in the normal (z) direction are set to zero. 

Taking into account all the above simplifications, the developed discretized equations are 
given for the two-dimensional case as follows: 

• kinematics 

e=l e=l ^ ^ 

(2.69) 
c = l 

• vorticity kinetics 

E 

e = l 

^ c=l 

(2.70) 

c = l c = l 
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• energy kinetics 

E 

e = l 

c=l (2.71) 

Applying equation (2.69) to all the boundary nodes, i.e., for ^ = 1 , . . . , A ê. the following 
2Ne matrix system for the two-dimensional kinematics is obtained: 

[H] {vi} = [«] { ^ } + ^ij [G] Wnj} - Bij [D,] {u} + P [B] {vi}p_,. (2.72) 

This equation has to be computed for the unknown boundary velocity components, or their 
normal derivatives, while all the computations of the internal domain velocity components 
is performed in an explicit manner, point by point, for c (^) = 1 following the equation 
(2.53). Finally, the discretized equations (2.70) and (2.71) should be written for all the 
boundary and internal nodes, i.e., for ^ = 1 , . . . , Âg + A/'c, considering that the function 
F is given by equation (2.5), resulting in the following 2 {Ne + Nc) matrix system for the 
vorticity kinetics: 

f̂ ^ ^^^ " ^ f^l { ^ ^ " ^""^ " ^''^iJ^idjpT^TX 

+ ^ [Dj] {uvj + cl>'eijgjPT^T} - ^ {u} [B] + p [B] {uj}j,_,, 

(2.73) 

yielding the solution for the unknown boundary total vorticity flux and the unknown 
domain vorticity values. On the other hand, for the energy kinetics we obtain 

l H l { r } = l [ G l { a , f } - l [ G l K i m 

+ ^ [Dj] [vj] {T} - 1 [Dj] | a , ^ | + /? [B] {T}^_,, 
(2.74) 

to determine the unknown boundary temperature flux, or the boundary temperature values 
and the temperature internal domain values. The matrices [if], [G], [Dj] and [B] are the 
influence matrices and they are composed of integrals taken over the individual boundary 
elements and over the internal cells. 

Adding all the corresponding terms together, and accounting for the boundary conditions, 
e.g., known nodal function values on Fi and normal flux values on F2, the equations 
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(2.72) - (2.74) can be rewritten in the form to determine the boundary normal flux, or 
boundary field function nodal values, and the field function domain nodal values in the 
form of equation (2.25), see Skerget et al. (1999) for more details. 

Since the implicit set of equations is written simultaneously for all the boundary and inter-
nal nodes, this results in a very large, fully populated system matrix which is influenced by 
the diffusion and the convection. The consequence is a very stable and accurate numerical 
scheme with substantial computer time and memory demands. In order to improve the 
economics of the computation, and thus widen the applicability of the proposed numerical 
algorithm, the subdomain technique has to be used, see Hribersek and Skerget (1996). 
The idea is to partition the entire solution domain into subdomains to which the same dis-
cretized numerical procedure can be applied. The final system of equations for the entire 
domain is then obtained by adding the sets of equations for each subdomain, considering 
the compatibility and equilibrium conditions between their interfaces. This results in a 
much more sparse matrix system, which is suitable to be solved by iterative techniques. 
On the interface Fi, between the subdomains fii and Vt2, the following compatibility and 
equilibrium conditions can be applied for each conservation equation: 

• kinematic equation 

|1 |2 

dn 
dvj 

dn 
(2.75) 

vorticity equation 

UJ\r — IJJ\ I ' 

dui 
(2.76) 

energy equation 

T\] = T\], ^ - X. 
^ dn 

(2.77) 

The discrete model is based on the substructure technique following the concept of the 
finite volume, e.g., that each quadrilateral internal cell represents one subdomain bounded 
by four boundary elements, see Skerget et al. (1999). The geometrical singularities are 
overcome by using 3-node discontinuous quadratic boundary elements combined with 
9-node corner continuous internal cells, see Figure 2.5. 

The quadratic interpolation functions have been used since a good approximation of the 
boundary values of the velocity gradients ensure an accurate evaluation of the boundary 
vorticity values, which strongly influence the stability of the proposed method. The 
interpolation polynomials are given by the expressions ^ for discontinuous three-noded 
quadratic boundary elements and by $ for continuous nine-node quadratic internal cells. 
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• • 

Figure 2.5 Discrete model: layout of a subdomain 

where ^ and 77 are the local coordinate, as follows: 

$ 1 _ 1 ( r ; - r ; ^ ) ( . - . ^ ) , $2 ^ i ( l _ ^2) (̂ 2 _ ^) 

^3 ^ i ( 6 , + 8^2). ^ i = i ( - 6 , + 8.^), ^^ = i ( 9 - 1 6 c ; 2 ) , 
(2.78) 

The kinematics, given by equation (2.72) and the velocity boundary conditions prescribed 
by equations (2.31) and (2.32), cannot assure the solenoidality of the velocity field for 
an arbitrary vorticity distribution, and therefore this property may be fulfilled only by 
coupling the kinetic and kinematic equations. Thus, the solenoidality conditions of the 
velocity and vorticity field requires a coupled iterative solution of the nonlinear dynamical 
system of equations (2.72) - (2.74) with the corresponding boundary conditions described 
by equations (2.33) - (2.35). To obtain a solution of the fluid motion problem, the 
following iterative steps have to be performed: 

(i) Start with some initial values for the vorticity distribution, 

(ii) Kinematic computational part (velocity field): 

• solve the implicit sets for the boundary velocity or the velocity normal flux 
values, equation (2.72); 

• transform the new function values from the element nodes to the cell nodes; 

• compute the gradient of the velocity components; 

• determine the new boundary vorticity values, equation (2.34); 

• determine the new boundary domain integral kinetic matrices, if the constant 
velocity vector is perturbed more than the prescribed tolerance. 

(iii) Energy kinetic computational part (temperature field): 

• solve the implicit set for the boundary and domain values, equation (2.74); 
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• transform the new function values from the element nodes to the cell nodes, 

(iv) Vorticity kinetic computational part (vorticity field): 

• solve the implicit set for the unknown boundary vorticity flux and internal 
domain vorticity values, equation (2.73); 

• transform the new function values from the element nodes to the cell nodes. 

(v) Relax all the new values and the test for convergence. If the convergence criterion 
is satisfied then stop the iterative procedure, otherwise go to step (ii). 

2.5 TEST EXAMPLE 

2.5.1 Natural convection in a porous cavity saturated with a Newtonian fluid 

When the temperature of the saturating fluid phase in a porous medium is not uniform 
then flows which are induced by buoyancy effects occur. These flows, which depend 
on the density differences due to the temperature gradients and the pertinent boundary 
conditions, are commonly called free or natural convection. Due to their numerous appli-
cations in energy related engineering problems, natural convection has been receiving an 
increasing amount of interest and it has become one of the most commonly studied trans-
port phenomena in porous medium. Studies have been reported, for different geometries 
and a variety of heating conditions. For example, a vertical cavity in which a horizontal 
temperature gradient is induced by side walls being maintained at different temperatures 
has been analysed by several researchers, see Lauriat and Prasad (1987), Nakayama and 
Pop (1989) and Vasseur et al. (1990). Others have examined the natural convection in 
a porous layer heated from below, for example Kladias and Prasad (1989) and Mamou 
et al. (1992). In all these studies, use has been made of the Brinkman-extended Darcy 
formulation as the governing momentum equation. This is because it was established in 
the earlier work on flows through porous medium that the simple Darcy law does not give 
satisfactory results when we wish to take into account the no-slip boundary condition, see 
for example Tong and Subramanian (1985) and Lage (1998). 

To check the validity of the proposed numerical procedure, we discus the problem of 
natural convection in a vertical porous cavity. The description of the physical problem 
is shown in Figure 2.6, which represents a two-dimensional, vertical cavity filled with 
an isotropic, homogeneous, Newtonian fluid-saturated porous medium, with one vertical 
wall being isothermally heated and the other is isothermally cooled, while the horizontal 
walls are adiabatic. 

The thermophysical properties of the solid and the fluid phases are assumed to be constant, 
except for the density variation in the body force term. Assuming that both the solid and 
the fluid in the porous medium are in thermal equilibrium then the governing equations 
are written in the form of equations (2.1) - (2.3). Computations have been carried out for 
the complete Brinkman-extended Darcy model with the transport term in the momentum 
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Figure 2.6 Geometry and boundary conditions for the porous cavity 

equation included. Whenever we consider the Brinkman term, we have to deal with the 
so-called Darcy number Da, see Lauriat and Prasad (1987), which is defined as the ratio 
between the permeability and the characteristic length multiplied by the viscosity ratio A, 
which in our case is equal to the reciprocity of the porosity (A = 1/0), see Jecl et al. 
(2001). The governing parameters for the present problem are: the porosity 0, modified 
Rayleigh number Ra* ^ gPrKDAT/jap, Darcy number as Da = (!/</>) (K/D^), 
aspect ratio A = H/D, and the ratio of the volumetric heat capacity of the solid and fluid 
phase cr. Here D, H and AT are the width of the cavity, the height of the cavity and the 
temperature difference between hot and cold walls, respectively. 

We have tested our numerical model for several different parameters and therefore we can 
confirm that the effect of an increase in the Darcy number Da appears to be very similar 
at all the values of the Rayleigh number Ra we have considered, namely 100 ^ Ra* ^ 
1000. However, it is well known that the effect of the viscous (Brinkman) term becomes 
more important at high modified Rayleigh numbers, see Lauriat and Prasad (1987). The 
proposed BDIM scheme has been verified for a square porous cavity with aspect ratio 
A = 1. Because of the above mentioned similarity, we graphically present only one 
example, namely Ra* = 500, in order to outline the relevant characteristics that are 
common at all modified Rayleigh numbers. The boundary conditions for the computed 
test examples are as follows: 

Vx =Vy =0 

9 Z - 0 

f = TH= 0.5 
T = Tc = -0 .5 

for 

for 

for 
for 

X = 0,D and j / = 0, H, 

y = o,H, 

X = 0, 
x = D. 

(2.79) 
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The streamlines and isotherms are presented in Figures 2.7 and 2.8 for Da — 10~^, 10""^, 
10~^, 10~^ and 10~^. A computational mesh of 10 x 10 subdomains is used and time 
steps ranging from At = 10^^ (steady state) for Da = 1 0 - \ At = 10"^ for Da = 10"^ 
At = 10-2 for Da = 10"^ to At = 10"^ for Da = 10"^, 10"^ have been employed. 
The convergence criterion was selected as e = 10"^ and if the difference between all 
the computed values at iteration n and iteration n - 1 is greater than this value the next 
iteration is required, otherwise the computation is finished. Further, in order to illustrate 
the typical results obtained we have taken the porosity to be </> = 0.5 and the heat capacity 
ratio tobecT == 1. 

The streamlines in Figure 2.7(a) are observed to be closely spaced near the solid bound-
aries. This configuration indicates, as expected, that the fluid velocity has a maximum near 
the boundary since in the limit when Da = 0 (Darcy law) the velocity has a maximum on 
the boundaries. In this case Da is small enough that the viscous term which is responsible 
for the boundary effects becomes negligible and the Darcy law correctly describes the 
fluid flow behaviour. Figures 2.7(b) to (d) illustrate typical results obtained on the basis of 
the Brinkman model for various values of Da. It is evident that when the Darcy number 
increases then the influence of the boundary effects on the flow field becomes significant 
and the streamlines are observed to become relatively more and more sparsely spaced near 
the solid boundaries. This is due to the fact that the viscous-Brinkman effect becomes 

(b) 
—̂— — >::-'=̂ —= 

' : : r=^ 

if? : 
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"~--^^^^^:::m=: 
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Figure 2.7 Streamlines for A = 1, <!> = 0.5, AT = 1 and Ra* = 500 for (a) 
Da = 10-*, (b) Da = 10-^ (c) Da = lO-^, and(d) Da = IQ-^ 
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Figure 2.8 Isotherms for A == 1, 0 == 0.5, AT = 1 and Ra"" = 500 > r (a) 
Da ^ 10-^ (b) Da =^ 10"^ (c) Da = 10"^ and(d) Da = 10"^ 
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gradually more important and slows down the fluid in the neighbourhood of the solid 
walls. It is also observed that the region where the flow has a maximum velocity, as 
indicated by the closely spaced streamlines, moves away from the walls towards the core 
region of the cavity as Da increases. 

Similarly, we can observe the effects of the Darcy number on the isotherms and on the 
temperature field, see Figure 2.8. When the Darcy number is small, see Figure 2.8(a), the 
convective motion inside the cavity is strong and the isotherms are considerably distorted. 
The flat isotherms in the core indicate a negligible lateral conduction. As Da increases 
then the viscous effects become more important and slow down the buoyancy induced 
flow inside the cavity. The isotherm profiles become more linear and the heat transfer 
across the cavity results from the combined action of conduction and convection. 

From the above results we can clearly observe that the streamlines and isotherms redis-
tribution are almost identical for small values of the Darcy number. Da = 10~^ and 
Da — 10~^, but with a further increase in the Darcy number, e.g., by increasing the per-
meability K, the velocity and temperature fields start to become significandy modified. 

The rate of heat transfer is expressed by the average Nusselt number which is defined as 
follows: 

Jo \9n Nu = J^ ^-),y. (2.80) 

The variation of the Nusselt number for different Rayleigh numbers is shown in Table 
2.1, where in the brackets the results of Lauriat and Prasad (1987) are shown. A direct 
comparison is not fully possible because in the above mentioned study the authors have 
calculated the Nusselt number considering the Brinkman momentum equation in which the 
transport term is assumed to be negligible, while in our work the computations have been 
made on the basis of the complete Brinkman equation in the form as given by equation 

Table 2.1 Values of the average Nusselt number Nu (values in brackets are 
those obtained by Lauriat and Prasad, 1987) 

Da/Ra* 

10-1 

10-2 

10-3 

10-^ 

10-^ 

100 

1.026 

1.479 
(1.46) 

1.816 
(1.88) 

1.895 
(2.14) 

2.010 
(2.15) 

200 

1.061 

2.016 
(1.70) 

2.666 
(2.41) 

2.718 
(2.84) 

2.765 
(3.02) 

500 

1.370 

2.823 
(2.58) 

4.030 
(3.80) 

4.370 
(4.87) 

4.474 
(5.37) 

1000 

1.815 

3.691 
(3.30) 

7.410 
(5.42) 

7.921 
(7.37) 

8.200 
(8.41) 
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(2.2). Also we have assumed that the viscosity ratio A is equal to the reciprocity value of 
the porosity (f){A = 1/0), according to Nield and Bejan (1992), while Lauriat and Prasad 
(1987) have taken A == 1. Therefore, their results can be used by replacing the modified 
Rayleigh number Ra* in their formulation with Ra* multiplied by a factor 2. 

The variation of the average Nusselt number with Da is presented in Figures 2.9 and 2.10 
for A = 1, Ra* = 100, 200, 500 and 1000. As expected, the average Nusselt number 
approaches the conduction value (Nu = 1) when Ra* approaches zero {Ra* -> 0). Also, 
the average Nusselt number always increases with increasing Ra*, but the effect of the 
Darcy number is just the reverse, namely from Figure 2.9 we can clearly observe that 

Figure 2.9 Variation of the average Nusselt number with Ra* for 10 ^ ^ 
Da ^ 10-^ 

10 

Nu 

1 Ra*--= 1000 

__ 500 X 

L 200 ^'OV 
^ 100 " ^ " ^ 0 \ X 

—1 1 1 -23 

10 = 10^ 10-= 10"̂  Da 1«-

Figure 2.10 Variation of the average Nusselt number with Da for Ra* — 100, 
200, 500 and 1000 
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the effect of the viscous-Brinkman term becomes neghgible when Da < 10~^, which 
is in complete agreement with the observation of Lauriat and Prasad (1987) who have 
solved the same problem using the finite-difference method. Our results are obtained on 
a relatively small computational mesh of 10 x 10 subdomains, while Lauriat and Prasad 
(1987) have performed their computations on a 41 x 41 grid. 

Using the boundary domain integral method, we can therefore confirm the basic fact that, 
when using the Brinkman momentum equation which should be used when considering 
the problem of natural convection in configurations that are bounded by a solid walls, the 
effect of the viscous term becomes negligible when jDa < 10"^. Further, if the Brinkman 
equation is employed then the no-slip boundary condition on the impermeable walls that 
bound the porous medium domain may be enforced and this gives physically more realistic 
results, especially when the Darcy number is small, than if the classical Darcy law is used. 

2.6 CONCLUSION 

A numerical approach, which is based on the boundary domain integral method (BDIM), 
which is an extension of the boundary element method (BEM), has been applied to 
the solution of the transport equations in porous medmm. The modified Navier-Stokes 
equations (Brinkman-extended Darcy formulation with the inertial term included) have 
been employed to describe the fluid motion in porous medium. The solution is based on 
the velocity-vorticity formulation of the governing equations which allows the separation 
of the computational scheme into its kinematic and kinetic parts. An elliptic modified 
Helmholtz fundamental solution is used for the kinematic part of the computation, while 
an elliptic diffusion-convective fundamental solution is employed for the kinetic part. The 
subdomain technique, in its limited version, e.g., each subdomain is being constructed of 
four discontinuous 3-node quadratic boundary elements and one continuous 9-node corner 
continuous quadratic cell, is applied. The proposed numerical procedure is applied to the 
case of natural convection in a porous cavity saturated with a Newtonian fluid, which is 
heated from the side, for different values of the Rayleigh and Darcy numbers. It can be 
stated that the boundary domain integral method, extended in a way which enables the 
investigation of the fluid transport phenomena also in a porous medium, appears to posses 
the potential to become a very powerful alternative over existing numerical methods, 
e.g., finite differences or finite elements, as a means for obtaining solutions to the most 
complex systems of nonlinear partial differential equations, when attacking some unsolved 
problems in engineering practice. 
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Abstract 

This chapter presents an overview of recent work by the author on the onset and evolution 
of instabilities in thermal boundary-layer flows in porous media. Attention is confined to 
those cases where the heated surface is almost vertical, for in that mathematical limit the onset 
of convection takes place at a very large distance from the leading edge, and therefore it is 
possible to analyse both the linear and nonlinear instability characteristics of the flow within 
the framework of the boundary-layer approximation. The chapter covers the following four 
topics: linear instability, the nonlinear evolution of vortices, secondary instabilities of vortices, 
and the effect of inertia on linear instability. After the vortex disturbance has been seeded 
into the boundary-layer we find that vortices enjoy only a finite region of growth before they 
ultimately decay. The region of growth depends not only on the wavenumber of the vortex, but 
also on where it is introduced and on its initial amplitude. The eventual decay of the nonlinear 
vortex signals the possibility of secondary instabilities since the local Rayleigh number, which 
is proportional to the local boundary-layer thickness, continues to grow with distance from 
the leading edge, and therefore the basic flow becomes increasingly susceptible to instability. 
We present two types of secondary instability, a wavelength doubling instability, and a modal 
cascade reminiscent of the Eckhaus or sideband instability. Finally we touch on the effect of 
form drag inertia, as modelled by the Forchheimer terms, on the linear stability characteristics 
of the flow. We find that the presence of inertia serves to stabihse the boundary-layer slightly, 
although the increasing thickness of the basic flow as the inertia parameter increases causes a 
large change in the critical wavenumber of the most unstable vortex. 

Keywords: porous media, free convection, vortices, linear stability, nonlinear stability, 
secondary instability 
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3.1 INTRODUCTION 

The aim of this chapter is to present the latest analyses of the onset, nonlinear development 
and eventual secondary instability of vortices within an inclined thermal boundary-layer 
flow in porous media. In particular we consider the situation which arises when the heated 
surface is nearly vertical, for in that limit instability occurs asymptotically far from the 
leading edge and therefore the boundary-layer approximation may be used as the sole 
approximation. 

There are presently 29 papers in print which consider the instability of thermal boundary-
layer flows in porous media—see the references indicated by an asterisk, especially the 
review by Rees (1998). Many of these papers use the approximate method known as 
the parallel flow approximation to determine stability criteria. Unfortunately there is a 
mathematical inconsistency inherent in the method in that the boundary-layer approxi-
mation is an asymptotic analysis with x ^ 1 but the final result is a finite value of x 
beyond which disturbances grow. In the porous medium context such values of x are often 
very small indeed (for example x ~ 33 for the horizontal boundary-layer) rendering the 
boundary-layer approximation invalid at the point of instability. The paper by Storesletten 
and Rees (1998) investigates this in great detail and concludes that progress may only be 
made by either using a numerical simulation of the full equations, or by looking at the 
near vertical limit. The aim of this chapter is to report on recent efforts in the latter area. 

3.2 THE GOVERNING EQUATIONS AND BASIC FLOW 

The flow configuration we consider is as shown in Figure 3.1. A generally inclined 
and upward-facing surface is set at a uniform temperature which is above the ambient 
temperature of the medium. The coordinate directions are as defined in Figure 3.1, and z, 
the spanwise coordinate, forms a right-handed orthogonal system with x and y. 

0 = 0 

Figure 3.1 Sketch of the flow domain and boundary conditions 
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Assuming the simplest possible situation, namely, Darcy's law is valid, the Boussinesq 
approximation applies, the porous matrix and the fluid are in local thermal equilibrium, 
then the governing non-dimensional equations are given by 

du dv dw ^ /o 1 X 
dx dy dz 

u = -^-^ecos6, (3.1b) 
dx 
dp 
dy 

+ esm6, (3.1c) 

w = -^/. (3.1d) 
dz 

de_ de_ de_ de__dN_ ^ d^ 
dt dx dy dz dx'^ dy^ dz'^ 

Here u, v and w are the fluid flux velocities in the x, y and z directions, respectively, p 
is the pressure and 9 the temperature. The inclination from the vertical of the upward-
facing heated surface is 5. The resulting steady two-dimensional flow may be studied by 
introducing a streamfunction in the form 

u = —-, i; = - — - , i/; = 0. (3.2) 
oy ox 

For the basic flow there are no z variations and equations (3.1) become 

d^xl; d^^p de ^ d9 . ^ .. _ 
•^-^ + ^ -T = ^ - c o s ( 5 - ^-sm(5, (3.3a) 
ax^ at/^ ay ax 
d'^e d^ _ dip_de_ _ dij^dl 
dx'^ dy'^ dy dx dx dy 

The heated surface is assumed to be semi-infinite in extent in this idealised problem. There-
fore there is no external physical length scale which may be used to non-dimensionalise 
the equations, and hence the porous medium Rayleigh number has been set equal to unity. 
The boundary-layer approximation now consists in treating x as an asymptotically large 
variable with x ^ y. 

At general inclinations (0 ^ 6 < 7r/2), the boundary-layer approximation reduces equa-
tions (3.3) to the form 

(3.4a) 

(3.4b) 

9V 
dy'^ 
dH _ 
dy'^ ~ 

= — cosd, 
dy 

_ dip de dip de 
dy dx dx dy' 
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for which there exists a similarity solution with the form 

ij^x'^^fiv), e = g{Ti), where r, = y/x'^\ (3.5) 

where / and g satisfy 

f'^g'cosS, (3.6a) 

9" + \f9' - 0, (3.6b) 

subject to 
/ = 0, g = l on rj = 0, 

f',g-^0 as ry -> oo. 
(3.7) 

This flow was first considered by Cheng and Minkowycz (1977) for the vertical case, 
6 = 0. 

3.3 PERTURBATION EQUATIONS 

We will be dealing with the onset and development of vortex disturbances and therefore it 
is necessary to use the fully three-dimensional equations of motion. We do not consider 
unsteady effects, but rather we determine the downstream effect of steady disturbances 
placed within the boundary-layer. A scaling analysis of equations (3.1), subject to the 
requirement that the vortices have an O (1) cross-section, yields the following transfor-
mations: 

cos 6\ ^ / 1 \ * / I 
^ = — 2 T P ^ ' y=\7r-i y^ ^ = ^sin^Sj'^' "" \smSj''' ^ \smSj^' (3.8) 

u = {cosS)u*, v = {sm6)v*, w = {sm6)w*, p = P*, 9 = Q. 

On substitution into equations (3.1) we obtain 

Ux + Vy + Wz = 0, (3.9a) 

, . e - ( ^ p . , (3.9b) 
^cos"^ 6 ̂  

v = Q-Py, (3.9c) 

w = -P,, (3.9d) 

uQx + vQy + 'wQz = ( ^ ^ ) ^xx + Qyy + ©zz, (3.9e) 

where the asterisk superscripts have been omitted. The limiting case, J -> 0, may now be 
seen as being equivalent to invoking the boundary-layer approximation since, in this limit, 
the length scale represented by x* = 1 is asymptotically greater than that represented by 
y* = 1, see equations (3.8). 
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We now eliminate the velocity components in (3.9) to obtain the pressure/temperature 
formulation of the equations, formally let (5 -> 0 and employ the new coordinate system, 
(^,r;,2:), where 

We obtain the equations 

P" + ePzz = \ (C©c - r?©') + ^ e ' , (3.11a) 

e" + ,f2e„ = i (̂ ê  - T/G') e - P'Q' + eee' - ^''PZQZ, (3.I ib) 

subject to the boundary conditions 

P ' = 1, 9 = 1 on r/ = 0, 
P, 9 -^ 0 as 77 ->̂  00. 

(3.11c) 

Finally, we perturb about the basic flow by setting 

P = qi{r]) + ^q2{ri)+p{^,r],z), (3.12a) 

Q = 9{v) + HLri,z,t), (3.12b) 

where 

q'i = \U-rin. Q2^9, (3-13) 

to obtain the following full disturbance equations: 

P" + ^Pzz = I {^e^ - VO') + ^e', (3.14a) 

- if") p' - ePzdz + \ (io^ - vo') e - p'e' + m'^ 
(3.14b) 

where all the nonlinear terms have been retained, and primes denote derivatives with 
respect to r/. The boundary conditions are that 

P' = 0, l9 = 0 on 77 = 0, (3.14c) 
p, ^ -> 0 as 7/ -> 00. 

3.4 LINEAR EVOLUTION OF VORTICES 

Equations (3.14) may be linearised by simply neglecting the terms involving products. 
The evolution with ^ of a vortex disturbance of wavenumber k may obtained by first 
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introducing 

P(^,r7,^,«)=p(^,7?)e"=^ e{^,rj,z,t) = e{^,r])e"'', 

and hence equations (3.14) reduce to 

(3.15) 

(3.16a) 

(3.16b) 

These equations have single ^-derivatives which implies that the system is parabolic, and 
that the appropriate way of analysing instability must be to introduce a disturbance at some 
place within the boundary-layer and to monitor its evolution with ^. However, to set such 
analyses into context we first perform a 'parallel flow approximation' stability analysis 
by simply neglecting the ^-derivatives. Clearly this forms a constraint on the disturbance 
which is unlikely to occur in practice, and therefore stability criteria obtained in this way 
will not be accurate, but are nevertheless likely to give good qualitative results. Equations 
(3.16) with the ^-derivative terms neglected form an ordinary differential eigensystem 
with ^ as the eigenvalue and fc as a parameter. The result of solving this eigensystem is 
shown in Figure 3.2. 

The minimum value of ^ on the neutral curve is 10.479 (equivalent to x == 108.82) at 
which point k — 0.05744. The maximum wavenumber for which neutral stability occurs 
is A: = 0.09236. This figure may be interpreted as meaning that disturbances of any chosen 
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Figure 3.2 Neutral stability curve: ^c against k 
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wavenumber (subject to A: < 0.09236), if placed close to the leading edge, will decay at 
first, then begin to grow once the lower branch of the neutral curve has been passed and 
will eventually decay once the upper branch of the neutral curve has been passed. When 
k > 0.09236 then all disturbances decay as they evolve downstream. 

The assumption of neglected ^-derivatives cannot be justified on mathematical grounds, 
and therefore we need to solve equations (3.16) using a parabolic solver. To do this we 
used the author's semi-automatic version (see Rees, 2001a, for example) of the Keller-box 
method (see Keller and Cebeci, 1971) using backward difference approximations in ^. We 
used uniform grids in both the ̂  and 77 directions with a step length of 0.1 in the (^-direction 
and 50 intervals in 0 ^ 77 ^ 10. In our simulation we solved equations (3.16) subject to 
the boundary conditions 

p' = 0, e^O on T]^0, ,^ j ^ . 
p,9 -^ 0 as 7/ -> 00. 

A thermal disturbance of the form 
e^rje-"^ (3.18) 

was introduced at various values of ^, denoted by ^o- The disturbance profile given by 
(3.18) is one of the simplest which satisfies 0 = OatTy = 0 and exhibits exponential decay. 

In the context of the classical Darcy-Benard convection problem, instability occurs when 
disturbances grow in time. In the present problem we may define instability to occur 
when disturbances grow in space. However, the Darcy-Benard problem has no ambiguity 
in how instability is defined; the use of the maximum disturbance temperature, surface 
rate of heat flux or disturbance energy as measures of growth are entirely equivalent. In 
boundary-layer flows these different measures of instability give different results, and 
therefore we have monitored the magnitude of all three. The maximum temperature at 
each value of ^ was obtained by locating the maximum value over all the grid points, fitting 
a parabolic curve to that point and its two nearest neighbours, and finding the maximum 
value on that curve. The surface rate of heat transfer is measured in terms of 9y — ^6rj 
at 7̂  = 0 (noting that values of 6rj SLirj = 0 yield less restrictive curves than do values of 
6y 3.1 y = 0 in all cases). Finally the thermal energy of the disturbance is deemed to be 
proportional to 

/•CO /»00 

E= edy = U Odrj. (3.19) 
^0 Jo 

In this last case neutral stability may be said to occur when E attains maximum or 
minimum values as ^ increases. 

The typical evolution of the disturbance energies, E, is shown in Figures 3.3(a) and (b); 
these correspond respectively to values of k which are less than or equal to, or greater 
than 0.07. Also depicted are the extreme values of these curves to indicate clearly how 
the value of ^ corresponding to neutrality varies with the wavenumber. In these figures 
the disturbance was introduced at ^ = 1 and the energy of the disturbance decreases at 
first before increasing again. In Figure 3.3(a) we see, for values of k which are less than 
0.05, that the critical value of ^ decreases at first with increasing k and then it increases for 
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Figure 3.3 Variation of In E with ^ for (a) k = 0.01,0.02,..., 0.07 and (b) 
k — 0.08,0.082,..., 0.098. • denotes maximum values ofE 
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larger values of A:. In Figure 3.3(b) we see a second neutral location for a certain range of 
wavenumbers; these correspond to points marking the re-establishment of stability. When 
k > 0.094 the energy always decays and therefore the flow is stable. Similarly shaped 
curves are obtained for the evolution of the maximum temperature and the surface rate 
of heat transfer. Likewise, similar curves are also computed for other initial disturbance 
profiles. 

These curves, and those corresponding to the other two measures of instability, are sum-
marised in Figure 3.4 where the neutral curve shown in Figure 3.2 is reproduced for 
comparison purposes. In Figure 3.4 we see that the criterion based on the thermal energy 
of the disturbance yields a curve with a lower minimum than those based on the other 
two criteria, and that instability also occurs for a larger range of wavenumbers. This 
vindicates our statement above that setting ^-derivatives to zero is a constraint. Some 
further computations were undertaken to find more precisely at what wavenumber the 
earliest onset criterion may be found. This was determined to be at ^ :^ 8.970 (i.e., 
X 2:̂  80.46) at a wavenumber of approximately k = 0.05723; these values should be com-
pared with those given above. Both the maximum temperature and energy-based criteria 
yield a minimum critical Rayleigh number below that of the linearised analysis in which 
the ^-derivatives were neglected. Clearly, the onset of convection does not correspond to 
0^=0 everywhere, but is firmly dependent on how the disturbance evolves. 

lOOA: 

Figure 3.4 Neutral stability giving ^c ^^ a function ofk where the disturbance 
is introduced at ^ — 1. The continuous curve is the same as that displayed in 
Figure 3.2. • represents the thermal energy stability criterion, o represents the 
maximum temperature criterion. Filled diamonds represent the surface heat flux 
criterion 



D. A. S. REES 63 

Further computations were performed for disturbances placed at different values of ^. It 
is clear from these simulations, which are not reproduced here for the sake of brevity, that 
the neutral distance is dependent on where the disturbance is introduced; see Rees (2001a) 
for further details. We assume that it is possible to find an appropriate disturbance shape 
which will minimise the neutral distance, but this aspect has not yet been pursued. 

3.5 NONLINEAR EVOLUTION OF VORTICES 

In this section we extend the numerical analysis of vortices into the nonlinear regime. The 
governing equations have an extra z-dependence compared with the linearised analysis 
which makes the numerical difficulties much greater. We have solved the system (3.14) 
by taking a truncated spanwise Fourier expansion in the form 

1 
P(C, V, z) = -po (^, Vi) + Y^pn (^,r/) cosnkz, (3.20a) 

n=l 

1 ^ 
0 {£,. V, z) - -^0 (e, r))^Y.^n (^, V) cos nkz, (3.20b) 

where k is the wavenumber of the primary vortex and Â  is the truncation level of the 
series. In the simulations we present here a value ofN — ^ was used; this was deemed to 
be sufficient as the amplitude of the fifth term (n — 5) always remained very considerably 
smaller than that of the primary vortex (n = 1). The substitution of expressions (3.20) 
into equations (3.14) is straightforward but lengthy to present, and therefore we omit this 
detail. We obtain a system of 2Â  4- 2 second-order parabolic partial differential equations 
in ^ and r] to solve. With N = b this means that the standard Keller-box implementation 
uses 24 variables when reduced to first-order form in 77 and hence the block tridiagonal 
iteration matrix is composed of 24 x 24 submatrices. Such a system was programmed 
initially, but its execution was quite slow. Therefore we elected to keep the equations in 
second-order form and to use central differences in 7/ based on the grid points. This has 
various consequences: 

(i) the block tridiagonal structure of the iteration matrix is retained which means that 
the same basic code may be used; 

(ii) the submatrices are now 12 x 12 which results in a considerable increase in the 
speed of the code; 

(iii) the method retains second-order accuracy in r] in terms of the computed values of p 
and6>; 

(iv) derived values such as the surface rate of heat transfer now only become of first-order 
accuracy in r/, as such quantities rely on taking numerical derivatives. 



64 INSTABILITY OF FREE CONVECTIVE BOUNDARY LAYERS 

We set 
Oi = Arje "^ on ^ = <?o, (3.21) 

where A is referred to as the amplitude of the vortex disturbance and ô is the point of 
introduction of the disturbance. In the computations presented here we have used 101 
equally spaced grid points lying in the range 0 ^ ry ^ 10; this maximum value of 77 is 
sufficient to contain the evolving disturbances which, as will be seen later, have a tendency 
to become concentrated towards the heated surface. Uniform steps of length 0.1 in the 
^-direction were used. 

A good understanding of the nonlinear evolution of vortices may be gained from Figures 3.5 
to 3.7. Here we have chosen ^0 = 8 and A = 0.2. Figures 3.5(a), 3.6(a) and 3.7(a) 
show how the amplitudes of each Fourier mode vary with ^ for the respective vortex 
wavenumbers, k = 0.1, 0.07 and 0.04. In the first case the wavenumber lies just outside 
the neutral curve given in Figure 3.4 and therefore the amplitude of the disturbance (in 
terms of the surface rate of heat transfer, qi — ^il^^^o) decays. The amplitude of the 
second mode grows at first, but this is due to the interaction of the first mode with itself; it 
subsequently decays. For k — 0.07 an initial interval of decay occurs but this is followed 
by growth and finally decay. The second mode (represented by 2̂ = 2̂1/7=0) ^^^^^^^ 
quite small, but the change to the mean flow (represented by q^ — OQ\^^Q) becomes large 
compared with that of the basic flow {g' (0) — —0.44376; see (3.5)). This modification of 
the mean flow is a nonlinear effect. When k — 0.04 a much longer interval of growth is 
evident, although this also decays once ^ > 62. Figure 3.2 indicates that small-amplitude 

50 1.00 1.50 2 .00 

kzl2'K 

Figure 3.5 For k — 0.1.- (a) depicts the variation with ^ of the surface rate of 
heat transfer, qn — 9'^ (^, r])\ ^for n = 0,1 and 2; (b) isolines of the surface 
rate of heat transfer over four vortices 
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Figure 3.6 For k ~ 0.07; (a) depicts the variation with ^ of the surface rate of 
heat transfer, qn — 6'^ (^, ^)L_o for n = 0,1 and 2; (h) isolines of the surface 
rate of heat transfer over four vortices 
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Figure 3.7 For k = 0.04; (a) depicts the variation with ^ of the surface rate of 
heat transfer, Qn — 6'^ (^, v)\rj=o f^^ n = 0,1 and 2; (b) isolines of the surface 
rate of heat transfer over four vortices 
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disturbances should continue to grow at this value of ^ and therefore this early decay of 
the disturbance is also a nonlinear effect. 

Figures 3.5(b), 3.6(b) and 3.7(b) show the corresponding surface heat transfer profiles as 
functions of ^ and z. The qualitative results concerning intervals of growth and decay 
of the disturbances are also clearly depicted, but the form taken by the isolines varies 
between the cases. In Figure 3.5(b) four vortices are clearly visible, but in Figures 3.6(b) 
and 3.7(b) each alternate vortex seems to disappear, but this is due to the fact that these 
vortices lift away from the surface; see Figure 3.8 which shows a cross-section of the 
thermal disturbance field at various values of ^. When ^ is relatively small each vortex 
remains close to the surface, but when nonlinear effects become significant the overall 
mean correction to the basic flow serves to raise alternate vortices away from the surface. 

We now turn to a study of how sensitive the boundary-layer is to disturbances of different 
sizes and points of introduction, ^o- In Figure 3.9 we display how the mean local rate of 
heat transfer varies with ^ for different disturbance amplitudes. Here we introduce the 
vortex disturbance of wavenumber k — 0.05 at ô — 8, and the disturbance amplitudes 
vary from 10"^ down to 10~^^. We see immediately that the maximum response in terms 
of this mean local rate of heat transfer does not correspond to the disturbance of largest 
amplitude. Furthermore, each evolving disturbance begins to decay at a different distance 
from the leading edge, all of which are less than the corresponding value of ^ given on the 
upper branch of the neutral curve shown in Figure 3.2 (i.e.,^ ~ 150). Both phenomena are 
related to the fact that the disturbance is strongly nonlinear when the response reaches its 
maximum magnitude. Clearly the linear stability characteristics of the boundary-layer are 
a poor guide for our intuition about the behaviour of strongly nonlinear flows. The graph 
of the evolution of dOo/dy] Q = x~^^^ ^oL=o shows the same behaviour as Figure 3.9, 
but the maximum local response now takes place at an initial amplitude of approximately 

r] = 10 

Figure 3.8 For k = 0.04.* cross-section of the vortex system corresponding to 
the perturbation temperature profiles 
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Figure 3.9 Variation of qo with ^ for the initial disturbance amplitudes A 
10-S 1 0 - ^ 10 -^ . . . , 10-1^ The wavenumher is k = 0.05 

10 ^. Likewise peak local responses in the heat transfer due to the primary vortex mode 
(^i) take place at roughly the same initial amplitudes. 

An alternative view of the same phenomenon is given in Figure 3.10 where we display the 
cumulative mean rates of heat transfer, Qo and Qi, defined by 

Q n= r— dx, n = 0,1. (3.22) 
y=o 

In this figure we see that the cumulative heat transfer given by both Qo and Qi vary 
monotonically with the size of the initial disturbance, except when ^ > 75 for Qo; this 
latter deviation from monotonicity corresponds to the positive local values of OQ\ Q 
shown in Figure 3.9. Thus the rather curious result whereby a particular amplitude of 
disturbance corresponds to the maximum local response should be viewed in conjunction 
with the more intuitive result for the cumulative rate of heat transfer. 

A summary of the effect of different values of A on what we term the nonlinear neutral 
points (i.e., where qi attains maximum or minimum values, and which we denote by 
^ni) is given in Figure 3.11 for A: = 0.05 and above. Here the abscissa is n where 
A=^10~^. The lower lines correspond to the onset of instability, and are very close to the 
appropriate values for linear stability. The upper curves correspond to the beginning of 
decay and each curve is divided into a section which grows as n increases and one which 
is constant. The latter corresponds closely to the linear stability value, but the former 
indicates the premature establishment of decay caused by nonlinear effects. Thus, for 
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Figure 3.10 Variation ofQo and Qi with ^for the initial disturbance amplitudes 
^-lo-^lo-^lo-^...,lo-^^ 

140 

Figure 3.11 Variation in the values of the nonlinear neutral points, n̂i> "^i^h 
n — — logjo A for different vortex wavenumbers. The lines placed near to 
^ni = 11 correspond to onset of instability, while the others correspond to the 
beginning of decay 
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k — 0.06 nonlinear effects become significant when A < 10~^. Such a small amplitude 
is very likely to be exceeded in practice, and therefore we can conclude that nonlinear 
effects due to very small amplitude perturbations should be very significant. 

We now consider the effect of varying ^o, the position where the disturbance is introduced. 
We set A = 0.1 in the computations displayed in Figure 3.12. In this case we find 
that the most dangerous location for the disturbance in terms of its local response is at 
approximately ^o — 50. Once more the local response eventually becomes positive as ^ 
increases. The maximum local response in terms of d9o/dy\y^Q takes place nearer the 
leading edge at roughly ô = 30. The corresponding cumulative rates of heat transfer 
display the same characteristics as in Figure 3.10 except that the cumulative responses, 
Qo and Qi, vary monotonically with increasing ̂ o-

Figure 3.13 displays values of ^ni as a function of ô for k = 0.06 for the following values 
of ^ : 10~ \ 10~^, 10~^, 10~'̂  and 10"^. The horizontal lines correspond to the positions 
linear neutral stability, while the diagonal line indicates where the disturbance has been 
introduced into the boundary-layer. The onset of convection is seen to correspond roughly 
to the linear value until ô gets close to 10 whereupon convection begins to occur just 
after ^o- Conversely, for A ^ 10~^, stability is re-established just after the upper value 
of ^c given by linear theory. However, for larger values of A, nonlinear effects become 
increasingly significant and the onset of decay is very premature when A = 10"^. 

Space limits the presentation of further results (see Rees, 2001c for more comprehensive 
details), but it is sufficient to comment briefly on the flow when the wavenumber takes 
other values. When k is larger, but nevertheless within the range where instabilities may 

Figure 3.12 Variation of q^ with ^for the initial disturbance locations, ô 
8,10,15,20,30,. . . 
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Figure 3.13 Variation in the values of the nonlinear neutral points, ^nb ^ith the 
point of introduction, (^Q, of the vortex fork = 0.06. The initial vortex amplitudes 
are A = 10~\ 10~^, 10~^, 10"'^ and 10"^. The lowest data points for each 
0̂ correspond to onset for all values of A, while the rest mark the beginning of 

decay 

occur, we find that the range of values of ^ over which the local response grows is much 
reduced and the cumulative rate of heat transfer is also reduced for any given value of ^. 
Conversely, when k takes smaller values, the strength of the vortex system becomes greater 
and persists in a growing state for much longer. In some circumstances we find that the 
use of five modes {N = 5) does not give good resolution and it is necessary to increase the 
value of N and to decrease the rj step length to proceed further with sufficiently accurate 
results. 

3.6 SECONDARY INSTABILITIES 

The vortex instabilities we have been considering are thermoconvective in origin, rather 
than hydrodynamic, since Darcy's law does not have advective terms. The boundary-
layer whose stability is being analysed grows in thickness with distance from the leading 
edge and therefore the local Rayleigh number (which is a measure of the relative size of 
destabilising buoyancy forces and stabilising viscous forces) increases. Thus we would 
expect the boundary-layer to become increasingly susceptible to instability as ^ increases. 
The results presented in the last section indicate that this is true for a limited range of 
values of ^. Irrespective of the value of A or of ô» the local response to a disturbance 
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always decays eventually. Therefore it is natural to expect that this decaying disturbance 
will itself be subject to instability. Although the wavelength of the above vortices remains 
constant, the wavelength compared with the local boundary-layer thickness becomes 
small and the aspect ratio of the vortices becomes large within the decaying region. It 
is frequently the case that the most dangerous disturbances have a roughly square aspect 
ratio, and therefore any destabilisation of the vortex systems already computed is likely to 
be initiated by disturbances of larger wavelength or of smaller wavenumber. The purpose 
of this section is to investigate this argument using numerical means. It is essential to point 
out that the results presented are not yet complete and that we present a small selection 
of destabilisations to indicate that destabilisation does indeed occur with respect to vortex 
disturbances of other wavelengths. 

If the vortex disturbances considered are restricted to those which may be described using 
the expansions (3.20), then the same numerical code can be used to investigate secondary 
instabilities. The effect of out-of-phase disturbances would necessitate the use of sine 
terms in addition to the cosines used in (3.20) and this would reduce considerably the 
speed of the code, but it is intended to report on this aspect in the future. Here we choose 
a fundamental wavenumber, k, and introduce disturbances of similar form to expression 
(3.21) but applicable to more than one mode. Specifically we allow for all cosine modes 
to have an initial disturbance 

e,, = Anve-""- (3.23) 

In Figures 3.14, 3.15 and 3.16 we display the results of computing with the amplitudes 

Ao = 0, Ai :=0.01, ^ 2 = 0 . 3 , An=0 for n ^ 3 , (3.24) 

for the respective wavenumbers A: = 0.05, 0.04 and 0.03. Thus the second mode may be 
regarded as the primary mode of instability while the first mode forms the subharmonic 
mode of secondary instability. Given that the response of the boundary-layer to the 
primary mode of instability depends strongly on the amplitude and initial location of the 
disturbance, then clearly its destabilisation will depend not only on these parameters but 
also on the amplitude of the secondary mode. We therefore offer these figures as being 
illustrative of what is likely to happen in a realistic situation. 

The primary mode shown in Figure 3.14 has a wavenumber which lies outside of the 
unstable range and it therefore decays after introduction. The secondary mode grows 
quite quickly and soon takes over as the strongest mode present. However, in line with 
the results of the last section, it becomes highly nonlinear and soon begins to decay itself. 
It is highly likely that this latter mode may itself be destabilised by a smaller wavenumber 
disturbance if that were present. The decay of the primary mode (n = 2) is seen easily 
in Figure 3.14(a) together with the growth of the secondary mode {n = 1). A temporary 
increase in amplitude of the primary mode near to ^ = 30 is caused by the nonlinear 
interaction of the subharmonic mode with itself. The corresponding surface heat transfer 
profiles are shown in Figure 3.14(b) and these emphasise how quickly the primary mode 
is destabilised. 
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Figure 3.14 For k = 0.05; (a) depicts the variation with ^ of the surface rate 
of heat transfer, q^; (b) isolines of the surface rate of heat transfer beginning 
with eight vortices at ^ = S 
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Figure 3.15 For k = 0.04; (a) depicts the variation with ^ of the surface rate 
of heat transfer, q^; (b) isolines of the surface rate of heat transfer beginning 
with eight vortices at ^ = S 
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Figure 3.16 For k = 0.03; (a) depicts the variation with ^ of the surface rate 
of heat transfer, q^; (b) isolines of the surface rate of heat transfer beginning 
with eight vortices at ^ = 8 

Figures 3.15 and 3.16 correspond to primary modes with wavenumber within the unstable 
region of Figure 3.2 and therefore both these instabilities grow initially although the 
latter does so for a greater distance from the leading edge. Otherwise we have the 
same qualitative phenomena existing in these cases too, namely, rapid destabilisation and 
growth with an eventual slow decay of the secondary mode. We find that the smaller 
the wavenumber the larger is the distance from the leading edge at which these different 
events occur, and this is linked directly to the increasing strength of the primary vortex. 

In Figure 3.17 we show cross-sections of the temperature perturbations at various values 
of ^ to indicate how the number of vortices changes with ^. We see that the central vortex 
in the frame corresponding to ^ == 8 eventually decays and its two neighbouring vortices 
merge in order to reduce a four-vortex set to a two-vortex set. 

In other contexts, such as the Darcy-Benard or Benard problems, flows consisting of 
vortices with wavenumbers which are slighdy too small to be stable to disturbances 
aligned in the same direction but with a different wavenumber, have as their most unstable 
disturbance a mode with wavenumber which is very close to the original wavenumber. The 
nonlinear interactions between the primary flow and the destabilising vortex often causes a 
cascade of vortex interactions with many wavenumbers which differ by an integer multiple 
of the original difference between the primary and the destabilising vortex. Eventually a 
single steady vortex system is obtained which has a stable wavenumber. With this in mind, 
the subharmonic mode of instability shown in Figures 3.14 to 3.16 may not represent 
the most dangerous secondary instability mechanism, and therefore we attempted an 
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r / - 8 

Figure 3.17 For k — 0.04; cross-section of the vortex system corresponding 
to the perturbation temperature profiles. This figure corresponds to the solutions 
shown in Figure 3.15 

alternative scenario to investigate whether other wavenumbers could destabilise a primary 
vortex. Again, we emphasise that this is an isolated numerical simulation which indicates 
possibilities, and therefore definite statements about most unstable disturbances can only 
be made after many more numerical simulations are undertaken. 

Figure 3.18 considers k = 0.03 as the fundamental wavenumber and uses the amplitudes 

Ao = Ai= 0, A2 = 10" As = 10- AA = A^ = 0. (3.25) 

The primary mode (n = 3) has wavenumber k = 0.09 and its initial growth phase is 
difficult to see in Figure 3.18(a) due to the vertical scale of the graph. The secondary 
mode (n = 2) corresponds to A: = 0.06 and the growth of this mode becomes evident near 
^ = 25. However, the interaction between the n = 2 and n = S modes yields an n = 1 
disturbance whose growth may be first seen near ^ r̂ 30. Eventually the growth of the 
71 = 1 mode dominates both the n = 2 and n = S modes, although nonlinear interactions 
causes their magnitudes to exceed their respective peak values when forming the locally 
dominant mode. The surface heat transfer profile is shown in Figure 3.18(b) and it is 
possible to discern the brief interval over which the n == 2 mode dominates between 
^ = 28and^ = 34. 

We redisplay in Figure 3.19 the numerical results shown in Figure 3.18 as cross-sections of 
the temperature perturbation profiles. The initial effect of this 'modal cascade' instability 
takes the form of a spanwise wavy modification of the local amplitude of the vortex system; 
this is seen most clearly in the profiles corresponding to ^ = 25. As in the subharmonic 
instability of Figure 3.17, the central vortex is weakened relative to the others displayed, 
and then disappears followed by the merging of its two neighbouring vortices; this takes 
place between ^ = 25 and ^ = 30. However, the resulting central vortex also shrinks and 
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Figure 3.18 For k = 0.03; (a) depicts the variation with ^ of the surface rate 
of heat transfer, q^; (b) isolines of the surface rate of heat transfer beginning 
with twelve vortices at ^ — % 
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Figure 3.19 For k — 0.03; cross-section of the vortex system corresponding 
to the perturbation temperature profiles. This figure corresponds to the solutions 
shown in Figure 3.18 
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undergoes the same fate as the original central vortex by disappearing. Thus we have a 
mechanism which reduces eliminates rolls by reducing three into one. 

It is only possible to study modal cascades formed by disturbances at nearer wavenumbers 
to that of the primary mode by increasing the number of Fourier modes in the numerical 
code. Once more, we intend to report on this in future work. 

Finally, it would also be of some considerable interest to study the effect of a localised 
disturbance on the evolving vortex pattern. By 'localised' is meant a disturbance which 
has finite extent in the spanwise (z) direction. We would expect there to be a spreading 
out of the disturbance as it travels downstream. However, such a disturbance would by 
its nature contain components with many different spanwise wavenumbers and therefore 
the spreading out of the disturbance will also be accompanied by a complicated modal 
cascade sequence. Such a numerical simulation might require an entirely different solution 
strategy. 

3.7 THE EFFECT OF INERTIA ON LINEAR STABILITY 

Finally, we return to linearised theory and determine the effect which form drag has on 
the stability of boundary-layer flow. Given the large number of papers which have been 
published which deal with linear theory, it is surprising that none to date have tackled the 
effect of inertia on an inclined surface. 

We assume that form drag manifests itself mathematically by the presence of quadratic 
terms in Darcy's law. In non-dimensional terms (see Riley and Rees, 1985) equations 
(3.1b) - (3.Id) are now replaced by 

u{l + Gq) = -^-\-ecos6, v{l + Gq) - - ^ + ^sinJ, ^ (1 -̂  Gq) - - | ^ , 
ox oy uz 

(3.26) 
where 

G=(-j KKgpAT and q = y/u^-hv^+ w^ (3.27) 

are the inertia parameter and fluid flux speed; the meaning of the various terms in the 
definition of G are well known and are given in Banu and Rees (2000). As above we 
assume that the inclination, S, is asymptotically small. 

The basic boundary-layer flow is again two-dimensional and is given by V̂  = x^^^f (ry) 
and 6 — g{rj) where tl) is defined by (3.2) and / and g satisfy the equations 

/ " (1 + 2G/ ') = 5', 9"+\f9' = 0, (3.28) 

subject to the boundary conditions (3.7). We have followed precisely the earlier reduction 
of the disturbance equations to pressure/temperature form and have linearised them to 
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obtain the following equations (which replace equations (3.16)): 

Gf" 
[l + Gf 

p' - e^p: 
Gf" 

(1 + 2Gfy 

l + Gf 

V + G{vf' + f) 

1 , , , „ 1 + 2Gf' 

-2^^-'^^^1TGF 
1 

+ 2 1 + 2Gf' m - vo') + e + 
Gif-Vf) 

0', 

o"-k'ee^(^lf'ye^-(^lfy' 

2(1 + 2G/') 

(3.29a) 

+ l + Gf 

. Vjl + Gf) ^ G{f-vf) 

2{l + 2Gf) 2{l + 2Gf) 
e-g'p'. 

(3.29b) 

Clearly these equations reduce to those given by (3.16) when G = 0. 

Figure 3.20 shows the neutral stability curves which are obtained by setting to zero the 
^-derivative terms in (3.29) and by solving the resulting eigenvalue problem for ^ as a 
function of both A; and G. It is interesting to note two main features of these curves as the 
inertia parameter, G, increases. First, the critical value of ^ (or, equivalendy, x) increases 
only slightly as G increases from 0 (Darcy flow) to 10 (inertia-dominated flow), and 
second, the wavenumber decreases quite substantially; these are depicted in Figure 3.21. 

lOOfe 

Figure 3.20 Neutral stability curves depicting the variation of ^c ^ith k for 

G = 0,0.1,0.2,0.5, l ,2 ,5a«J10 



78 INSTABILITY OF FREE CONVECTIVE BOUNDARY LAYERS 

Figure 3.21 Variation of^c, Xc, kc and A;max against G 

In trying to give good physical reasons why ^c and kc behave in this way, it is important 
to note that there are two competing effects as G increases: the increasing resistance to 
flow due to inertia (which should raise the value of ^c) and the increasing boundary-layer 
thickness, or equivalently the local Rayleigh number (which destabilises the flow and 
would decrease the value of ^c)- In the related field of Darcy-Benard convection. He 
and Georgiadis (1990) showed that inertia does not affect the linear stability criterion 
for free convection, but that the critical Rayleigh number is raised in the presence of 
mixed convection (Rees, 1997). Thus we conclude, at least tentatively, that the increasing 
resistance to motion as G increases has a greater effect on stability than has the increasing 
boundary-layer thickness. However, if we were to assume that convective vortices tend 
to maintain a roughly unit aspect ratio, then the increasing boundary-layer thickness as G 
increases corresponds to decreasing critical wavenumbers, as computed. 

3.8 CONCLUSION 

We have found that the concept of a neutral position beyond which disturbances grow is not 
as straightforward as it is for uniform configurations such as the Benard problem. We have 
shown that neutral locations depend on the form and position of the introduction of the 
disturbance and on its amplitude. The nonlinear evolution of vortices is counter-intuitive 
for after an initial interval of growth they decay despite the fact that the boundary-layer 
has increasing local Rayleigh number and hence it becomes more unstably stratified with 
X. We have also shown that secondary instabilities may take more than one form. 

Clearly there remains a substantial amount of work to be undertaken on this topic in 
order to quantify where one might expect primary and secondary disturbances to appear. 
Furthermore, it is also possible that the vortex patterns presented here could be destabilised 
by transverse or oblique wave-like instabilities. If this is true, then it is likely that there 
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will exist a streamwise wavenumber comparable with the local boundary-layer thickness, 
and this would require an alternative numerical strategy perhaps along the lines of the 
method of parabolized stability equations (see Herbert, 1997). There also exists the 
possibility of unsteadiness in the developing vortices; again if the analogy with Darcy-
Benard convection holds (for which unsteady flow first appears in an aspect ratio 1 box at 
9Rac) then we might expect unsteady vortices at or beyond ^ 2:̂  100. Furthermore, when 
other effects, such as those considered by Jang, Chang and co-workers, are included in 
the analysis, it could very well be the case that qualitative results, such as the form of the 
most dangerous disturbance, may change. Indeed this is quite likely to be the case for 
Darcy-Brinkman flow, as the resulting equations are much closer to the familiar Navier-
Stokes equations than are those for Darcy flow, and as the vertical thermal boundary-layer 
flow of a clear fluid is destabilised by waves, rather than by vortex disturbances. 
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Abstract 

The onset of Rayleigh-Benard convection in finite porous bodies is investigated theoretically. 
The linear stability problem is formulated in three dimensions. The temperature distribution 
along the boundaries is prescribed as a linearly decreasing function of height and this makes 
the basic state motionless with uniform conduction transport of heat upwards. The thermal 
condition along the body contour is chosen either as zero perturbation temperature (conducting 
boundaries) or zero normal derivative of the perturbation temperature (insulating boundaries). 
The kinematic condition along the body contour is chosen either as zero normal velocity 
(impermeable or closed boundaries) or zero tangential velocity (open boundaries). Reference is 
given to existing solutions for porous cylinders and rectangular boxes. Some simplified results 
are found for thin porous shells. 

Keywords: Rayleigh-Benard, porous medium, thermal instability, convection, eigen-
value problem, Rayleigh number 

4.1 INTRODUCTION 

The theory of thermal instability in a horizontal fluid layer heated from below was founded 
by Lord Rayleigh (1916). This phenomenon of buoyancy-induced instability is now called 
Rayleigh-Benard convection, even though the original experiments by Benard (1900) 
involved variable surface tension as the driving mechanism, see Pearson (1958). 

Here we consider Rayleigh-Benard convection in the strict sense that the flow is entirely 
due to buoyancy-induced instability. This is true for a steady and motionless basic state, 
which exists only if the basic temperature gradient is constant and strictly vertical, and 
then there is uniform conductive heat transport in the vertical direction. In a horizontal 
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layer of fluid this motionless state of conduction is easily achieved by enforcing constant 
temperatures along the top and bottom boundaries. If the fluid domain is constricted by a 
more complex geometry, the temperature distribution along the boundaries must be given 
as linearly decreasing with the height. Then the basic temperature field is uniform in x 
and y at each level z = constant, as any nonzero horizontal temperature gradient would 
induce a flow in the unperturbed state. 

The Rayleigh-Benard instability in a saturated porous medium was first investigated by 
Horton and Rogers (1945), and later by Lap wood (1948). They found the critical Rayleigh 
number to be 47r̂  for the onset of convection in an infinitely wide horizontal porous layer. 
The porous medium was assumed homogeneous and isotropic and the boundaries were 
taken to be impermeable and perfect heat conductors. The preferred mode of instability 
consists of straight rolls with a cell width equal to the height of the porous layer and the 
cell width is half the spatial period, since every two neighbouring cells have opposite signs 
of the circulation. For a layer which is unlimited in the horizontal x- and y-directions the 
preferred mode of motion is degenerate both in the orientation of the roll pattern and in 
the location of each individual cell. 

In the presence of a finite porous box with vertical lateral walls, the degeneracy of the most 
unstable mode is removed. If the geometry of the box is rectangular, the preferred mode of 
motion consists of a uniform roll pattern aligned along one of these lateral walls. However, 
this requires the assumption of thermally insulating lateral walls. This traditional boundary 
condition at the lateral boundaries is chosen for mathematical convenience because these 
lateral walls behave as cell walls within the roll structure itself. Beck (1972) was the first 
who investigated the selection of these roll patterns in rectangular porous boxes according 
to linear theory. A number of studies have been performed on nonlinear convection in 
porous boxes. In the present chapter we only consider the linear stability problem for the 
onset of convection, but various nonlinear instability phenomena in porous media have 
been reviewed recently by Rees (1998,2000). 

Most research papers on convection in finite porous boxes assume thermally insulating and 
impermeable lateral walls but in the present chapter we allow for more general boundary 
conditions. The porous body may be confined by impermeable walls, or it may have an 
open surface where the saturating fluid may flow freely in and out. The porous body may 
have zero perturbation temperature along its boundary, or the normal derivative of the 
perturbation velocity may be zero. 

Nield (1968) was the first to consider the variety of possible boundary conditions for the 
top and bottom of an infinitely wide horizontal porous layer of uniform thickness. He 
determined the criteria for the onset of convection for all different combinations of open, 
closed, conducting and insulating boundaries, see also Nield and Bejan (1999, p. 181), but 
no such investigation exists of the possible combinations of lateral boundary conditions 
for finite porous boxes. During the last two decades, a number of papers have been written 
which take into account heat conduction in the lateral walls of a porous box and Nilsen 
and Storesletten (1990) has found an exact analytical solution for a two-dimensional 
box with conducting lateral walls. However, there are still a number of challenging onset 
problems for convection in finite three-dimensional porous bodies with different boundary 
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conditions. In this chapter we sketch some classes of problems, and demonstrate some 
simplified asymptotic solutions. 

4.2 THREE-DIMENSIONAL CONVECTION PROBLEM 

We consider a finite porous body in three dimensions, and the porous medium has ho-
mogeneous and isotropic permeability K. Cartesian coordinates x, y, z are introduced, 
where the z-axis points vertically upwards, and the temperature field is T{x,y,z,t), 
where t denotes time. A steady temperature field Tg {z) is prescribed along the bound-
ary of the porous body, and from the heat equation it follows that dTg/dz = constant to 
achieve steady conditions, where the unperturbed temperature field is given by T = Ts (z) 
everywhere inside the porous body. 

The lowest point of the body has vertical coordinates = zi and temperature Ti = Tg (^i), 
whilst the highest point of the body has vertical coordinate z = Z2 and temperature 
T2 — Ts (2:2). The length scale is defined as H =^ Z2 - zi and the temperature scale 
is AT = Ti — T2. These enter the definition of our Rayleigh number and may also be 
taken as units for dimensionless length and temperature. We choose the following units 
for dimensionless time, velocity and pressure: 

km H K 

respectively, where c^ is the specific heat at constant pressure, k is the heat conductivity, 
a is the thermal diffusivity, v is the kinematic viscosity of the saturating fluid, and po is a 
reference fluid density. The subscript m represents the mixture of solid and fluid. 

Our dimensionless Darcy-Boussinesq equations for convection in a homogeneous and 
isotropic porous medium are given by 

t; -h Vp - RaTk = 0, (4.2) 

V • V = 0, (4.3) 

^ -ft; • VT = V^r, (4.4) 
at 

and the Rayleigh number for a porous body is given by 

gPKATH 
Ra^— . (4.5) 

^OLm 

Two crucial parameter definitions must be given which apply to any type of porous body: 
AT is defined as the temperature difference between the lowest and highest point on the 
porous body and H is defined as the height difference between the highest and lowest point 
on the porous body. In equation (4.5), g is the magnitude of the gravitational acceleration 
and j3 is the expansion coefficient. In equations (4.2) - (4.4), v is the velocity, while p 
is the pressure, and k is the vertical unit vector. The basic dimensionless temperature 
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gradient is — fc and is due to pure conduction. We perturb the basic temperature field with 
the temperature perturbation 0 (x, ?/, z, f) as follows: 

r = T, -h 0 - - z -h 0 (x,2/,z, t ) . (4.6) 

We do not consider finite-amplitude convection but restrict ourselves to the linear theory of 
the onset of Rayleigh-Benard convection in a porous body. Further, we do not attempt to 
show in general that the onset of convection is given by a non-oscillatory mode as this has 
been shown for flows in some two-dimensional porous cavities with conducting bound-
aries, see Nilsen and Storesletten (1990) for a rectangle and Storesletten and Tveitereid 
(1991) for a circle. 

Linearizing the governing equations, and considering a steady mode of disturbance, we 
end up with the following governing equations for the onset of convection: 

v-\-VP' -RaSk^O, (4.7) 

V'V = 0, (4.8) 

-k'V^V^e. (4.9) 

Elimination of the pressure perturbation P' leads to the following equations for the steady 
mode at the onset of convection: 

V 2 0 - h ^ - O , (4.11) 

where w is the vertical velocity component. In general, the kinematic boundary condition 
involves the other velocity components as well. 

4.2.1 The boundary conditions 

Our first choice of thermal boundary condition for a porous body is 

0 = 0 along the boundary. (4.12) 

This is known as the condition of perfect heat conduction at the top and bottom planes 
confining the horizontal layer. 

For a horizontal circular cylinder it is appropriate to describe this first thermal boundary 
condition (4.12) as that of a perfectly conducting wall, which was shown by Storesletten 
and Tveitereid (1991). However, this is not correct for other body shapes, and the most 
precise description of this first thermal condition (4.12) is that it represents a state of 
temperature being given at each point on the boundary. In the Rayleigh-Benard problem, 
the temperature distribution is prescribed which decreases linearly with height and this 
distribution is maintained along the boundaries also in the perturbed state. 
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Our second thermal boundary condition is the assumption that the normal derivative of 
the temperature perturbation is zero along the boundary, i.e., 

n • V 0 = 0 along the boundary. (4.13) 

In general this second thermal condition means that the basic upward heat flux km \dTs/dz\ 
(with dimension) is fixed at the boundary and it is not affected by the temperature per-
turbation 0 (x, y, z, t). Therefore condition (4.13) is the condition of constant heat flux. 
One special case deserves special treatment, namely n- k = 0. This is generally the case 
where the body is cylindrical with vertical walls. Then the above interpretation of constant 
heat flux is still valid but this flux is zero. Therefore condition (4.13) is the condition of 
thermally insulating walls when the walls are vertical. The insulating boundary condition 
is the most common condition in the literature since it corresponds to internal cell walls 
within the flow domain, see Beck (1972) and Zebib (1978). 

In general we consider two different kinematic conditions. The first condition is that of a 
closed (impermeable) boundary, namely 

n -v = 0 along the boundary. (4.14) 

This is the standard condition of an impermeable wall separating the porous body from 
its surroundings, where n is the unit normal vector at the surface of the body. The second 
condition is the condition of an open boundary, namely 

n X V = 0 along the boundary. (4.15) 

This is known as the constant pressure condition, even though a more appropriate descrip-
tion is that the surrounding fluid is hydrostatic. For simplicity we classify it as a kinematic 
condition even though it has a hydrodynamic (or at least hydrostatic) explanation. This 
condition of an open boundary arises from the assumption that the porous body is sur-
rounded by its saturating fluid in a condition of hydrostatic pressure. This surrounding 
fluid either occupies a pure fluid domain or it saturates a neighbouring porous medium of 
much greater permeability than that of the porous body where the convection takes place. 

Let us derive the open boundary condition (4.15). The tangential component of equation 
(4.7) at the boundary gives 

n X V + 71 X V P ' - Ra Qn x k = 0 just inside the boundary. (4.16) 

Outside the porous body we take an equation of hydrostatic balance, namely 

Vp' -Raek = 0, (4.17) 

and this means that the Darcian resistance is neglected. Herep' denotes the dimensionless 
pressure perturbation whereas 0 denotes the temperature perturbation outside the porous 
body. The tangential component of this equation gives 

n X Vp' — Ra6n X k = 0 just outside the boundary. (4.18) 
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The continuity of pressure through an open boundary implies the continuity of tangential 
derivatives, namely 

n X Vp' = n X V P ' along the boundary. (4.19) 

The temperature field is assumed continuous (0 = ^) through the open boundary. Com-
bining these pressure and temperature conditions with equations (4.16) - (4.18) finally 
yields the condition (4.15) for an open boundary. The continuity of temperature through 
the open boundary is a condition for the surrounding fluid and it does not put any restric-
tions on the flow inside the porous body. 

4.3 A TWO-DIMENSIONAL CASE: THE RECTANGLE 

For the two-dimensional problem in x and z, we may introduce the streamfunction ^ (x, z) 
and obtain the equations replacing equations (4.10) and (4.11) as follows: 

V2* + i ? a ^ = 0, (4.20) 
ox 

V ' 0 - ^ = 0. (4.21) 
ox 

We may eliminate the temperature and obtain an equation for the streamfunction alone, 
namely 

V^ -h Ra^ ]^ =0, (4.22) 
"dx\ 

and a similar equation for the perturbation temperature. 

The simplest two-dimensional geometry is the rectangle with vertical sidewalls and hori-
zontal top and bottom walls. The rectangle is confined by 

- ^ < x < ^ , 0 < z < l . (4.23) 

We wish to demonstrate the effects of different lateral boundary conditions, and therefore 
restrict our attention to the case of conducting and closed (impermeable) top and bottom 
boundaries, namely 

^ =. 0 :=. 0 on z = 0 and z = 1. (4.24) 

We consider sidewalls that are kinematically either closed (^ = 0) or open {d^/dx — 0), 
and thermally either conducting (0 — 0) or insulating {dQ/dx — 0). These options give 
four different combinations. In Figures 4.1 to 4.4 we show the preferred streamlines and 
isotherms for these four cases at the onset of convection for a square box where a — 1. 
The isotherms are plotted with an arbitrary amplitude for the perturbations, chosen for the 
purpose of illustration. 
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Figure 4.1 Streamlines and 
isotherms at the onset of convection 
in a square with closed and 
insulating lateral boundaries, see 
Norton and Rogers (1945). Top 
and bottom of the porous layer are 
assumed closed and conducting 

Figure 4.2 Streamlines and 
isotherms at the onset of convection 
in a square with open and 
conducting lateral boundaries. 
Top and bottom of the porous layer 
are assumed closed and conducting 

(a) 

0.8 

04 

0.2 

0 

\ 

Figure 4.3 Streamlines and isotherms at the onset of convection in a square with 
closed and conducting lateral boundaries, according to Nilsen and Storesletten 
(1990). Top and bottom planes are assumed closed and conducting, (a) The one 
mode of instability giving two cells, see equation (4.31). (b) The other mode of 
instability giving three cells, see equation (4.32). Here the chosen values for the 
streamfunction of the large middle cell are ten times as large as those of the two 
small cells 
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(a) (b) 

Figure 4.4 Streamlines and isotherms at the onset of convection in a square 
with open and insulating lateral boundaries. Top and bottom boundaries are 
assumed closed and conducting, (a) The one mode of instability giving one 
cell, see equation (4.35). (b) The other mode of instability giving two cells, see 
equation (4.36) 

Figure 4.1 shows the classical case of closed and insulating lateral sides, see Horton and 
Rogers (1945) and Lapwood (1948), namely 

^ = 
9 0 
dx 

0 on X — ±-. 
2 

The streamfunction for the displayed case a = 1 is given by 

^ — cos7ra;sin7r2;, 

(4.25) 

(4.26) 

and this preferred mode of instability is triggered at the critical Rayleigh number RGC = 
47r̂ . The general critical Rayleigh number as a function of the rectangle width is given by 

^ 2 . fn a \ 2 
tiac = 7T mm — I — , 

\a 71/ 
(4.27) 

see Nield and Bejan (1999, p. 232). The minimization is to be performed with respect to 
all positive integers (n = 1,2,3,...) and the smallest possible value 47r̂  occurs when a 
is an integer and n — a. 

Figure 4.2 shows the mathematically similar, but not so common, case of open and 
conducting lateral sides, namely 

- = 0 = 0 on x^±-. (4.28) 
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The streamfunction for the displayed case a = 1 is given by 

^ = sin TTX sin TTZ, (4.29) 

and this preferred mode of instability is triggered at the critical Rayleigh number Rac — 
47r̂ . The general formula for the Rayleigh number as a function of the rectangle width a 
is given by formula (4.27), as in the previous case. 

Figure 4.3 shows the case of closed and conducting lateral sides, which was solved by 
Nilsen and Storesletten (1990), namely 

^ :=0 r= :O OU X ^ ±^. (4.30) 

There are two different eigenfunctions. The first streamfunction is shown in Figure 4.3(a) 
and is composed of two convection cells flowing symmetrically with respect to the z-axis. 
Its general formula is given by 

^1 = sin (yo? + 1 — ) cos — sin TTZ. (4.31) 
\ a J a 

The second eigenfunction for the streamfunction is shown in Figure 4.3(b). It is composed 
of three convection cells flowing antisymmetrically with respect to the z-axis and is 
generally given by 

^2 — cos { \J 0? -f 1 — I cos — sin TTZ. (4.32) 
V a J a 

When ^ 1 is the eigenfunction for the streamfunction, the eigenfunction for the temperature 
perturbation is proportional to ^2 , and vice versa. Both of these eigenfunctions are 
triggered at the same critical Rayleigh number, which is given by 

Rac = 47r2 ( l + ^ ) • (433) 

This means that the general mode for the onset of instability is a linear combination of ^1 
and ^2- There is no buoyancy along a conducting wall. Without buoyancy the motion 
along a closed wall cannot be supported, and the instability has to be driven in the interior 
of the fluid domain. Therefore conducting walls are stabilizing compared with insulating 
walls, assuming these walls are closed and vertical. 

Figure 4.4 shows the case of open and insulating lateral sides, namely 

- ^ - = 0 on x = ±-. (4.34) 

Physically this case can be approximated by surrounding the porous rectangle laterally 
by a different medium of much greater permeability and much smaller conductivity. To 
achieve this, the porous body in which the convection takes place could be made of a 
highly conductive metal and be saturated by a poorly conducting fluid. 
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There are two different eigenfunctions for the displayed case a = 1 and they are derived by 
integrating up the eigenfunctions of the previous case, see Figure 4.3, in the x-direction. 
The first of these eigenfunctions for the streamfunction is shown in Figure 4.4(a) and is 
given by 

f cos [(x/o^TT + 1) TTx/a] cos \(y/aF^ - l) 7rx/a\ ] 
^1 = < ^̂ —̂, — —^ + ^^—, —^ -^ } siuTTZ. (4.35) 

\ ^^^P^Tl + l x/^^TI-1 J 
This streamline pattern forms one single convection cell and this is 43.7% of the volume 
flux recirculating within the cell. The second eigenfunction is shown in Figure 4.4(b) and 
is composed of two symmetrically flowing convection cells, namely 

f sin [(Va^ -h 1 -h 1) TTx/a] sin \(y/a'^ -f 1 - l) 7rx/a\ ] 
^2 = < — 7 = — —^ + ^-^^—7==— —^ } sinnz. (4.36) 

\ y^MTI+l x/^^TI-1 J 

In this solution only 3.5% of the volme flux in each of these cells recirculates within 
the cell. The flow pattern is very different from that of the first eigenfunction shown in 
Figure 4.4(a). Figure 4.4(b) is more similar to Figure 4.2, where an open boundary was 
assumed conducting instead of insulating, and where there was a full exchange of fluid 
with the surroundings (zero recirculation). 

Comparing Figures 4.2 and 4.4(b), we see that in the latter case the streamlines are much 
more concentrated in the middle. The flow shown in Figure 4.2 is a pure upwelling flow, 
where there is positive buoyancy in all points inside the fluid domain. The whole cell at the 
onset of convection is effectively a rising plume, with no recirculation and no downward 
motion. (Since the flow direction is arbitrary, the flow could also have occurred as pure 
downwelling.) 

In Figure 4.4(b) there is a small region of negative buoyancy so that 3.5% of the volume 
flux recirculates. This partly recirculating flow can be compared with the case of 6.17% 
recirculating flux for the onset of convection in a uniform porous layer heated from below 
with a closed/conducting bottom and an open/conducting top, see McKibbin et al. (1984). 
We note that the streamline patterns are similar in these two cases, in spite of the different 
orientations. In the present case the open boundaries are on the sides and not the top and 
these boundaries are insulating instead of conducting. 

In the present case the amount of recirculation is highly different for the two different 
modes of instabilities (4.35) and (4.36). Both of these eigenfunctions are triggered at the 
critical Rayleigh number, which is given by 

Thus the critical Rayleigh number for open and insulating lateral boundaries is the same 
as for closed and conducting lateral boundaries. The general unstable mode is a linear 
combination of ^ i and ^2- These are eigenfunctions for the flow only, not the temper-
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ature, but the associated thermal eigenfunctions are simply proportional to ^2 and ̂ 1 , 
respectively. 

Along an insulating lateral boundary, the buoyancy tends to be preserved. If such a vertical 
lateral boundary is closed, as was the case in Figure 4.1, the tangential vertical flow will be 
strong. This vertical flow is driven locally by positive or negative buoyancy along the wall, 
which is a dominating driving mechanism for the whole convection instability. However, 
the situation is very different in the present case. Figure 4.4, where an insulating vertical 
wall is open. The kinematic condition of an open lateral boundary forces the flow to be 
horizontal along the wall. The local buoyancy cannot support a horizontal flow other than 
indirectly through the pressure field in the porous medium. Consequently, the conditions 
of open and insulating vertical walls are stabilizing compared with the conditions of closed 
and insulating vertical walls. 

4.3.1 The rectangle with asymmetric lateral conditions 

So far, we have only considered rectangles with the same conditions at both end walls. 
This symmetry restriction allows four different combinations out of the two different 
kinematic and the two different thermal conditions. Two of these four combinations of 
wall conditions allow physical extensions beyond the wall: 

(i) The combination closed/insulating at a wall corresponds to extending the mathe-
matical solutions for the flow field as well as the temperature field symmetrically 
on the other side of the wall. 

(ii) The open/conducting combination at a wall corresponds to extending the flow field 
as well as the temperature perturbation antisymmetrically on the other side of the 
wall. 

The last two combinations do not allow any extension on the other side of the wall: 

(iii) The closed/conducting wall, 

(iv) The open/insulating wall. 

Combining the last two conditions produces the single asymmetric case which cannot 
be deduced from the above analysis: a closed/conducting wall in combination with an 
open/insulating wall. A solution may be developed along the lines of Nilsen and Storeslet-
ten (1990) but this is not straightforward. 

Here we show how the solution of the eigenvalue problem is deduced for all the other 
asymmetric cases. The porous rectangle under consideration is now 0 < x < a/2, 
0 < z < 1. It is chosen to have half the width of the rectangles (squares) with symmetric 
conditions that have been solved above. 

Figures 4.3 and 4.4 illustrated the degeneracy of the eigenfunctions when both walls are 
either closed/conducting or open/insulating. Asymmetric conditions remove the degen-
eracy. Figures 4.5(a) to (e) illustrate the unique eigenfunctions in five different cases of 
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Figure 4.5 Streamlines at the onset of convection in a rectangle with aspect 
ratio 1/2 having asymmetric lateral boundary conditions. Top and bottom are 
closed and conducting, (a) One closed/insulating wall and one open/conducting 
wall, (b) One closed/insulating wall and one closed/conducting wall, (c) One 
open/conducting wall and one closed/conducting wall, (d) One open/conducting 
wall and one open/insulating wall, (e) One closed/insulating wall and one 
open/insulating wall 

asymmetric boundary conditions. As these solutions correspond to dividing each of the 
previous figures in two equal parts, we keep the right-hand wall aix = a/2 as before and 
introduce a left-hand wall at x = 0. The formulas for the critical Rayleigh number are 
still given by equations (4.27) and (4.33). 

In Table 4.1 we tabulate all possible combinations of lateral boundary conditions for 
a rectangle of height H and width L (now with dimension). The critical Rayleigh 
number is given as a function of height and width. The first four rows represent the 
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Table 4.1 Critical Rayleigh number Rac for the onset of convection in a porous 
rectangle of height H and width L. First column: conditions at left-hand wall. 
Second column: conditions at right-hand wall IMP — impermeable (closed), 
FRE = free (open), CON — conducting, INS — insulating. The top and bottom 
are assumed closed and conducting. Last column refers to Figures 4.1 to 4.5 

Kinematic/thermal 

IMP/INS 

FRE/CON 

IMP/CON 

FRE/INS 

IMP/INS 

IMP/INS 

FRE/CON 

FRE/CON 

IMP/INS 

FRE/INS 

Kinematic/thermal 

IMP/INS 

FRE/CON 

IMP/CON 

FRE/INS 

FRE/CON 

IMP/CON 

IMP/CON 

FRE/INS 

FRE/INS 

IMP/CON 

TT̂  min ( 

-K"^ min ( 

47^2 

47r2 

TT̂  min ( 
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47r2 1 

47r2 1 
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nH , L \^ 
L ~^ nH J 

nH s L \^ 
L '^ nH ) 

[^^^) 
['^^) 
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'}^m 
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4.4 

4.5(a) 

4.5(b) 

4.5(c) 

4.5(d) 

4.5(e) 

void 

different symmetric conditions, and the last six rows represent the different asymmetric 
conditions. The five first asymmetric problems follow from the symmetric ones, modified 
only by dividing the width by two. The sixth asymmetric problem, yet unsolved, is an 
open/insulating wall in combination with a closed/conducting wall. 

Table 4.1 is our counterpart to Nield and Bejan (1999, Table 6.1, p. 181), and we adopt 
their notation. This systematic investigation of all top and bottom conditions was first 
performed by Nield (1968) and he considered infinite lateral extent. This is equivalent to 
having a rectangle of the preferred size constricted by closed and insulating lateral walls. 
In the present work we fix the top and bottom conditions and investigate all possible lateral 
conditions. 

4.4 THE RECTANGULAR BOX 

The simplest three-dimensional geometry is the rectangular box, and here we consider 
only the case where the box has vertical sidewalls and horizontal top and bottom walls. 
The box is confined by 

0 < x < a , 0 <y <b, 0 < z < l , (4.38) 
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and the top and bottom are assumed conducting and closed (impermeable). The nth mode 
of disturbance in the vertical direction can then be expressed as follows: 

0 - F(x,i/)sinn7rz, (4.39) 

u = U {x, y) cos TiTTZ, (4.40) 

V = V {x,y)cosn7rZj (4.41) 

w— W {x,y)smn7rz. (4.42) 

If we eliminate the vertical velocity and introduce the differential operator 

then the eigenvalue problem is governed by the equations 

riTTLF = ^ -f ^ z. V • V, (4.44) 
ox oy 

LV-hn7ri?aVF = 0. (4.45) 

Here the horizontal vector V — ([/, V) has been introduced. Let us eliminate it to derive 
a fourth-order equation for the thermal eigenfunction, namely 

{L^ +RaV'^)F=:0. (4.46) 

This eigenvalue problem has been solved for the case of closed and insulating walls, see 
Beck (1972), and the result can be written as follows: 

The minimum is to be taken with respect to all non-negative integers m and n, with the 
restriction that at least one of them must be nonzero. This formula gives an extension of the 
classical theory by Horton and Rogers (1945) and Lapwood (1948). It is straightforward 
because the lateral walls are mathematically equivalent to internal cell walls in the flow 
field. 

Tewari and Torrance (1981) considered the same problem as Beck (1972) with the only 
exception being that they assumed the upper boundary to be open instead of closed. The 
results were qualitatively very similar to those obtained by Beck (1972) and Tewari and 
Torrance (1981) who applied the conventional conditions of closed and insulating lateral 
walls. 
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The eigenvalue problem is much more difficult when we consider the conditions of closed 
and conducting lateral walls, namely 

F (0, y) = F (a, y) = F (x, 0) = F {x, b) = 0, (4.48) 

C / ( 0 , 2 / ) - C / ( a , y ) - 0 , (4.49) 

V{x,0) = V{x,b) - 0 , (4.50) 

and these lateral boundary conditions do not correspond mathematically to cell walls. 
This eigenvalue problem can only be solved in its original coupled version involving all 
three eigenfunctions F (x, y), U (x, y) and V (x, y). The plausible method of solution is 
double Fourier expansions in x and y but this is troublesome because the problem does not 
allow full separation of the x and y dependence. No work appears to have been published 
on this problem. 

The governing equation (4.46) is valid for a vertical cylinder with arbitrary cross-section. 
In the asymptotic limit of a very slender cylinder, the differential operator L reduces to 
V^. This implies that the fourth-order governing equation degenerates to the second-order 
Helmholtz equation 

{V^-\-Ra)F = 0. (4.51) 

Then the onset of convection will be independent of the kinematic conditions along the 
wall. The Helmholtz equation is the standard equation for acoustic eigenmodes in cavities 
as well as standing oscillations in elastic membranes and in shallow water basins. 

4.4.1 Two conducting and two insulating vertical walls 

We now consider the situation where the two parallel vertical walls x = 0 and x = a are 
conducting and the other two parallel vertical walls y = 0 and y = 6 are insulating. All 
these four walls are assumed impermeable and the horizontal planes z = 0 and z = 1 
are still taken as impermeable and conducting. This problem was first considered by 
Zebib and Kassoy (1977) and Lowell and Shyu (1978). This and similar problems were 
investigated further by Murphy (1979), Kassoy and Cotte (1985), Weidman and Kassoy 
(1986), Chelghoum et al. (1987) and Wang et al. (1987), and they applied numerical and 
asymptotic methods. 

The two-dimensional version of the original problem with conducting lateral walls has 
been solved analytically by Nilsen and Storesletten (1990). The early numerical work 
by Lowell and Shyu (1978) included this two-dimensional problem as a special case. 
However, their two-dimensional results are not in full agreement with the simple general 
formula (4.33) found by Nilsen and Storesletten (1990). There is agreement for large 
values of a only. Nilsen and Storesletten's formula (4.33) is in agreement with the 
asymptotic theory by Kassoy and Cotte (1985) for small values of a. 

Let us take a closer look at the three-dimensional onset problem for two conducting and 
two insulating walls. The boundary conditions (4.48) - (4.50) are then partly changed to 
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give 

F (0, y) = F (a, y) = ̂  (x, 0) - ^ (x, b) = 0, (4.52) 
dy dy 

t / (0 ,2 / )= :C / (a ,y ) -0 , (4.53) 

V{x,0) = V{x,b) =0. (4.54) 

We still assume the kinematic condition of closed boundaries everywhere and in the limit 
6 <C a the preferred mode of convection will be two-dimensional in x and z, as assumed 
by Nilsen and Storesletten (1990). Along a conducting boundary, the motion is impeded 
because buoyancy is diffusing into the wall and it is easier for the fluid to flow along an 
insulating wall where its buoyancy is being maintained by the wall. Therefore it is clear 
that the two-dimensional mode found by Nilsen and Storesletten (1990) is not preferred 
for b > a, which restricts the validity of their formula (4.33). 

Let us derive the critical Rayleigh number in the following asymptotic limit of a narrow 
gap between the two conducting boundaries: 

a <C min (6,1). (4.55) 

In this asymptotic limit (4.55), the thickness a is half a wavelength of the preferred mode 
in the x-direction and we can write 

d'^F n^ 

dx'^ a? 

The thermal eigenfunction F is given by 

_ , . . m-Ky .. -_. 
t \x^y) =sm7rxacos—-—, (4.57) 

b 
where m denotes a positive integer. Expression (4.57) introduced into the governing equa-
tions produces the following formula for the Rayleigh number at the onset of convection: 

As we noted in connection with equation (4.51), the onset problem in this asymptotic thin-
layer limit is governed solely by thermal conditions at the walls. We find that m — n — \ 
gives the critical Rayleigh number. Our asymptotic formula for the critical Rayleigh 
number is given by 

i?a, = ^ + ( ' ^ + lA + O {T^C?) . (4.59) 

This result appears as a singular perturbation in terms of a^ starting with the minus first 
power, see Kassoy and Cotte (1985) who have performed a more rigorous asymptotic 
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expansion. To the leading order in the expansion we have 

i ? a c - ^ , (4-60) 

and this is only 1/4 of the corresponding limit for two-dimensional disturbances according 
to equation (4.33). The critical temperature gradient is only 1/4 of the corresponding 
critical gradient prescribed by a two-dimensional mode of disturbance. We refer to 
the critical temperature gradient instead of the critical Rayleigh number because the 
asymptotic onset criterion (4.60) is essentially independent of the height of the porous 
layer. Gravity and temperature gradient are the only quantities in these asymptotic onset 
criteria that refer to the vertical direction. The vertical length scale (unity) disappears and 
is replaced by the horizontal gap thickness a. The narrow-gap limit (4.60) for the critical 
Rayleigh number can be rewritten as 

Ra.= ^MSZIAlL=,^. (4.61) 

Here a modified Rayleigh number Ra = Ra L^H~^ has been introduced, where L ~ aH 
is the gap width (with dimension) and | VTg | denotes the unperturbed temperature gradient. 

4.5 THE HORIZONTAL CIRCULAR CYLINDER 

Lyubimov (1975) was the first to consider Rayleigh-Benard convection in a horizontal 
porous cylinder but he did not carry the onset problem far enough to identify preferred 
modes and critical Rayleigh number. This was done by Storesletten and Tveitereid (1991), 
who solved the onset problem for a vertical circle with conducting cylinder walls. This 
represents the two-dimensional modes of disturbance for a horizontal circular cylinder 
with insulating end walls. The Rayleigh number definition according to Storesletten and 
Tveitereid (1991) applies the radius as the unit length, whereas our definition of Ra, 
equation (4.5), takes as unit length the diameter of the cylinder. The critical Rayleigh 
number Rac is then redefined as twice the value found by Storesletten and Tveitereid 
(1991), namely 

Rac = 92.53. (4.62) 

This critical value is 17% greater than the value STT̂  for a square body, given by equation 
(4.33), and this is a plausible result since 21.5% of the unit area is being removed when 
a unit square is replaced by its inscribed circle with unit diameter. It is a stabilizing 
effect to have less space available for the flow. The critical Rayleigh number given by 
equation (4.62) occurs for two different modes of motion. The first mode consists of two 
counter-rotating cells with stricdy vertical motion (upward or downward) in the middle. 
The second mode consists of three cells: one dominating roll occupying most of the area, 
with two smaller rolls filling out the space to the left and to the right of the one big central 
roll. 
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Storesletten and Tveitereid (1991) also investigated a three-dimensional mode of distur-
bance, which is preferred for cyhnders with a length of the order of their diameter, or 
larger. They assumed thermally insulating end walls so that the axial dependence in the 
solution is one single Fourier mode. When the aspect ratio of the horizontal cylinder (its 
length divided by its diameter) is shorter than about 0.43, the preferred mode of convection 
is still two-dimensional. For all larger aspect ratios, the preferred disturbance is three-
dimensional, and its structure in a vertical cross-section consists of two cells. The critical 
Rayleigh number for this three-dimensional flow takes the following minimum value: 

Rac = 62.48. (4.63) 

This value was found with a preferred wave number of 1.76 for the axial flow component. 
This lowest critical Rayleigh number therefore repeats itself for discrete aspect ratios 
which coincide with an integer number of critical wavelengths. The preferred wave 
number gives 3.57 as the wavelength with the radius as unity and there are two cells in 
each wavelength. This means that each cell will have the width 0.892 in the 2:-direction, 
dimensionless with the cylinder diameter as length unity. 

4.5.1 General linearized equations in cylindrical coordinates 

We introduce the cylindrical coordinate system (x, r, 0) for a porous cylinder with axis 
along the a:-direction. The transformations between Cartesian and cylindrical coordinates 
are as follows: 

(x, y, z) — (x, r cos 0, r sin (f)) (4.64) 

and the velocity components are denoted by (u, Vr, t'^). 

After eliminating the pressure, the governing equations (4.7) - (4.9) can be expressed as 
follows: 

- ^ - ^ ^ - i ? a c o s 0 ^ - , (4.66) 
r 0(p ox ox 

dvr du ^ . , dQ 
^ - — = i?a sin (/)—, (4.67) 
ox or ox 

^ + - ^ (rvr) + - - ^ - 0, (4.68) 
ox r or r ocp 

..sm<^ + . , c o s 0 ^ - - ( ^ r - j - f ^ ^ - f ^ ^ O . (4.69) 

In order to solve the challenging problem of zero perturbation temperature along all 
boundaries, including the end walls, one would have to start with these general equations. 



100 ONSET OF RAYLEIGH-BENARD CONVECTION IN POROUS BODIES 

4.5.2 A thin horizontal cylindrical shell with closed walls 

We now consider the onset of convection in the small-gap porous shell defined by 

a<r <a-\-e. (4.70) 

Here e <C min (a, L) and L is the length of the cylindrical shell in the a:-direction. 

We choose the most natural thermal condition which is a prescribed boundary temperature, 
i.e., zero perturbation temperature, namely 

6 = 0 on r = a and r = a-\-e. (4.71) 

Also we assume the walls of the cylinder shell to be closed (impermeable), i.e., 

Vr — 0 on r = a and r = a -f- e, (4.72) 

and asymptotically for small e we may take Vr = 0. Then we can reduce the eigenvalue 
problem to being governed by two coupled equations for v^p and 0 , namely 

^ (rv^) = Ra— ( r e ) cos .̂  - Ra-— (0 sin < )̂, (4.73) 

v,cos4>+--(r-y^^ + ^^0, (4.74) 

subject to boundary conditions (4.71). To the leading order of e, we replace the factor r 
by a. Moreover, we cancel a couple of terms by taking into account that d/dr > 1, while 
a and d/dcf) are of order unity. 

Equation (4.73) can then be simplified and integrated to give 

v^-RaQ cos 0. (4.75) 

In the heat equation (4.74), the effects of curvature are neglected in this thin-layer approx-
imation and therefore we have 

. , c o s 0 + — + ^ ^ - f ^ = 0 . (4.76) 

We combine equations (4.75) and (4.76) to find the governing equation for the temperature 

perturbation, namely 

This thin-shell approximation allows us to write the eigenfunction as a Fourier mode in 
the r- and x-directions, namely 

0 = F ((/>) sin k(T-d) e^^ ,̂ (4.78) 
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where the physical mode is represented by the real part. So far, nothing has been said about 
the boundary conditions at the two end walls x = 0 and x = Lof the cylinder. According 
to equation (4.78) we now assume closed (impermeable) and thermally insulating walls, 
which is the same as the conditions between neighbouring cell walls. Therefore, instead 
of considering the parameter L representing the cylinder length, we choose to consider 
the parameter p representing the wave number of the convection cell in the x-direction. 
We also consider the wave number k in the radial direction, and for the preferred mode of 
motion we have 

pL = ke=: TT. (4.79) 

The governing equation is now given by 

^ ^ ^ + (Ra cos^ (t>-k'^ -p'^)F{(t))=0, (4.80) 
a 

and only two thermal conditions are thermal in this eigenvalue problem. We would in 
principle state these conditions at the top (0 = 7r/2) and at the bottom (0 — 7r/2) and at 
the bottom of the porous shell. 

According to our general definition of the Rayleigh number, equation (4.5), we choose the 
outer shell diameter as length unit, i.e.. 

We solve the eigenvalue problem numerically by the shooting method, see Keller (1968), 
assuming that the preferred mode is symmetrical with respect to 0 — 0. Therefore we 
start the integration from 0 = 0 with the shooting conditions 

F(0) = 1, F '(0)==0, (4.82) 

and these conditions are fixed, so the only variable to be iterated on is the Rayleigh number. 
In the computation of equation (4.80), we neglect p compared with k, since the only role 
of p in the thin-shell limit is to assure that there is just one cell width in the x-direction. 
Thus neglecting p means that we must consider a cylinder which is long compared with 
the thickness of the porous shell. 

We start by choosing a small value of e and evaluate the wave number A: = n/e. The 
iteration for Ra starts with the value A:̂ , which has been found above for a thin vertical 
layer, see equation (4.60). 

In Table 4.2 we show some numerical computations of the critical Rayleigh number Rac 
for several values of e and the equation (4.80) is solved using MATHEMATICA. The 
first choice of layer thickness e = 0.15 is chosen for the purpose of illustration, as it is 
somewhat too large for the asymptotic thin-layer theory to be valid. We see that Rac for 
this curved shell converges quickly to its asymptotic limit k'^ for a thin vertical layer as 
the layer thickness is reduced. 
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Table 4.2 Results for the onset of convection in the thin-shell limit of a 
cylindrical porous shell. The cylindrical shell has a horizontal axis and 
conducting impermeable boundaries. For various thicknesses e, the critical 
Rayleigh number Rac is computed and compared with its asymptotic limit value 
k^, where k is the wave number of the disturbance across the porous shell 

Rac Rac/k"^ 

0.05 4088.7 1.036 62.83 
0.1 1067.0 1.081 31.42 
0.15 500.45 1.141 20.94 

In Figure 4.6 we show streamlines for the preferred mode of motion in a shell where the 
thickness is € = 0.15 and where the cylinder length is L = TT. The flow domain is then a 
square but the flow is very much concentrated in the middle half. The flow in the upper 
and lower portions of the cylinder shell is an example of penetrative convection, see Nield 
and Bejan (1999, p. 292). Figure 4.6 shows streamlines along one half cylinder surface 
(-7r/2 < (j) < 7r/2), and there are equal streamlines (with opposite circulation) along the 
other half cylinder surface (TT/2 < 0 < 37r/2). 

The present theory gives some qualitative insight but is quantitatively rather crude, except 
for very thin shells where it gives only a minor stabilizing effect compared with a strictly 
vertical layer. 

Figure 4.6 Streamlines at the onset of convection in a horizontal cylindrical 
porous shell, according to thin-shell asymptotic theory. Isolines are shown for 
the following values of the streamfunction: 0.0002, 0.002, 0.02, 0.2, 0.4, 0.6, 0.8 
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4.6 VERTICAL CYLINDERS 

Here we first consider an arbitrary vertical porous cylinder which is confined by the two 
horizontal conducting planes z = 0 and z — \. The vertical cylinder walls are given by 
vertical lines through an arbitrary closed contour in the xy plane. If we assume that all 
boundaries are open, then the critical Rayleigh number is given by 

Rac - 12, (4.83) 

and this follows from Nield (1968). This preferred mode of convection has vertical 
streamlines and it is independent of the kinematic and thermal conditions valid along the 
vertical walls. 

We now formulate the eigenvalue problem for the steady mode of the onset of convection 
in cylindrical coordinates (r, 0, z) defined by 

(x,i/,z) = (rcos(/>, rsin(/), z ) , (4.84) 

and the velocity components are denoted by {vr,V(f),w). 

After eliminating the pressure, the governing equations (4.7) - (4.9) can be written as 
follows: 

! ( „ , ) _ ^ = 0 . ,485) 

ldw_dvt_Rnde^^^ (4.86) 
r 9(/> dz r d(j) 

| ._ |^+^a^.O, (4.87) 
oz or or 

r or r 0(p oz 

\ ^ ( r ^ \ + l ^ + ^ + ^ ^ 0 (489) 
r dr \ dr J r̂  90^ dz^ 

The choice of cylindrical coordinates is suitable for convection in a cylindrical porous ring 
restricted by 0 < 2: < 1 and a < r < b. The thermal boundary conditions in the case of 
conducting boundaries (zero perturbation temperatures) are as follows: 

0 = 0 on z = 0 and z = 1, (4.90) 

0 = 0 on r = a and r = b. (4.91) 

Alternatively, we may assume insulating cylinder boundaries, namely 

—— = 0 on r = a and r = b. (4.92) 
or 
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The kinematic conditions at closed boundaries are given by 

Vr = 0 on r = a and r = 6, (4.93) 

w = 0 on z = 0 and z = I. (4.94) 

Alternatively we may assume open boundaries, which are given by 

w = 0 on r = a and r — h^ (4.95) 
Vr = ^ on z = 0 and z = 1. (4.96) 

It should be noted that there are no boundary conditions for the azimuthal velocity tJ^. 

4.6.1 The literature on vertical cylinders 

Wooding (1959) wrote the first research paper on convection in a vertical porous cylinder 
and he considered a tall and slender cylinder. His result for the onset of convection can 
be expressed in terms of the modified critical Ray leigh number Ra introduced in equation 
(4.61), namely 

Rac = 13.56. (4.97) 

The length scale L is now defined as the diameter of the circular cylinder. It is interesting 
to compare this result for a slender cylinder with the critical Ray leigh number TT̂  , equation 
(4.61), for a box with a narrow gap between two conducting (or insulating) planes. The 
result for a cylinder (with the same diameter as the gap width) is that its Rayleigh number 
is 37.4% greater at the onset of convection. This is plausible because there is less space 
available for the flow. Wooding (1959) found that the preferred flow is antisymmetric 
with respect to a diameter in a cross-section of the cylinder. 

Zebib (1978) gave a more complete solution for the onset of convection in a vertical circular 
cylinder with impermeable boundaries, conducting top and bottom, and insulating vertical 
walls. His solution for the temperature perturbation involves a Bessel function of the first 
kind, namely 

0 = sin TTZ Jm {kr) cos m(/), (4.98) 

with the insulating wall condition J ^ (&) = 0 where b denotes the radius of this compact 
porous cylinder. Zebib (1978) confirmed that the antisymmetric mode found by Wooding 
(1959) (here represented by n = 1) is preferred for tall and slender cylinders. Zebib 
(1978) found that the axisymmetric mode (n = 0) is preferred only for cylinders with 
dimensionless radius b in the following range: 

1.09 < 6 < 1.28. (4.99) 

Bau and Torrance (1982) solved a similar onset problem as Zebib (1978), and the only 
difference was that the upper boundary was open instead of closed. Bau and Torrance 
(1982) also presented experimental observations which were in reasonable agreement with 
their theory. 
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Wang (1998) again solved a similar onset problem as Zebib (1978) with the only change 
being that there is a constant heat flux condition at the bottom boundary. His figure for 
the critical Rayleigh number as a function of the ratio of radius to height looks identical 
to that found by Bau and Torrance (1982). This is no surprise since we know from Nield 
(1968) that these two problems share the same onset criterion, namely Rac — 27.1 at the 
wave number 2.33 for a layer of infinite horizontal extent. Actually the criteria for the 
onset of convection in both these cases may be derived from the results by Zebib (1978), 
according to the transformation 

^"^ -Kx.-Ky) -> r ^ , 2 . 3 3 X , 2 . 3 3 2 / ) . (4.100) 
4 7 r 2 ' ' 

This is the appropriate transformation from the solution by Zebib (1978) to produce those 
of Bau and Torrance (1982) and Wang (1998). The only difference in these separable 
eigenvalue problems is the boundary condition at the top or at the bottom. This results in 
a different vertical eigenfunction, which produces a different Rayleigh number and a pre-
ferred disturbance with a different radial length scale. The lateral boundary conditions are 
identical in the three papers by Zebib (1978), Bau and Torrance (1982) and Wang (1998). 
The horizontal variation of the eigenfunctions become identical after the application of 
the transformation (4.100). 

By means of the same transformation (4.100), it is also seen that the results by Tewari 
and Torrance (1981) can be deduced from the original paper by Beck (1972). The 
transformation (4.100) states that the horizontal length scale is increased by a factor 
7r/2.33 ^ 1.348 in the problems of Bau and Torrance (1982) and Wang (1998) compared 
with Zebib (1978). There are some computed values which may serve as a check. Wang 
(1998) found the radius range where he found that the preferred mode of disturbance is 
axisymmetric, namely 

1 .470<6< 1.725, (4.101) 

and the corresponding values found by Zebib (1978) are given in equation (4.99). Accord-
ing to the transformation (4.100), Wang's values should be equal to Zebib's values multi-
plied by 1.348. This is in agreement with the ratio that we actually find for the upper limits 
(1.725/1.28 = 1.348), and also for the lower limits where we find 1.470/1.09 = 1.349. 

Other papers that have been written on the Rayleigh-Benard problem in vertical cylinders 
are those of Bories and Deltour (1980) and Bau and Torrance (1981). Bories and Deltour 
(1980) considered the effects of finite conduction in a surrounding solid medium, whilst 
Bau and Torrance (1981) investigated a porous medium between coaxial cylinders, where 
the solution is similar to equation (4.98) but the Bessel functions of the second kind Y^ 
enter the solution. 

4.6.2 On the onset of convection in a hexagonal cylinder 

One hexagonal cell is composed of three roll systems with the same wavelength being 
mutually rotated by an angle of 27r/3. We now consider the onset of convection in a 
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cylinder with hexagonal cross-section and impermeable boundaries, with conducting top 
and bottom and insulating vertical walls. The only hexagonal cell pattern that can fit into 
this hexagonal container is the single hexagonal cell filling the whole container. 

We know that this single hexagonal cell must be the preferred mode of disturbance when 
the wavelength of each of its three constituting roll systems is equal to 2. This is because 
the critical Rayleigh number will then be 47r̂ , which is the global minimum for any 
cylindrical closed container with vertical walls and perfectly conducting top and bottom. 
The vertical velocity distribution in such a preferred cell can be written as follows: 

w{x,y,z) = jcosTTx -f COS - fx - VSy] + cos - fx -f VSy) \ sinvrz. (4.102) 

Here the maximal velocity amplitude for each of the three roll systems is chosen to be 
one, which means that its value at the point (0,0,1/2) where these amplitudes add up, is 
equal to three. 

The one single hexagonal cell at the onset of convection is close to axisymmetry, since 
there is an up welling in the middle and a down welling along the walls (or opposite). How 
much it actually deviates from axisymmetry is demonstrated in Figure 4.7. Here we show 
isolines for constant values of w in the downwelling outer region of a hexagonal cell, 
assuming (say) that the core of the cell has upwelling flow. A cut is made through the 
mid-plane of the cell z = 1/2. The inner curve connects all stagnation points given by 
w — 0, and it is close to being a circle. This implies that all the flow in the upwelling 
core is very close to being axisymmetric. The single hexagonal cell is clearly the closest 
one can get to axisymmetric flow inside a hexagonal container. One hexagonal cell fills 
the whole container at a critical Rayleigh number coinciding with the global minimum 
of 4n^ when each of the six sides of the hexagon has dimensionless length s given by 

y 0 

Figure 4.7 Isolines of constant vertical velocity w (x, y, 1/2) in a hexagonal 
convection cell, given by equation (4.102). The displayed values are w — Q, 
-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1 .4 
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s = 4/3. This is the maximal radius of the hexagon, or the distance from its centre to 
one of its corners. The corresponding minimal radius is the distance from the centre to 
the middle of each of the six sides, and it is given by 2/V^ = 1.1547. The effective 
radius-to-height ratio of the hexagonal cylinder is therefore estimated as the arithmetic 
mean (1.33 -f-1.15) /2 = 1.24. This can be taken as a rough prediction of the radius for 
which the axisymmetric mode will be preferred in the circular cylinder. We see from the 
inequality (4.99) that our estimate b = 1.24 is indeed within the range of container radii 
where the axisymmetric mode is preferred. We may apply the transformation (4.100) 
to estimate the container radius for which we expect axisymmetric convection when one 
boundary is open, see Bau and Torrance (1982), or has constant heat flux, see Wang 
(1998). The average radius of one hexagonal cell is estimated to be 1.24 x 1.348 = 1.67. 
This value is in agreement with the parameter range for the axisymmetric mode found by 
Wang (1998), namely 1.470 < 6 < 1.725. 

The hexagonal cylinder serves to explain why an axisymmetric mode may be preferred 
in the circular cylinder and it gives a reasonable estimate of the radius-to-height ratio for 
which this axisymmetric mode can be expected to occur. To solve analytically the general 
onset problem for a hexagonal cylinder is very difficult but from a comparison with the 
circular cylinder, see Zebib (1978), we can give some qualitative information. If s is much 
smaller than one there is an upwelling in the left half (say) of the hexagonal container and 
downwelling in its right half. The hexagonal cell with all its downwelling (or upwelling) 
concentrated in the middle may occur only for values of s of order one. If s is considerably 
greater than one, there will be more than one recirculating flow cell within the container 
at the onset of convection. However, these cells cannot be exact hexagonal cells, because 
such a pattern with more than one hexagon does not fit in with the hexagonal boundary of 
the container. 

4.7 ONSET OF CONVECTION IN SPHERICAL GEOMETRY 

We formulate the general eigenvalue problem for a porous sphere. We first introduce the 
spherical coordinates (r, 9, (j)) defined by: 

{x,y,z) = (r sin 6 cos 0, r sin 9 sin 0, r cos 9). (4.103) 

Axisymmetry is defined by d/dcp = 0 and also vanishing flow in the azimuthal (f)-
direction. The velocity components in the r-, 9- and ^-directions are denoted by Vr, VQ 
and Vfj), respectively, and one must keep in mind the different definition of the symbol r 
in spherical and cylindrical coordinates. 

After eliminating the pressure, the governing equations (4.7) - (4.9) reduce to the following 
form: 

| K s i n . ) - ^ = . E a s i n . | ^ , (4.104) 
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— -sme-{rv,)=Racose — , 

dvr d 
(rve) = Ra Sine—(r0) + — (0 cos 0) 

rj O r\ 

sin^31 ('•'^O + ^ ^ (sin^vs) + r - ^ = 0, dr 

1 a 
ae 

r'^ dr \ dr I r^ sin ̂  9^ 
1 a / . _a0\ 

(4.105) 

(4.106) 

(4.107) 

1 d^Q 

(4.108) 

and this choice of coordinate system is suitable for convection in a spherical porous body 
0 ^ r < 1/2. It should be noted that the diameter is defined as length unit according to 
our general conventions. The thermal boundary condition is given by 

0 = 0 on r — 

The kinematic condition in the case of a closed boundary is given by 

i'r = 0 on '^ — i:^ 

and the kinematic condition at an open boundary is given by 

VQ —Q on '^ — i:-

(4.109) 

(4.110) 

(4.111) 

4.7.1 A thin spherical shell with closed walls at given temperature 

We now consider the onset of convection in the small-gap porous shell defined by 

a<r<a + e, (4.112) 

where e <^ 1/2 and a is the inner radius of the shell. 

We take the condition of zero perturbation temperature (4.12), namely 

0 = 0 on r^a and r = a-h e. (4.113) 

We assume the walls of the spherical shell to be closed (impermeable), namely 

Vr^Q on r^a and r — a-{-e, (4.114) 

and asymptotically for small e we may take Vr — 0. The thin-shell approximation allows 
us to write the thermal eigenfunction as a Fourier mode in r- and ^-directions, i.e.. 

0 = F(^)s inA:(r -a)e^"^ . (4.115) 
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Following a similar procedure as in the case of a thin horizontal porous shell, we end up 
with the following governing equation for the eigenfunction F {9): 

Eip. + ^F^ (̂ ) + (nasin' 9 - e - V ^ l ^ (̂ ) = ^' (4.116) 

Only two thermal conditions are required in this eigenvalue problem and we would in 
principle state these conditions at the top (6 = 0) and at the bottom {6 — TT) of the 
spherical porous shell. 

According to our general definition of the Rayleigh number, see equation (4.5), we choose 
the outer shell diameter as length unity so that 

a=--e. (4.117) 
2 

The numerical solution procedure is the same as for equation (4.80). We utilize that the 
preferred mode of disturbance must be symmetrical with respect to9 = 7T/2 and therefore 
start the integration from 9 — 7r/2 with the shooting conditions 

In Table 4.3 we show computations of the critical Rayleigh number for different values 
of the shell thickness. It is essential to include the last term with n = 1 in the governing 
equation (4.116). Mass conservation forbids the mode n = 0 and n = 1 is the smallest 
possible choice for n. When e — 0.05, this gives the critical Rayleigh number 4096.4. 
This is the preferred solution since higher values of n produce higher values of Ra. The 
streamline pattern is omitted since in Mercator's projection (rectangular system with (j) 
and 9 as coordinates) it looks very similar to Figure 4.6. For all 0 ^ 0 , the streamlines are 
compressed and this means less space is available for the flow than in cylindrical geometry. 
This is a stabilizing effect and it gives higher critical Rayleigh number for the spherical 

Table 4.3 Results for the onset of convection in the thin-shell limit of a 
spherical porous shell with conducting and impermeable boundaries. For various 
thicknesses e, the critical Rayleigh number RGC is computed and compared with 
its asymptotic limit value k^, where k is the wave number of the disturbance 
across the porous shell 

€ 

0.05 
0.1 
0.15 

Rac 

4096.4 
1077.1 
514.37 

Rac/k'^ 

1.037 
1.091 
1.173 

k 

62.83 
31.42 
20.94 
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shell than for the cylindrical shell (with horizontal axis) on comparing equal choice of 
shell thicknesses. 

4.8 CONCLUDING REMARKS 

The Rayleigh-Benard instability is of broad scientific significance and it is one of the 
simplest known mechanisms of hydrodynamic instability in real fluids with finite viscos-
ity, see Chandrasekhar (1961). Lord Rayleigh (1916) identified theoretically the finite 
threshold for the transition from pure conduction to convective flow, governed by the 
Rayleigh number as the order parameter. There is usually a preferred shape and a finite 
size of the mode of disturbance. 

Rayleigh-Benard convection is a very central phenomenon in the development of bi-
furcation theory for strongly nonlinear processes, with links to catastrophe theory. It 
is a key phenomenon in the cross-disciplinary field of synergetics, see Haken (1977). 
Rayleigh-Benard cells are central in the paradigm of self-organizing dissipative struc-
tures, see Prigogine and Stengers (1984). Lorenz (1963) introduced a truncated model 
for nonlinear Rayleigh-Benard convection as a first step in the modern understanding of 
deterministic chaos, see also Strogatz (1994). The evolution of Rayleigh-Benard convec-
tion cells with imperfections in cell patterns, is conceptually related to crystal structures, 
see Manneville (1990). Rayleigh-Benard cells have similarities with a different flow phe-
nomenon: standing Faraday waves in oscillating containers, investigated among others by 
Miles (1993). 

The Rayleigh-Benard instability appears in its simplest version when the flow takes place 
in a porous medium. The present contribution to the topic is is to formulate a wider class 
of Rayleigh-Benard problems for finite porous bodies in three dimensions. In general the 
eigenvalue problems for such finite bodies are considerably more complicated than the 
traditional case of an unlimited horizontal layer. 

We have not given any new two-dimensional solutions for the onset of convection with zero 
perturbation temperature along an impermeable contour. Two such eigenvalue problems 
have been solved in the literature, see Nilsen and Storesletten (1990) who solved the 
problem of a rectangle and Storesletten and Tveitereid (1991) who solved the problem of 
a circle. In both cases there is a degeneracy in that two independent modes of disturbance, 
symmetric and antisymmetric modes, give the same critical Rayleigh number. In the 
present chapter we have found one new two-dimensional solution which is valid for the 
onset of convection in a rectangle with open and insulating lateral walls. 

No three-dimensional problems seem to have been solved with the consistent requirement 
of zero perturbation temperature along the boundary of the three-dimensional porous body. 
Such a solution is given here for a thin spherical shell, in terms of a highly simplified 
thin-shell analysis. In this chapter we have focussed on three-dimensional problems in 
order to stimulate further research in this field. 
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Abstract 

The stability of double-diffusive convection and finite-amplitude flows, due to opposing gra-
dients of temperature and solute, in an inclined rectangular porous enclosure are studied an-
alytically and numerically. The Darcy model and Boussinesq approximations are adopted to 
describe the double-diffusive convective flows within the enclosure. The governing equations 
are solved numerically using a finite element method. A closed-form analytical solution is 
derived on the basis of the parallel flow approximation within an infinite porous layer subject 
to constant fluxes of heat and solute. To study the linear stability of the diffusive state and of 
the fully-developed flows, a numerical technique is derived on the basis of the finite element 
method. The thresholds for subcritical, oscillatory, and monotonic convection are determined 
as functions of the governing parameters for different thermal and solutal boundary conditions 
and inclination angles. In a confined enclosure, the threshold for stationary convection depends 
on the solutal Rayleigh number, the inclination angle, and the thermal and solutal boundary 
conditions type. The threshold for oscillatory convection shows a strong dependence on all 
the governing parameters. For an infinite layer, the wavelength was found to be a function of 
the governing parameters. Within the overstable regime, traveling waves are also possible in 
horizontal and vertical enclosures, especially when the enclosure is subject to Dirichlet thermal 
and solutal boundary conditions. Below the threshold of overstability, subcritical convective 
flows were found to exist. Far from criticality, the threshold for Hopf bifurcation, which char-
acterizes the transition from steady to oscillatory flows, is predicted. Multiple confined steady 
and unsteady states are found to coexist for a given set of the governing parameters. Within 
the parallel flow approximation, good agreement is found between the analytical results and the 
numerical solution of the full governing equations. 

Keywords: double-diffusive convection, stability analysis, finite element, mixed 
boundary conditions, Hopf bifurcation, parallel flow 
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5.1 INTRODUCTION 

Combined natural heat and mass transfer, the so-called double-diffusive or thermosolutal 
convection, has become increasingly an attractive field for many researchers and engi-
neers in very diversified areas. The great interest in this phenomena stems from its rapid 
expansion and widespread engineering applications. The migration of moisture in fibrous 
insulation, contaminant transport in saturated soil, underground disposal of nuclear or 
non-nuclear wastes, food processing, spreading of pollutants, metallurgy, and electro-
chemistry, to name but a few, are some examples where combined heat and solute transfer 
is encountered. 

In the classical thermal natural convection within a porous enclosure, the flows are driven 
by the buoyancy forces resulting from density variations due to temperature gradients. For 
such flows, heat is transported through the fluid-saturated porous layer by both convection 
and diffusion. Similarly, for thermosolutal convection, for which density variations are 
induced by both temperature and concentration gradients, heat and solute concentration 
are transported by convection and diffusion. When the thermal and solutal effects are 
aiding each other, the convective flows remain qualitatively similar to those reported for 
the case of pure thermal convection. However, when these effects are opposing each other, 
various convective phenomena could manifest. These phenomena are characterized by the 
possible existence of multiple steady- and unsteady-state solutions for the same governing 
parameter values, subcritical flows which occur below the threshold of overstabilities, 
oscillatory flows (periodic or chaotic), traveling waves in relatively large aspect ratio 
enclosures, and asymmetric flow structures, etc., see, for example, Nield (1968), Taunton 
et al. (1972), Mamou et al. (1995a, 1998b), and Mamou and Vasseur (1999). These 
phenomena are due to the fact that the thermal and solutal diffusivities are usually different 
from each other. This leads essentially to different time scales for the heat and solute 
transfer. As a consequence, the heat and solute transfer get out of phase and give rise 
to the occurrence of such phenomena. Another factor which leads to similar phenomena 
is the porosity of the porous medium, even when the thermal and solutal diffusivities 
are similar or nearly equal, see, for example, Mamou et al. (1998c), Karimi-Fard et al 
(1999), and Mamou and Vasseur (1999). For this situation, the heat is transferred through 
both the fluid and solid porous matrix. However, the solute is transported by diffusion 
and convection only through the fluid phase, since the porous matrix material is typically 
impermeable. This causes the heat and the solute transfer to have different time scales, 
which lead to various phenomena mentioned above. 

The review of literature is focused mainly on problems related to double-diffusive convec-
tion in rectangular enclosures. The number of published papers on this topic is enormous, 
hence, due to space limitation, only some of the papers directly related to the present 
work will be referenced. The mechanism of heat and mass transfer by natural convection 
and the principles of convection through porous media are well documented by Bejan 
(1984). Recent developments and reviews of thermal convection within porous media are 
reported by Ingham and Pop (1998). A comprehensive review of the literature concerning 
double-diffusive natural convection in a fluid-saturated porous media can be found in the 
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review article by Trevisan and Bejan (1990) and in the recent book by Nield and Bejan 
(1999). The present literature review is focused on two situations as follows: 

5.1.1 Horizontal enclosures 

This situation corresponds to a horizontal porous layer of finite/infinite extent subject to 
vertical thermal and solutal gradients. Double-diffusive instability in a horizontal porous 
layer was primarily studied by Nield (1968). On the basis of a linear stability analysis, 
the criteria for the onset of stationary and oscillatory convection were derived for various 
thermal and solutal boundary conditions. An extension of the analysis was made by 
Taunton et al (1972), by determining the conditions for which 'salt fingers' develop in the 
presence of both temperature and concentration gradients. Considering a weak nonlinear 
stability analysis, Rudraiah et al (1982) have applied the nonlinear stability analysis 
to the case of a porous layer with isothermal and isosolutal boundaries. The effects 
of Prandtl number, ratio of diffusivities, and permeability parameter on finite-amplitude 
convection were studied for opposing flows and the threshold for subcritical convection 
was obtained. Brand and Steinberg (1983) have investigated finite-amplitude convection 
near the threshold for both stationary and oscillatory instabilities and the temporal behavior 
of heat and mass transfer rates was predicted for the oscillatory regime. 

The case of a sparsely packed porous medium, where viscous effects are significant, was 
investigated by Poulikakos (1986) on the basis of the Brinkman-extended Darcy model. 
The boundaries delineating the regions of monotonic and overstable regimes were obtained 
in terms of the governing parameters of the problem. Murray and Chen (1989) investigated 
experimentally and numerically double-diffusive convection in a horizontal porous layer. 
In the presence of stabilizing solute gradients, the onset of convection was marked by 
a sudden increase in heat flux at a critical temperature difference value. Furthermore, 
when the temperature difference was reduced to subcritical values then the heat flux curve 
established a hysteresis loop. Their results indicate clearly the existence of subcritical 
flows. 

Double-diffusive fingering convection in a horizontal porous medium was considered by 
Chen and Chen (1993) using horizontal periodic boundary conditions and the Brinkman 
and Forchheimer extended Darcy model was considered. The stability boundaries which 
separate regions of different types of convective motion were identified in terms of the 
thermal and solutal Rayleigh numbers. Guo and Kaloni (1995) have studied the effect 
of the Darcy number and the effective viscosity on the threshold for stationary convec-
tion, when considering a Brinkman porous layer with non-slip boundaries. The effect of 
thermo-dependent fluid properties is also considered. Mamou et al (1995c) have consid-
ered thermosolutal convection in an inclined porous layer heated and salted from the sides 
by uniform fluxes of heat and solute. Their analytical and numerical results, showing 
mutual agreement, demonstrated that subcritical steady flows, for the case of a horizon-
tal layer, are possible. Studying the same phenomena within a horizontal porous layer, 
Mamou and Vasseur (1999) have reconsidered the problem using different boundary con-
ditions for temperature and solute concentration. Multiple convective states were found to 
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exist near criticality and general expressions for the thresholds of subcritical, oscillatory, 
and stationary convective flows were derived as functions of the governing parameters. In 
large aspect ratio enclosures, traveling waves were also observed. Amahmid et al. (1999a) 
studied double-diffusive convection in horizontal sparsely packed porous systems subject 
to vertical fluxes of heat and solute using the Brinkman model, and the threshold for the 
onset of subcritical and stationary flows have been determined. Recently, Mahidjiba et al. 
(2000) have examined the effect of mixed thermal and solutal boundary conditions (con-
stant temperatures and mass fluxes, or vice versa, prescribed on the horizontal boundaries). 
The thresholds for oscillatory and stationary convection are obtained. It was also demon-
strated that, when the thermal and solute effects are opposing each other, the flow patterns 
become much different from the classical Benard convective flows. Considering the work 
of Mamou and Vasseur (1999), Kalla et al (2001) have studied the effect of lateral heating 
on the bifurcation phenomena present in double-diffusive convection within a horizontal 
enclosure, and they found that the lateral heating acts as an imperfection brought to the 
bifurcation curves. Multiple steady-state solutions, with different heat and mass transfer 
rates, were found to coexist. 

5.1,2 Vertical and tilted enclosures 

Double-diffusive convection within vertical porous enclosures, subject to horizontal gra-
dients of heat and solute, have received great interest during the last two decades. The case 
for aiding thermal and solutal effects, or for opposing flows (when the flow is thermally or 
solutably dominated), is well documented, and the flow behavior due to both temperature 
and concentration variations is well understood since this case compares qualitatively 
well with the pure thermal convection. However, when the thermal and solutal effects 
are opposing each other for conditions, such as the buoyancy forces are equal, or of the 
same order of magnitude, some interesting flow patterns may occur. Some of these flow 
patterns are discussed in this chapter and some new features are presented. 

Starting with the work of Trevisan and Bejan (1985), heat and mass transfer by natural 
convection was studied numerically within a vertical enclosure subject to constant temper-
ature and concentration on the vertical wall. Using scale analysis, the order-of-magnitude 
of the overall heat and mass transfer rates and their domain of validity was predicted. 
A good agreement was obtained between the numerical and scale analysis predictions. 
Furthermore, the authors have demonstrated that when the buoyancy forces are opposing 
each other, and are of the same magnitude (Â  = — 1, where Â  is the buoyancy ratio), con-
vective flow exists when Le ^ 1 (where Le is the Lewis number). Considering constant 
fluxes of heat and solute on the vertical walls, Trevisan and Bejan (1986) have investigated 
numerically and analytically the convective flows in enclosures of finite aspect ratio. In 
the boundary-layer regime, by assuming zero thermal and solutal horizontal gradients 
within the core region of the enclosure (outside the boundary-layer), the authors have 
developed an analytical solution which is valid only for Le = 1. On the other hand, for 
Le > 1 an analytical similarity solution was obtained, the latter was found to agree well 
with the numerical results. In large aspect ratio enclosures subject to constant fluxes of 
heat and solute, Alavyoon (1993) (in vertical enclosure) and Mamou et al. (1995c) (in 
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tilted enclosure) have developed analytical solutions which are valid for a wide range of 
the Lewis number. In the boundary-layer regime, it was demonstrated that, for Le ^ 1, 
the horizontal thermal and solutal gradients within the core of the enclosure are not null. 
Alavyoon (1993) and Alavyoon and Masuda (1994) have mentioned, when Le = 1, that 
the problem does not belong to the class of problems that are described as double-diffusive 
flows and the diffusive regime is an exact solution of the problem when N = -1 (thermal 
and solutal buoyancy forces are equal and opposing each other) even for Le ^ 1. As 
demonstrated by Mamou etal (1995b), when the Lewis number is not equal to unity, there 
is no reason to expect that the rest state remains unconditionally stable. An analytical 
solution was obtained and the threshold for the onset of convection was predicted. Using 
constant temperature and concentration, Nithiarasu et al. (1996) studied a similar problem 
on the basis of the generalized non-Darcy model. Their numerical results lead to the 
conclusion that, when N — - 1 , the convective flow disappears since the thermal and 
solutal buoyancy forces cancel each other. Amahmid et al (1999b) have extended the 
case studied by Mamou et al. (1995b), by including the Brinkman effect. The threshold 
for subcritical flows was obtained as function of the Lewis and Darcy numbers. For the 
same problem, Mamou et al (1998a) have determined the thresholds for stationary and 
oscillatory convection on the basis of linear stability analysis. 

For opposing thermal and solutal buoyancy forces, nearly equal or of the same magnitude 
{N ^ - 1 ) , Mamou et al (1995a) have predicted the existence of multiple solutions of 
different flow patterns within a square enclosure subject to constant fluxes of heat and 
solute. It was demonstrated that the transition from thermally to solutably dominated 
flows is characterized by the existence of multicellular flows. Using the same boundary 
conditions in the case of a slender vertical enclosure, Amahmid et al (2000) have studied 
the situation where the buoyancy forces are nearly equal, i.e., N = -1±C, where C ^ 1 
is a very small positive number. As expected, multiple unicellular convective flows were 
predicted. Furthermore, since the system is unconditionally unstable for C ^ 0, it was 
demonstrated that the addition of the quantity C to the buoyancy ratio is regarded as an 
imperfection brought to the bifurcation phenomena observed by Mamou et al (1998b). 
The results are expected to be close to the experimented data since, in the current view, 
it is difficult to obtain experimentally a buoyancy ratio of iV = —1, due to fluid property 
variations with temperature and concentration and to heat and mass transfer interaction. 

The case of a vertical or inclined enclosure subject to opposing and equal buoyancy forces 
(A^ = - 1 ) has been extensively studied during the last decade. For this situation, on the 
basis of both linear and nonlinear stability analysis, Charrier-Mojtabi et al (1998), Mamou 
(1998), Mamou et al (1998b, 1998c), Karimi-Fard et al (1999), Marcoux et al (1999), 
and Mojtabi and Charrier-Mojtabi (2000) have demonstrated that there exists a threshold 
for the onset of oscillatory and stationary convection. Different convective regimes, such 
as subcritical, over stable, and stationary convective modes, were delineated in terms of 
the governing parameters (Lewis number, enclosure aspect ratio, normalized porosity 
of the porous medium, inclination angle, and thermal and solutal boundary conditions). 
Subcritical convection was found to occur in a wide range of the Lewis number. However, 
the overstable regime was found to occur in a narrow range of Le (close to 1, as in the 
case of many gases) depending on the normalized porosity. Within an infinite layer, the 
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wavelength at the onset of stationary convection was found to be independent of the Lewis 
number and this is demonstrated in the present study, but it is not the case at the onset of 
overstability. It was also demonstrated, when the Lewis number is close to unity, that the 
system remains conditionally stable, proving that the normalized porosity is lower than 
unity. 

The present chapter is devoted to a two-dimensional study of double-diffusive convective 
flows within tilted porous enclosures subject to opposing thermal and solutal gradients. 
The situation where the thermal and solutal buoyancy forces are equal and opposing each 
other {N = — 1) is considered. The case of an arbitrary buoyancy ratio is introduced for 
a horizontal enclosure, subject to vertical gradients of heat and solute. Similar and mixed 
thermal and solutal boundary conditions are considered. A reliable numerical technique 
is developed for determining the critical parameters for the onset of convection and, for 
comparison, a finite element solution of the full governing equations is obtained and the 
effects of the governing parameters on the convective flow behavior are studied. 

5.2 PHYSICAL MODEL AND MATHEMATICAL FORMULATION 

Assuming two-dimensional, laminar, and incompressible flow, double-diffusive natural 
convection is studied in an inclined, rectangular porous enclosure. Figure 5.1 shows 
the enclosure, which is of length L' and width W\ tilted at an angle $ with respect 
to the horizontal. The two end walls (parallel to the x-axis) are assumed impermeable 
and adiabatic, while Dirichlet or Neumann boundary conditions are applied on the two 
other side walls (parallel to the y-axis) for both the temperature and concentration. The 
enclosure is filled with an isotropic porous medium saturated with a binary fluid. The 
convective flow through the porous medium is governed by the Darcy law, upon assuming 
low Reynolds number flows, and the interaction between the thermal and solutal effects, 
known as Dufour and Soret effects, are neglected. 

Applying the Boussinesq approximations, and using the stream function formulation, the 
dimensionless governing equations describing the conservation of momentum, energy, 
and constituent are as follows: 

e ^^, + V^^ = -RrS'iT-hNS), (5.1) 
ot 

dT 
— - J ( ^ , T ) = V 2 T , (5.2) 
f)Q 1 

where ^ , T, and S are the dimensionless stream function, temperature, and concentration, 
respectively. The operators 3' and J are defined as follows: 

J(f)=sm#- + cos#-, Jif,E) = g-J^-g-^i. (5.4) 
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Figure 5.1 (a) Physical model and coordinate systems; (b) computational 
domain 

The above governing equations were obtained by using the following scales: 

* = 
aT 

T = 
AT* ' 

S = 
AS* 

(5.5) 
where t' is the time, ar is the thermal diffusivity of the saturated porous medium, and a is 
the saturated porous medium to fluid heat capacity ratio. Other definitions are as follows: 

n = «T27O,O) + (1 - «T) ^ ^ ^ 4 ^ , AT* = ar^— + (1 - OT) {T^ - T^), ' (0 ,0) • V- " . / 2 

I IJi S'M-\-S'C , , , _ _ ^ j'H 
AS^^as'- + {l-as){S'jj-S'c). 

as 
(5.6) 

where the subscript (0,0) refers to the origin of the coordinate system (center of the 
enclosure), and H and C refer to the hot and the cold boundaries, respectively. The 
parameter as is the mass-averaged diffusivity through the fluid saturated porous medium, 
K, is the effective thermal conductivity of the saturated porous medium, and the quantities 
q' and / are the constant fluxes of heat and solute, respectively, applied on the active 
walls. 
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The dimensionless boundary conditions are stated as follows: 

dy ' 
dS 
dy 

= 0 

= 0 

^ = 0 1 ^ = 0 

dT ^.^ , ^ a r + 1 _ 
""^^^ ^""^^ ^^Y~ ) on x = ± ^ , dy""") on y = ±-

dS Q5-f 1 
as-±{l-as)S=^ 

(5.7) 
The parameters ax and as are set to zero for Dirichlet boundary conditions and to 1 
for Neumann, and they can have different values, i.e., mixed boundary conditions with 
( a T , a 5 ) - ( 1 , 0 ) or (0,1). 

For the present problem, six dimensionless parameters appear in the governing equa-
tions (5.1) - (5.3) and (5.7). They are the thermal Darcy-Rayleigh number, RT, the 
solutal to thermal buoyancy ratio, A ,̂ the Lewis number, Le, the enclosure aspect ratio. A, 
the normalized porosity, e, and the inclination angle of the enclosure, ^ . They are defined 
as follows: 

RT — 
QPTKAT^'W' 

a^f 
N = 

/ 3TAT* 
Le 

as' 

^ = 
Da 

eaPr' 
EL 
W 

(5.8) 

where K is the permeability of the porous medium, and /?T and Ps are the thermal and 
concentration expansion coefficients, respectively. The parameter ^ is regarded as an 
acceleration coefficient of the porous medium. Da =̂  K/W^ is the Darcy number, and 
Pr = u/ar is the Prandd number. For Darcy porous media Da <^ 1, and for fluids 
having moderate or large values of P r , the parameter ^ is very small, so that the temporal 
term in the momentum equation can be neglected. However, this term is retained in the 
present work for generality, so that the foregoing stability analysis can be extended easily 
to sparsely porous media, where inertial and viscous forces may have significant effects 
on the flow behavior, i.e., when using the Forchheimer and Brinkman models. 

The normalized porosity, e, expressed in terms of the porosity of the porous medium, e, and 
the solid to fluid heat capacity ratio, r = {pC)^ / (pC)yr,isgivenby£ = e/[e-\- {1 — e)r]. 
Since 0 < e < 1, it is clear that 0 < e < 1. As it will be demonstrated later, e has a strong 
effect on the oscillatory behavior of the convective flows and on the stability of the steady 
fully-developed flows. 

The local heat and mass transfer rates, which are of interest in engineering applications, 
are expressed in terms of the local Nusselt and Sherwood numbers as follows: 

Nu - i - + {1- ar) ^ 
J-{l/2,y) - J-{-l/2,y) OX 

Sh = + (1 - as) ^ 
^{l/2,y) - ^{-l/2,y) OX 

x = ± l / 2 

x = ± l / 2 

(5.9) 
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and the averaged values of Nu and Sh along the active walls can be computed as follows: 

I rA/2 ^ nA/2 

Num = -7 Nudy and Shm = T / '^'/id^. (5.10) 
^ J-A/2 ^ J-A/2 

5.3 FINITE-AMPLITUDE CONVECTION 

The solution of the present problem is obtained by solving numerically and analytically 
the full governing equations. The numerical solution is obtained on the basis of the finite 
element method, while the analytical solution is derived on the basis of the parallel flow 
approximation within slender enclosures subject to Neumann boundary conditions. 

5.3.1 Numerical solution 

For finite-amplitude convection, the full governing equations (5.1) - (5.3), with the as-
sociated boundary conditions, equation (5.7), are solved using a finite element method. 
The calculus domain is discretized into nine-noded Lagrange cubic elements, as shown 
in Figure 5.1. Within each element the stream function, temperature, and concentration 
fields are quadratic. The number of elements in the x- and y-directions are given, respec-
tively, by Nex and Ney, and the number of nodes in the x- and ^/-directions are 2Nex + 1 
and 2Ney + 1, respectively. The Galerkin weak formulation is first obtained and then 
the Bubnov-Galerkin procedure, using the implicit scheme, is performed to discretize 
the governing equations. Global matrix systems of linear equations are derived and the 
solution is obtained by the iterative procedure described in Mamou et al. (1998b, 1998c). 
Further details regarding the finite element method and the validation of the numerical 
simulation can be found in Mamou et al (1995c, 1998b, 1998c) and Mamou (1998). 

5.3.2 Analytical solution 

For a slender enclosure (large aspect ratio), Alavyoon (1993) and Mamou et al (1995c) 
have demonstrated that when the enclosure is subject to uniform fluxes of heat and solute 
from the sides, an analytical solution can be derived on the basis of the parallel flow 
approximation. Using the parallel flow approximation, the governing equations (5.1) -
(5.3) can be reduced to a set of ordinary differential equations that can be easily solved 
to yield a closed-form solution for the stream function, temperature and concentration 
distributions. In this section, the analytical solution is developed only for the cases of 
vertical and horizontal enclosures. 
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Vertical cavity: ^ = 90° and N = -1 

For this situation, Mamou et al. (1998b) found, for monocellular flows, that the basic 
fully-developed, steady-state solution is given by 

Tt (x, y) — Cry CT sin TTX -h x, 
TT 

Sh {x, y) — Csy Le Cs sin -KX + x, 

(5.11) 

where t/̂ o is the value of stream function at the center of the enclosure, and CT and 
Cs are unknown constant temperature and concentration gradients in the ^/-direction, 
respectively. Performing the energy and solute balances at each transversal section of the 
enclosure yields 

CT = 
4^0 

Cs^ 
4:Leipo 

, and RT{CT-LeCs)=7r\ (5.12) 
7r(i^2+2)' ^ 7r (Le2^2+2) 

Upon combining the above expressions, it is readily found that 

LeVo + 2 (Le^ + l) ^o " 4 (^^^ " ^) ^'^^o + 4 = 0. (5.13) 

From the above results, the critical Rayleigh number, RJ^Q, for the onset of subcritical 
flows (this threshold is lower than that of stationary convection, see Mamou et al, 1998b) 
can be obtained as a function of the Lewis number, Le. Taking the derivative of ipo with 
respect to RT in equation (5.13), and setting the derivative equal to infinity, it is readily 
found that 

DSub 
UTC L e 2 - 1 

where V̂ oc is the critical stream function value given by 

1 
^oc 

"Le\/3 
\J{Le^ -f 1)^ + 12Le2 - (Le^ + l) 

1/2 

(5.14) 

(5.15) 

For RT > Rj^C' ^^^ convective flow is clockwise when Le < 1 and counterclockwise 
whenLe > 1. 

For large or small Lewis numbers, the expression for R^Q reduces to 

DSUb I 

1-Le' 
(5.16) 
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The Nusselt and Sherwood numbers are given by 

Nu = 
(7r2-8)Vg/7r2 + 2 ' 

Sh 
Le'^ + 2 

(7r2-8)Le2V'^/7r2 + 2 ' 
(5.17) 

Horizontal enclosure: $ = 0° 

For this situation, the basic solution is obtained by Mamou and Vasseur (1999) as follows: 

T6(x , y ) -CT2 / - ^ ^ ^ ^ ( 3 x - 4 x ^ ) - f x , 

56 (x, y) = Csy -

3 
CsLei^o (3x - 4x^) + X, 

(5.18) 

where the constants CT,CS, and I/JQ are given by 

46^0 ^ 46Le ipo 
CT 

3(26 + V̂ o') 2V Cs^ 3 (26 + Le^^p'^ 
^̂ y, and ^0 - ^ (i??̂ CT 4 - § ^ 5 ^ . 

(5.19) 

Upon combining the definitions of ^o. CT^ and Cs, it is readily found that 

xPo (l^eVo - 26diLeVo " ^^^2) = 0, 

where di and (i2 are defined as follows: 

di = R%Le^ -\-R%- [Le^ + l) , ^2 = ^Le^ {RT + ^ S - l) , 

with b = 15/16, fi?. = RT/R'''^, R% = Rs/R'''^, and R'""^ = 12. 

Equation (5.20) may be solved to obtain a closed-form solution for ipo as follows: 

Vb ( I \ ^̂ ^ 
^0 = 0 and ^0 - ± y - ( ^i ± \jd\ -I- ^2 J 

(5.20) 

(5.21) 

(5.22) 

The solution and its stability will be discussed in the following sections. 

To assess the validity of the parallel flow approximation, typical results, obtained by 
solving the full governing equations (5.1) - (5.3), are compared to the analytical solution 
for the case of a horizontal enclosure. The numerical results are obtained with a grid size of 
20 X 120 elements and the results are illustrated in Figure 5.2 for RT - 100, Rs - -100, 
Le —\{)^ A — 10, and ar — as — 1. Figure 5.2(a) demonstrates clearly the parallelism 
of the streamlines, with respect to the horizontal walls (except in the end regions), and 
the horizontal linear variations of the temperature and concentration. Figures 5.2(b) to 
(e) illustrate a comparison between the numerical and analytical solutions in terms of 
mid-height horizontal and mid-width vertical profiles of ^ , T, and 5. It is observed that 
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Figure 5.2 Comparison between the numerical results and the analytical 
parallel flow solution for RT = 100, Rs = -100, Le = 10, A = 10, 
ar = as = 1, and $ = 0°; (a) streamlines, isotherms, and isoconcentrations; 
(b) vertical stream function profiles at the mid-width, and (c) at the mid-height 
of the enclosure; and (d) the vertical temperature and concentration profiles at 
the mid-width, and (e) at the mid-height of the enclosure. Numerical solution: 
*o = 3.685, ^max = 3.733, NU^^Q = 3.734, Num = 3.597, Sha,=o = 6.029, 
andSh-m — 6.726. Analytical solution: ^o = 3.684, Nux=o = ^ ^ m = 3.734, 
and Shx=o = Shm — 5.959. The numerical solution is presented by symbols 
(for clear display some symbols are skipped) and the analytical solutions by solid 
lines 

there is a good agreement between the two approaches in the central part of the enclosure 
( - 4 ^ 2 / ^ 4). 

The present results are obtained immediately below the threshold of stationary convection 
(i?^^ = 112) and the existence of the convective flow is due to the solute, which 
represents the stabilizing agent with lower diffusion (Le = 10). For this situation, the 
nonlinear advective terms in the solute conservation equation distort considerably the linear 
concentration field, and the solute gradient within the enclosure is reduced, as shown in 
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Figures 5.2(d) and (e). Therefore, the thermal gradient becomes dominant and gives rise 
to convective flows. As discussed by Alavyoon (1993), the imposition of a constant heat 
flux, without altering the imposed mass flux, increases the fluid amplitude velocity, and 
the solute transfer is thus enhanced. As a result, a large amount of solute is removed from 
the hot wall and transported by convection to the cold wall. This mechanism leads to a 
solute deficit near the lower boundary and a surplus near the upper one. To compensate 
for the solute deficit and adjust the surplus, a downward solute transfer appears in the bulk 
of the enclosure and gives rise to an adverse solute gradient (see the vertical concentration 
profiles in Figure 5.2d), which contributes to the destabilization of the system. As a result, 
convective flows are made possible beneath the threshold of stationary convection. 

5.4 LINEAR STABILITY ANALYSIS 

In this section, a numerical stability analysis of double-diffusion convection in a rectangu-
lar enclosure is performed to delineate the boundaries for the onset of different convective 
modes. First, the linear problem is derived; second, the weak Galerkin formulation is 
obtained and then the finite element method is applied to transform the linear problem 
from being continuous to a discretized formulation. 

As far as the present study is concerned with stability analysis of the pure diffusive state 
and the steady, fully-developed convective flows, it is convenient to consider the basic 
solution (pure diffusive state or steady convective state) as a part of the total solution such 
that 

T (x, y, t) = Tb (x, y)+9 (x, y,t), I (5.23) 

S (x, y, t) = Sb (x, y) + 0 (x, y,t), J 

where ^5 , T^, and St define the basic solution, which could represent the pure diffusive 
state {^b = 0,Tb = x, Sb = x) or the steady-state convective solution. The variables 
ip, 6, and 0 describe the perturbation profiles imposed on the basic solution. Substituting 
equation (5.23) into the governing equations (5.1) - (5.3) and neglecting the second-order 
terms (at the onset of convection, the perturbation amplitudes are close to zero), one 
obtains the following linear problem: 

— - J ( * 6 , 0 ) - J ( V ' , n ) = V2^, (5.25) 

e^-J{^,,cl>)-J{^,St) = j^V^4>, (5.26) 



126 STABILITY ANALYSIS OF DOUBLE-DIFFUSIVE CONVECTION 

with the assumption that RT {N -h 1) sin $ = 0. The boundary conditions on the pertur-
bation, according to equation (5.7), are as follows: 

^p = 0) 
de 

> on X = ± - , 

V' = 0 

dy 

dy 

ar-^ + {\-aT)d = 0 

For confined enclosures, the perturbation profiles are assumed to be 

on y = ±'-

(5.27) 

iPix,y,t)=eP'F{x,y), 6{x,y,t) = e^'G{x,y), <f>{x,y,t) = e^'H {x,y), 
(5.28) 

where p is the growth rate of the perturbation and the functions F (x, y), G {x, y), and 
H {x, y) are two-dimensional space functions describing the perturbation profiles at the 
onset of convection. 

On substituting the perturbation profiles into the linear governing equations we obtain 

^pV^F + V^F = -RT 7{G + NH) , 

pG-J (*fc, G) - J {F, n) = V^G, 

epH - J (*6, H) - J {F, St) = ^ V H , 
Le 

(5.29) 

and the boundary conditions are similar to those in equation (5.27). 

Using the Galerkin method with the Green theorem, the weak formulation of the above 
linear problem is given by 

(1 + ^p) [ VF-Vudn-{l-\-^p) [ ^udr= [ RT3'iG~\-NH)udn, 
JQ Jr ^^ JQ 

p [ Gvdn- f [J{F,Tt) +J{ilJb,G)]vdn = - f VGVvdn-\- ( ^vdT, 
JQ JQ JQ Jr ^^ 

ep [ Hwdn- [ [J{F,St) + J{^pb,H)]wdn 

(5.30) 
where n is the unit, outward-oriented, normal vector, Q, is the integral domain, dF = dfl is 
the frontier of this domain, and u,v, and w are the shape functions satisfying the boundary 
conditions, equation (5.27). The boundary conditions considered in the present study are 
homogeneous. Thus, all the boundary integrals vanish. 
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Using the finite element method, and following the Bubnov-Galerkin technique, the 
discretized equations, after assembling, are obtained as follows: 

ep[M^] {F} + [K^] {F} = RT [B^] {G + NH} , (5.31) 

p [Mg] {G} - [Be] {F] = - [Ke] {G} , (5.32) 

pe [M^] {H} - [B^] {F} - - ; ^ [KA {H] , (5.33) 

where {F}, {G}, and { i f} are the perturbation unknown vectors of dimension m, and 
[B^], [Be]. [B^], [K^], [Ke]. [K^], [M^], [Me], and [M^] siYcmxm square matrices, 
where m = {2Nex + 1) {2Ney -h 1) is the total number ofnodes in the discretized domain. 
The elementary matrices are given by 

[B^Y = f 3'{:Kj)3<idn, [BeY = f J{:Kj,Tb):Kidn, 

[B^Y = [ J {^j,Sb) :Kidfi, [K^Y = / ^^j' v^Ki dn, 
JQ JQ 

[KeY = [ [VM,- • VJ{, - J (*6, :KJ) J{i] dn, (5.34) 
JQ 

[K^Y = I [VW -̂ • VKi -LeJ (^t, J(j) J{i] dfi, 
JQ 

[MeY = [M^Y = [ ^j^i dn, [M^Y = [ VJ{,- • VO<i dfi, 
JQ JQ 

where IK {x, y) is the Lagrange shape function. 

For an infinite layer, using periodicity in the ̂ /-direction, the perturbation profiles are given 
by 

V; (x, y, t) = e^^+^^^F {x), 6 {x, y, t) = e^'^'^^vG {x), 0 (x, y, t) = e^^+^^ îf (x), 
(5.35) 

where k is the wavenumber and F , G, and H are now one-dimensional functions, which 
depend only on x. The resulting discretized linear equations are similar to those obtained 
for a confined enclosure, namely equations (5.31) - (5.33), and their definitions are given 
as follows: 

[B^r = f 
JA: 

——̂  sin $ -f- ik'Ki cos $ ] J<i dx, 
dx -̂  

-ik—^'Kj Jiidx, 
dSbd'Kj dSb 
dy dx dx '^ [B,r - 1 

JAX 
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J AXe 

(5.36) 

where Oii (x) are one-dimensional Lagrange interpolation functions. The dimension of 
the global matrices is reduced to rrix x rrixy where rrix = 2Nex + 1-

5.4,1 Diffusive state 

The stability of the motionless state (^o = 0, T5 = S^ = x) is now considered. 

Onset of stationary convection 

The following analysis is conducted for general thermal and solutal boundary conditions. 
For stationary convection, p ~ 0, the discretized equations (5.31) - (5.33), could be 
combined to yield the following eigenvalue problem: 

[E - XI] {F} - 0, (5.37a) 

where 

[E] = [K^]-' [B^] [[Ke]-' [Be] -f NLe [K^]'' [B^]\ and A = - ^ . (5.37b) 

Equation (5.37) has a nontrivial solution {{F} i=- 0) if and only if the determinant of 
[[E] - A [/]] is equal to zero, where [/] is the identity matrix. This leads us to compute all 
the eigenvalues of the matrix \E\ The number of the eigenvalues Â  is equal to the node 
number in the numerical domain (i — 1 , . . . , m). The corresponding eigenfunctions are 
given by {-F} •. The eigenvalues are computed by using subroutines of the IMSL library. 
These eigenvalues are rearranged in the ascending order Ai ^ A2 ^ • • • ^ Am-i ^ A n̂, 
such that Ai represents the minimum eigenvalue and \m the maximum one. 

In general, the maximum eigenvalue, A^, is positive and represents the lowest thermal 
Rayleigh number above which the stationary convection is possible, while Ai represents 
the minimum eigenvalue, which is usually zero or negative. The latter corresponds to 
the highest critical thermal Rayleigh number (when RT is negative) below which the 
convective flow is possible. This situation corresponds to negative AT*, i.e., T^ < TQ. 



M.MAMOU 129 

The stream function field at the onset of convection is given by 

± { F l , for AT* < 0, 
^ '^ (5.38) 

± { F } „ for A T ' > 0 . 

Using equations (5.32) - (5.33), the temperature and concentration fields are obtained 
from 

{G}i = [Ker'[Be]{F},, {H}, = Le[K^]-'[B^]{F}^. (5.39) 

For similar thermal and solutal boundary conditions {ar = as), it can be easily demon-
strated that [Ke] = [K^] = [K], [Be] = [B^] = [B]. and {G} • - (1/Le) {H},. The 
eigenvalue problem is then reduced to 

[E - XI] {F} = 0, (5.40a) 

where 

[E] = [K^]-'[B^][Kr'[B] and A = - ^ - ^ ^ ^ ^ ^ . (5.40b) 

The threshold for stationary convection is given by 

osup 

i?TC = Y T i V l i ^ ' RTS = ~RS + R'"'', (5.41) 

where Rs is the solutal Rayleigh number, Rs — NLeRr, and R^^^ is a constant depend-
ing on the enclosure aspect ratio. A, the inclination angle, $, and the boundary condition 
type. For positive thermal Rayleigh number RT (i.e., AT* > 0), it is given by 

iJ-^JY ' " ^ ^ ' ^ " ' ' (5.42) 
[^ for NLe>-l. 

For an infinite layer, the above analysis remains valid, and for this situation a periodic 
boundary condition is used in the y-direction. The threshold for stationary convection is 
obtained by varying the wavelength (i.e., the enclosure aspect ratio. A). The minimum 
value of RT for any wavelength represents then the critical Rayleigh number for the onset 
of stationary convection and the corresponding aspect ratio is the critical wavelength, 
Ac. The threshold for stationary convection is called hereafter the supercritical Rayleigh 
number, i?^(E. 

Discussion 

For a given set of the governing parameters with N — - 1 , the numerical solution 
leads to m eigenvalues (Ai, i — 1 , . . . , m) and each eigenvalue represents a threshold 
of stationary convection for a given possible convective mode. The maximum value 
(max(Ai)), represents the supercritical Rayleigh number for the onset of convection. 



130 STABILITY ANALYSIS OF DOUBLE-DIFFUSIVE CONVECTION 

Figure 5.3 displays different convective modes with their corresponding eigenvalues Xi 
obtained for a vertical square enclosure. The flow patterns of the first six eigenvalues 
are presented for the Dirichlet and Neumann boundary conditions and it is seen that the 
incipient flow structures are more complex for higher convective modes. As discussed 
by Mamou et al. (1998c), for Dirichlet boundary conditions {ar = as — 0), the flow 
patterns, ± {F]^, at the onset of stationary convection, as shown in Figure 5.3(a), consists 
of three counter-rotating cells. The primary cell can be clockwise and the secondary ones 
counterclockwise or vice versa. According to the linear stability theory results, there 
exist two eigenvalues with the same absolute value but different signs (Ai = — A^) which 
correspond to two mirror image solutions. For similar boundary conditions {ar — CLS)^ the 
threshold in terms of the thermal Rayleigh number is given by i?^^ — R^^^/ (1 — Le). 
For positive Rayleigh number, the sign of R^^^ depends upon whether Le is greater or 
smaller than unity. As it can be observed from Figure 5.3(a), the flow structures consist of 
a primary tilted roll cell in the center of the cavity, squeezed by two secondary roll cells, 
one in the upper-left corner and the other one in the bottom-right corner for Le > 1 (or one 
in the upper-right comer and the other one in the bottom-left corner for Le < 1). For the 
Neumann boundary conditions (ar =^ as — 1), Mamou et al. (1998b) reported that four 
solutions, corresponding to the existence of four eigenvalues, are possible with the same 
absolute value but different signs. It was found that Â  = K^i, z = 1,3,5, . . . ,m — 1, 
for which their corresponding flow structures {F]^ and {F]^j^^ are different from each 

Figure 5.3 Incipient flow patterns (for the first six eigenvalues) at the onset of 
stationary convection for N — —1, A — 1, ^ = 90°, and (a) {ar^as) — (0,0) 
and(b) (ar^as) = (1,1) 
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Other, and Â  = -Am-i+i, for which {F}^ and {F}^_^_,_i are the mirror images of 
each other. As depicted in Figure 5.3(b), the different flow structures corresponding to Ai 
and A2 have the same eigenvalues. Mamou et al. (1998b) demonstrated that these flow 
structures are unstable. When starting with the pure diffusive state as initial conditions, 
the flow structure, in the early stage of convection predicted by the numerical solution of 
the full governing equations, agrees well with the linear stability results. However, as the 
flow continues to develop in time, the cells merge together to form a single cell flow. For 
this problem, subcritical flows are found to exist and a hysteresis loop is obtained when 
increasing and then decreasing the thermal Rayleigh number. 

Table 5.1 illustrates the thresholds of stationary convection for different modes. The 
critical Rayleigh number is given by R^^g = fl^^P/ (1 - Le), where i?^"P = ±184.06 
for ar = as = 0, and R^^^ = ±209.84 for a r = ^s = 1. This expression is in 
perfect agreement with the results predicted by Charrier-Mojtabi et al. (1998) and Mamou 
et ai (1998b, 1998c). According to these authors, the same expression remains valid 
when varying the aspect ratio of the enclosure and the inclination angle. As discussed by 
Mamou et al. (1998c), for $ ^ 90° the mirror image symmetry between the minimum 
and maximum eigenvalues (i.e., Ai ^ Am) is broken. It is also found that the threshold 
for A > 1 is exactly the same as for A < 1 when the thermal Rayleigh number is based 
on the thickness of the layer. 

Some typical values of the threshold for the onset of stationary convection are presented 
in Table 5.2 for different boundary conditions, inclination angle, and grid sizes. Tiit 
results are obtained for AT = —1 and Le — 2. Since the Lewis number is specified, 
the minimum and maximum eigenvalues (as discussed earlier) correspond to the negative 
Rayleigh number below which convection is possible (i.e., AT* < 0) and to the positive 
Rayleigh number above which convection is possible (i.e., AT* > 0), respectively. For 
a vertical enclosure, the positive and negative values are of the same magnitude, i.e., 
heating from the left side or the right side, and the solutions are identical and symmetric. 
For horizontal enclosures, it is observed from Table 5.2 that the positive critical value is 
infinity. Thus, for Le — 2 and in the absence of overstability, the pure diffusive state 
is unconditionally stable. This situation corresponds to AT* > 0 (heating from below). 
However, the negative value (-39.479 for ar — as — 0, or -22.946 for ar — as — 1) 
corresponds to the critical Rayleigh number when heating from the top. For this situation, 
the heat is the stabilizing agent and the solute is the destabilizing one. Similar results are 
obtained for (OT, as) = (0,1). However, for (ar , as) = (1,0), when heating from the 

Table 5.1 Computed eigenvalues R^^^ — 1/Xifor a square enclosure (A — 1) 
with grid size of 20 x 20 elements (node number is m = 1764) 

{aT,as) 

(0,0) 
(1,1) 

^ s u p 

-184.06 
-209.84 

Rl""^ 

-227.9 
-209.84 

4"P 

-489.65 
-509.94 

Rl""^ 

-528.75 
-509.94 

^ s u p 

-605.10 
-631.39 

Rl""^ 

-637.02 
-631.39 
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Table 5.2 Critical Rayleigh number, W^Q (positive and negative values), and 
grid size effects for the onset of stationary convection within a square enclosure 
with Le =^ 2, N — —1, ^ = 0° and 90°, and different thermal and solutal 
boundary conditions 

$ 

90° 

0° 

{aT,as) 

(0,0) 

(1,1) 
(0,1) 
(1,0) 

(0,0) 

(1,1) 
(0,1) 

(1,0) 

4 X 

186.597, 

214.790, 

270.785, 

235.412, 

-39.518, 

-22.975, 

-16.060, 

325.718, 

' 4 

-186.597 

-214.790 

-270.785 

-235.412 

oo 
oo 
oo 

-70.449 

8 > 

184.221, 

210.175, 

259.898, 

235.412, 

-39.481, 

-22.948, 

-16.033, 

308.025, 

Nex X 

: 8 

-184.221 

-210.175 

-259.898 

-235.412 

oo 
oo 
oo 

-69.695 

Ney 

12 X 

184.091, 

209.904, 

259.288, 

230.072, 

-39.479, 

-22.946, 

-16.032, 

307.103, 

12 

-184.091 

-209.904 

-259.288 

-230.072 

oo 
oo 
oo 

-69.650 

16 X 

184.069, 

209.858, 

259.185, 

230.013, 

-39.479, 

-22.946, 

-16.031, 

306.948, 

16 

-184.069 

-209.858 

-259.185 

-230.013 

oo 
oo 
oo 

-69.642 

bottom or from the top, the threshold for stationary convection is finite. For ar = cis = 0, 
the critical value is seen to agree well with the classical value for pure thermal convection, 
namely 47r .̂ 

The effect of the boundary conditions and the Lewis number on the threshold for stationary 
convection (Rf^^g |1 - i^e| = JR'^P) is depicted in Figure 5.4(a) for ^ = 90°, and the 
results are presented only for the positive eigenvalue. It is observed that, for similar 
boundary conditions, the parameter i?^"P is independent of the Lewis number. However, 
i?^"P becomes a function of Le for mixed boundary conditions. For large or small Lewis 
numbers, the constant R^^^ is seen to tend towards that corresponding to similar boundary 
conditions and it becomes independent of Le. For this situation, the flow structures are 
similar to those observed for ar = as, but for relatively small Lewis number (Le ~ 1) 
the flow structure becomes different and more complex, see Figures 5.4(b) and (c). 

Onset of oscillatory convection 

The threshold corresponds to the marginal overstable regime. For this situation, the 
perturbation growth rate parameter (p = pj. -\- ip^) is a pure complex number (i.e., pr = 0 
and Pi ^ 0). The linear discretized equations (5.31) - (5.33) can be rearranged to the 
following linear eigenvalue problem: 

[K^] [B^e] [JB̂ (/>] 
[Be] [Ke] 0 

.[B4>] 0 [K^]^ 

[M^] 0 0 
0 [Me] 0 
0 0 [M^] 

(5.43) 

The matrices are defined by [B^e] = -RT [B^]. [B^^] = -RTN [B^], [Be] = - [Be], 
[B^] = - [B^l [M^] = - ^ M ^ ] , [Me] = - [Me], [M^] = -e[M^], [Ke] - [Ke], 
[K^] = (l/Le)[K^l and [K^] = [K^]. where [B^]. [K^l [Ke], [K^], [M^], [Me], 
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Figure 5.4 (a) Threshold for stationary convection within a square enclosure 
for N = —1 and $ = 90°; effect of the Lewis number and boundary conditions. 
Perturbation profiles (ip, 6, and (j)) at the threshold for stationary convection for 
A/- = - 1 , A = 1, $ = 90°, and (ar^as) = (0,1); (b) Le = 0.9, R^^ -
±U02,97 and (c) Le = 1.1, W^^g = ±3436.80 

and [M^] are defined by equation (5.34) for confined enclosures and by equation (5.36) 
for an infinite layer. It should be noted that the matrices of the above system are real for 
confined enclosures and complex for an infinite layer, but in both cases the eigenvalues 
and eigenfunctions are complex. 

The above eigenvalue system is solved by using the subroutines DGVCRG and DGVCCG 
of the IMSL library for general real and complex matrices, respectively. For a given 
set of the governing parameters, Rs, Le, A, $, e, ^, a r , and as, the eigenvalues, p, 
and eigenfunctions, {F} , {G}, and [H], are computed for different thermal Rayleigh 
numbers, RT, (for finite aspect ratio enclosure. A) and different wavelengths (for an infinite 
layer, Ac). For a given aspect ratio or wavelength, the onset of the oscillatory convection 
is obtained by only one eigenvalue when its real part changes from negative to positive 
value (when pr < 0 the perturbation is decaying, and when p^ > 0 the perturbation is 
growing). If the imaginary part of the eigenvalue is different from zero, then the instability 
is oscillatory. For an infinite layer, the minimum (critical) Rayleigh number is obtained for 
different wavelengths. So, the minimum Rayleigh number for all wavelengths represents 
then the threshold for oscillatory convection and the corresponding aspect ratio represents 
the critical wavelength. At the onset of overstabilities, two complex conjugate eigenvalues 
having zero real parts were found to exist. The flow patterns of these two solutions are 
mirror images of each other and the resulting convective flows could oscillate between the 



134 STABILITY ANALYSIS OF DOUBLE-DIFFUSIVE CONVECTION 

two solutions. In large aspect ratio enclosures, the two solutions may be superposed to 
lead to traveling wave flows along the porous layer. 

Discussion 

To assess the efficiency and the validity of the present numerical technique, two typical 
cases are considered. The first one corresponds to the horizontal enclosure subject to 
Dirichlet boundary conditions, for which an analytical exact solution exists, see Nield 
(1968). The second corresponds to a vertical square enclosure for the same boundary 
conditions. For the second one, recent numerical results have been reported by Mamou 
et al (1998c) and Karimi-Fard et al. (1999). Results obtained for different grid sizes with 
N = -1,^ = 0,6 = 0.2, A = 1, and ar = as ^^ 0 are depicted in Table 5.3. The results 
are presented in terms of the threshold for the onset of oscillatory convection, Rjfg^, and 
the oscillation frequency, fr. It is observed that when the number of grid points increases 
the results converge to those reported in the past, see Table 5.3. As can be seen, even 
with a grid size of 2 x 2, the precision is within 2%. It is worth noting that the threshold 
for overstability is obtained by only one eigenvalue when its real part, Pr, changes from a 
negative to a positive value. Numerically, it is assumed that Pr = 0 when the numerical 
value of \pr\ is less than 10"^. The numerical technique presented in this section can 
also be used to find the critical Rayleigh number for the onset of stationary convection 
(jPr~Pi — 0) and for this situation the oscillatory frequency is null. Another efficient way 
to determine the critical point without excessive computations is to interpolate the critical 
value between negative and positive values of p^- The variation of p^ with RT is nearly 
linear and thus a first-order interpolation is largely sufficient without loss of accuracy. 

It is well known in the literature that the overstable regime occurs below the threshold of 
stationary convection. Above the threshold, i?T > i?^^, overstable solutions are possible 
but they are not dominant since, in this regime, the strongest perturbation is described by 
the one having highest growth rate pr. Usually (right above i?^(5), the perturbation that 
is growing in a monotonic manner (no oscillation) has the highest growth rate. Thus, it 
becomes dominant and overcomes the overstable perturbations. Karimi-Fard et al (1999) 

Table 5.3 Critical Rayleigh number, RJ^Q , and oscillation frequency, fr = 
\pi\/27r, for the onset of over stabilities in a vertical and horizontal square 
enclosure with N = —l,Le = 2,6 = 0.2, ^ = 0, and ar — CLS — 0-
The superscripts N and K refer to Nield (1968) and Karimi-Fard et al. (1999), 
respectively 

$ 

0° 

90° 

Grid size 

pover 

fr 
pover 

fr 

2 x 2 

34.55925 
1.75666 

173.48301 
2.22405 

4 x 4 

34.54403 
1.75621 

170.76035 
2.24016 

8 x 8 

34.54363 
1.75620 

170.68308 
2.24053 

10 X 10 

34.54362 
1.75620 

170.68222 
2.24121 

Reported values 

3.5 7r2 = 34.5436^ 
1.75620^ 

170.7^ 
2.24^ 
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have considered the case of a vertical square enclosure with the following parameters: 
N = -1, A = h £ = 0.5, ^ = 0, $ = 90°, and different Lewis numbers Le = 0.5, 
1, \ /2, and 2. Mamou et al. (1998c) demonstrated that, for Le > 1, the transition 
from oscillatory to monotonic convection occurs exactly at Le — l/^/s. In other words, 
for Le ^ \ /2, the instability is stationary and the oscillation frequency vanishes. The 
supercritical Rayleigh number is given by i?^^ — ±184.06/ (1 — Le). Vox Le < \ /2 , the 
overstable regime may exist; for Le = 1, the critical parameters are given by R^^Q = oo, 
R^^^ z=z 774.2, and pi = ±69.1, which are slightly different from those reported by 
Karimi-Fard et al (1999); for Le = 0.5, it is found that the overstable regime does not 
exist (since R^g" > Rf^^g). It was found by Karimi-Fard et al (1999) that the threshold 
for overstabilities is 1591 and the pulsation pi — 259.3. In the present analysis, at 
Rayleigh number value of 1591, there are eight types of growing perturbations. Seven 
are monotonic, for which the maximum growth rate is given by p == 67.0 ± Oi, and the 
eighth one is oscillatory with p 2:̂  0 ± 259.26i. It appears from these results that the most 
dominant perturbation is the stationary one. Therefore, for Le — 0.5, overstabilities are 
dominated by the stationary one. The present study concerns a two-dimensional stability 
analysis, such that the perturbation profiles are supposed to be independent of the depth 
of the enclosure (i.e., they are localized in the x-y plane). This supposition is supported 
by the three-dimensional stability analysis conducted by Karimi-Fard et al (1999), who 
have demonstrated that the most dangerous perturbations (that give lower critical Rayleigh 
number) occur in the x-y plane. Maybe it is not the case for finite-amplitude convection 
within cubic enclosures, as reported by Sezai and Mohamad (1999). The authors found 
that three-dimensional flows are possible near N = —1. Their results are obtained by 
solving the steady governing equations and for Dirichlet boundary conditions. For this 
situation, oscillatory flows may be possible. 

Within an infinite vertical layer, the effects of the Lewis number on the thresholds of 
oscillatory and stationary convection are illustrated in Figure 5.5 for e — 0.2, ^ = 0, and 
for different boundary conditions {ar.as)- It should be noted that the critical wavelength, 
Ac — 2.504, at the onset of stationary convection is independent of Le. For oscillatory 
convection, the wavelength was found to depend on Le, e, ^, and (ar , ^5)- As depicted in 
Figure 5.5, the critical parameters do not depend on the boundary conditions (for example, 
the results are the same for (aT, as) = (0,0) or (1,1) and for (ar , 05) == (1,0) or (0,1)). 
The most interesting observation in the results presented in Figure 5.5 is the effect of Le 
on the transition from oscillatory to stationary convection. For Le > 1, the transition 
occurs at nearly zero oscillation frequency. In Figure 5.5(c), the frequency is observed to 
decrease towards zero when approaching the transition boundary depicted by symbols in 
the figure. However, the frequency is maximum at the transition boundary for Le < 1. It 
is also noted that there is a discontinuity of the wavelength at the threshold of transition. 
The flow structure at the onset of overstability is non-symmetric and there exists two 
conjugate solutions, which may be combined to lead to traveling wave flows along the 
porous layer. 

For inclined enclosures and similar thermal and solutal boundary conditions, closed-form 
expressions for the thresholds were derived by Mamou et al. (1998b, 1998c) for the 
onset of stationary and oscillatory convection. For the threshold of the overstable regime. 
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Figure 5.5 Effect of Le on the thresholds of oscillatory and stationary 
convection within a vertical infinite layer for e = 0.2, A/" = — 1, and ^ = 0. 
The threshold of stationary convection is depicted by solid lines and that for 
oscillatory convection by dashed lines 

their results are approximate since they have supposed that the perturbation profiles are 
qualitatively the same at the onset of oscillatory and stationary convection. In the present 
analysis, it is observed that, at the onset of overstabilities, the flow structure could be 
non-symmetric (the convective cells are seen to be shifted to the left vertical wall) and the 
temperature and concentration profiles are not identical, as can be seen from Figure 5.6. 
This difference could contribute to the unsteadiness of the flow. 

Figure 5.6 Perturbation profiles (ip, 6, and (f)) at the onset of overstabilities 
in an infinite vertical layer for N = - 1 , Le = 1, $ = 90°, e — 0.1, and (a) 
a r = as = 0 and (b) ar = as = 1. Here R^^' = 138.57, Ac = 2.44, and 
Pi = ±92.18 
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It can be demonstrated that, for Le — 1, the only possible convective flows are the 
oscillatory ones, see for instance Mamou et al. (1998b, 1998c) and Karimi-Fard et al. 
(1999). The effect of the normalized porosity, £, on the threshold of oscillatory convection 
is displayed in Figure 5.7 for equal thermal and solutal diffusivities (Le = 1). The results 
correspond to an infinite vertical layer subject to different boundary conditions. For similar 
boundary conditions, the threshold for oscillatory convection tends towards infinity when 
£ approaches unity. However, it remains finite for mixed boundary conditions. The critical 
wavelength is observed to be much affected by e variations for the case of mixed boundary 
conditions. The pulsation p^ is seen to decrease with increasing e, and the same trend was 
reported by Karimi-Fard et al (1999) within a square enclosure. 

For an horizontal infinite porous layer with similar thermal and solutal boundary condi-
tions (ttT = as), the threshold for oscillatory convection for stress-free boundaries were 
determined by Nield (1968). Taunton et al. (1972) have extended the work of Nield by 
introducing the acceleration effects. The threshold for oscillatory convection has been 
determined in terms of the thermal Rayleigh number as a function of the governing param-
eters. Mamou and Vasseur (1999) have reconsidered the problem by examining the effect 
of the enclosure confinement on the onset of oscillatory convection, without the accelera-
tion parameter. General expressions for the thresholds were derived for the Dirichlet and 
Neumann boundary conditions. Following the same analysis described in Taunton et al. 
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Figure 5.7 Threshold of oscillatory convection in an infinite vertical layer for 
N = -hLe = l,and^=:0 
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(1972), Mamou and Vasseur (1999), and Mamou et al. (2001), the characteristic equation 
for the growth rate parameter can be obtained as follows: 

^ ^ ^ ( ^ ) ' + ^ 2 ( ^ ) ' - P i ( ^ ) - P o = 0, (5.44) 

where 

pi = ^ [Le {E°, - 1) + i?° - 1] - 1, 

Le 
P 2 - 7 - ( l + e7 ) -M, 

?7 

(5.45) 

with R^ = RT/R^''^ and R^ = Rs/R^""^. For the definitions of the parameters 7 and 
i?^"P, see Mamou and Vasseur (1999). 

The threshold for stationary convection is given by 

R'^^ = -Rs + ii^^P. (5.46) 

The threshold for oscillatory convection, which can be obtained by setting p = ipi (i.e., 
Pr — 0), is obtained as follows: 

and the corresponding pulsation of oscillation is given by 

P1 = - I ' ^ or p? = - 7 ^ ^ . (5.48) 
sLe p2 

For zero acceleration parameter, equation (5.47) reduces to 

e (Le + l ) i?^^P-i?5 _ sLe + 1 
R^S" = ^ ^ ' — or R^^S" = . ..^i^'^P. (5.49) 

It was demonstrated by Nield (1968) and Taunton et al. (1972) that the wavelength 
that minimizes the thresholds for stationary and oscillatory convection is Ac — 2, and 
this is valid for any value of the governing parameters when the acceleration parameter 
^ = 0. However, for ^ > 0, Taunton et al (1972) have shown that the wavelength at 
the onset of overstabilities (Rs < 0) becomes dependent on the governing parameter. 
For Rs = -100, Le = 10, e = 1, and ar = as = 0, the wavelength (Figure 5.8b) 
is seen to decrease slighdy and then increase significantly as ^ rises from zero to 1.2. 
As can be seen from Figure 5.8(a), the effect of ^ delays considerably the instability 
of the pure diffusive state. Numerical results show that, for ^ > 0, the temperature 
and concentration perturbation profiles are similar but shifted in spatial phase. This 
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Figure 5.8 Stability diagram in the Rr-i plane for an infinite horizontal layer 
with Le — 10, Rs — —100, e — \, andar — as = ^ 

leads to vorticity production at the convective cell boundaries, and, within the overstable 
regime, the convective flow could be characterized by traveling waves in the horizontal 
direction, as discussed by Mamou and Vasseur (1999). It is found for Neumann boundary 
conditions and a given set of governing parameters that the onset of overstabilities occurs 
at zero wavenumber, which is independent of the parameter ^, such that the flow remains 
monocellular for any aspect ratio of the enclosure. 

Some relevant features about the instability of thermal convection in horizontal enclosures 
will be discussed. It was mentioned by Kimura et al. (1995), when studying thermal 
convection in a horizontal rectangular enclosure (A = 10), that the preferable convective 
mode is the one with a single cell flow pattern. Their findings were obtained on the 
basis of the linear stability analysis which gave a single cell flow, within a rectangular 
enclosure subject to a constant flux of heat, and on their numerical explicit solver for 
the full governing equations, which converges to monocellular flows for RT — 20. The 
conclusion was that the single flow cell is the unique solution for the problem. Later on, 
Mamou and Vasseur (1999) reported, for a similar problem, that, when studying double-
diffusive convection, single and multicellular flows are possible. Using different flow 
solvers (on the basis of finite-difference and finite element methods; the results are not 
present here), it was found that the single flow is not a unique solution. Above a certain 
value of the thermal Rayleigh number, Benard convection (multicellular flows) becomes 
the preferable one. 

To confirm these finding, the stability of different convective modes is carried out to 
demonstrate when a given convective mode is the preferable one. It is well known that 
the most unstable convective mode (dangerous perturbation) is the one with the highest 
growth rate, Pr. Figure 5.9 illustrates the growth rate of different convective modes within 
a square enclosure, with Dirichlet boundary conditions, and within a rectangular enclosure 
{A = 10), with Neumann boundary conditions. For this situation, according to Mamou 
and Vasseur (1999), the growth rate is given by p^ = 7 {RT - R^""^) /R^""^ and the solute 
buoyancy force is nullified {Rs = 0). 
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Figure 5.9 Growth rate of different convective modes for pure thermal 
convection in a horizontal enclosure: Rs = 0, ^ — 0, and (a) A — 1, with 
ar — 0, and (b) A = 10, with ar = I 

For A — 1 with a^ = 0, p .̂ = 0 corresponds to the threshold of the onset of stationary 
convection. For one cell flow R^^^ — 47r̂ , and for two cell flow î ^̂ P = 257r^/4. The 
growth rate of these two flow types is seen to increase, at different rates, as RT increases 
and they intersect at R}^^ = IOTT .̂ Below the intersection point, RT — R^^, the growth 
rate of the one cell mode is higher than that of the two cell mode. As a result, the one cell 
mode is the preferable one for RT < RT^. However, for RT > RT^, the growth rate of 
the two cell mode is the highest one and, therefore, this mode is now the favorable one. 
It is expected that, when solving the governing equations with the pure diffusive state as 
initial conditions, the flow solution will be monocellular for RT < RT^ and bicellular for 
RT > R}p^. 

For Neumann boundary conditions (Figure 5.9b), the intersection point between the one 
cell flow and the 10 cell flow growth rates is obtained for i?̂ ?* = 23.15 (the flow with 
2 , 3 , . . . , 9 cells are not presented here). The thresholds for stationary convection are 
R^r^^ = 12.017 (one cell flow) and R^r^g = 22.94 for square convective cells (10 cell 
flow). As discussed above, when RT > RT^ the Benard convective flow is favorable and 
the finite-amplitude flow may be stable. Also, it is worth mentioning that, for A — 10, the 
flows with 1,2,. . . , 10 cell modes may be possible, providing that the Rayleigh number 
is sufficiently high. 

For mixed boundary conditions, the stability of the diffusive state is discussed for a 
horizontal square enclosure. The thresholds for oscillatory and stationary convection are 
presented in the stability diagram in Figure 5.10 for positive thermal Rayleigh number 
(heating from below). The threshold for stationary convection is first discussed. Let us 
recall that, for pure thermal convection with Dirichlet (ar = 0) and Neumann (a^ ==1) 
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Figure 5.10 Stability diagram for mixed boundary conditions within a 
horizontal square enclosure for Le — 10, 6 = 1, ^ = 0, and $ = 0°, with 
(a) (aT^Cis) — (1,0) and (b) {ar, as) = (0,1). Finite-amplitude convection for 
Rs = —500 and Le = 0.5; streamlines for {C)RT — '^00 and {ar ids) — (IjO^ 
with Rfp§ = 262.18, and (d) RT ^ 650 and (ar^as) = (0,1), with 
iJ^^P = 595.20 

boundary conditions, the supercritical Rayleigh numbers, iJ^r^, are given by iJp"^ = iw^ 
andJ?^"^ = 22.95, respectively. According to the linear stability results, the flow structure 
consists of a square single cell for relatively small solutal Rayleigh number \Rs\' From 
the stability diagram, it was found that the threshold of stationary convection curves could 
be fitted by the following relationship: 

osup 
TC,{aT,as) 

DSUp 

lias 

such that, for {ar, as) == (1,0), we have 

^TC,(i,o) ^ - (47rV22.95) Rs + 22.95 = -1.72 Rs + 22.95, 

and, for (OT, as) = (0,1), we have 

^TC,(o,i) = ~ (22.95/47r2) Rs -f 47r2 - -0.5S Rs + 39.85. 

(5.50) 

(5.51a) 

(5.51b) 

The above relation is valid as long as the incipient flow remains monocellular and the 
streamlines circular. As shown in Figure 5.10(a), for (a^, as) = (1,0), it is observed that 
the flow patterns are strongly affected by the increase of — i?5. For relatively high solutal 
Rayleigh number —Rs, the circular original cell observed for Rs ^ 0 is significantly 
distorted and broken into two co-rotating cells. One cell is near the lower boundary and 
the other near the upper boundary. For large - J R S , a weak recirculation flow is observed 
between the two cells. Similar results have been obtained by Mahidjiba et al (2000). 
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The authors have also studied the possible occurrence of overstability when the solute is 
stabilizing. The curves of the threshold for stationary convection are slightly curved due 
to the change in the flow structure. 

For {aT,as) = (0,1), it is observed in Figure 5.10(b) that, at the onset of stationary 
convection, the flow pattern is monocellular for Rs > -41.9. For Rs < -41.9, the flow 
structure that gives the minimum critical Ray leigh number is characterized by the existence 
of six convective cells. Two main vertical contour-rotating cells, see Figure 5.10(b), occupy 
the central region of the enclosure, and four small cells located near the top and the lower 
boundaries (i.e., two on the top and two on the bottom). For such boundary conditions, 
Mahidjiba etai (2000) have found that, within an infinite layer, the wavelength decreases to 
0.93. For the onset of overstabilities, the flow pattern was found to be always monocellular, 
and, as shown in Figure 5.10, the threshold of oscillatory convection, obtained for Le — 10, 
is well below the threshold for stationary convection. Finite-amplitude flow patterns 
near the threshold for stationary convection are depicted in Figure 5.10(c) and (d) for 
(OT, as) = (1,0) and (ar, as) = (0,1), respectively. It is observed that the flow patterns 
are similar to the incipient flow patterns predicted by the linear stability analysis. It worth 
mentioning that, for the case with {ar, as) = (0,1), the flow was found to be oscillating 
without any noticeable change in the flow patterns. 

5.4.2 Convective state 

The convective solution is obtained analytically for the case of a horizontal or a vertical 
infinite layer subject to constant fluxes of heat and solute {ax — as = 1). The steady 
convective solution is expected to become unstable far from criticality (i.e., for high 
Ray leigh number). It was discussed in the past by Kimura et al. (1995), for pure thermal 
convection, that, when the thermal Rayleigh number is increased progressively, there is a 
certain value above which the convective flows become oscillatory. The transition from 
steady to oscillatory flow is termed a Hopf bifurcation and these authors predicted its 
threshold. 

Onset of subcritical and stationary convection 

The analytical solution has served as a guide to understand the steady double-diffusive 
mechanism and it is regarded as a useful nonlinear stability analysis to explain the con-
ditions under which subcritical flows exist. According to the solution given by equa-
tion (5.22), there exist five possible steady-state solutions. The first one corresponds to 
the pure diffusive regime (X/JO = 0) and the others to convective flow regimes. In equa-
tion (5.22), the ± sign outside the brackets indicates the existence of convective solutions 
of the same amplitude, one solution corresponding to a clockwise circulation and the other 
to a counterclockwise one. On the other hand, the ± sign within the brackets indicates 
that two convective solutions of different amplitudes are possible. 

From equation (5.22), it can be demonstrated that there are one or two types of bifurcations, 
depending on the governing parameter values. The first one is called a supercritical 
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bifurcation, since the transition from diffusive to convective states occurs through zero 
amplitude at supercritical Rayleigh number RT = R^^c ~ ^"^^ which corresponds to the 
threshold of stationary convection. The second bifurcation is subcritical; two branches of 
solutions bifurcate from the rest-state solutions and these two branches are connected to 
each other at a saddle-node point, RT = Rj^c^ corresponding to the subcritical Rayleigh 
number, which characterizes the onset of finite-amplitude convective flows. 

In general, supercritical bifurcation occurs for aiding flows {Rs > 0) or for opposing 
flows {Rs < 0) when Le < 1. For this situation, the supercritical Rayleigh number, 
R^TQ, corresponding to the onset of stationary convection, is obtained from the conditions 
di < 0 and ^2 = 0 (i.e., ipo = 0) as 

osup 
R'^S = -Rs + R'"'' or i?-P = ^ - ^ ^ ^ , (5.52) 

which is the same result as that predicted by the linear stability analysis, see equation (5.41). 

On the other hand, subcritical bifurcation is possible only for the case of opposing flows 
(Rs < 0) and when the stabilizing agent is the slower diffusive component (Le > 1). The 
subcritical Rayleigh number, RJ^Q, for the onset of subcritical convection can be obtained, 
from the conditions di > 0 and dl -\- d2 = 0, as follows: 

R'r^^ = Le-^ i^/Le' ~ 1 + ^f^^ i^'"^ (5.53) 

At the threshold, i?j^^, the flow intensity is given by V̂o — ̂ y/hdllLe and, for the exis-
tence of subcritical convection, the conditions i?5 < 0 and Le > [{Rs - R^^^) /Rs] 
must be satisfied. For Dirichlet boundary conditions and an infinite layer, Rudraiah et al. 
(1982) have determined the threshold of subcritical flows using a weak nonlinear stability 
analysis. The threshold expression is similar to that given in equation (5.53) but with 
ijsup _ 4^2 Mamou and Vasseur (1999) have extended the work of Rudraiah et al. 
(1982) by considering general boundary conditions and finite aspect ratio enclosures, and 
they have obtained the same expression with i?^"P as a function of the boundary conditions 
and the enclosure aspect ratio. 

Onset of oscillatory convection: Hopf bifurcation 

The procedure to determine the threshold of Hopf bifurcation is the same as that used 
to compute the threshold of overstabilities in the previous sections for an infinite layer. 
For this situation, the basic solution ^6, T^, and 56 is given by equation (5.18). To 
validate the present numerical procedure, the results of Kimura et al. (1995) for thermal 
convection are considered. To simulate their case with the present governing equations, 
equation (5.29), the solutal buoyancy force is nullified {Rs — 0). Using 4 to 16 finite 
elements in the vertical direction, the critical Rayleigh number for Hopf bifurcation is 
presented in Table 5.4, and the corresponding critical wavenumber kc = ^TT/AC and 
frequency fr = \pi\ /27r are also displayed. It can be seen that the present results agree 
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Table 5.4 Critical Rayleigh number, R^^ , critical wavelength, Ac, and 
oscillation frequency, fr, for Hopf bifurcation in an infinite horizontal layer 

Number of elements 

8 12 16 Kimum etal. (1995) 

pHopf 

kc — 2TT/AC 
fr = \pi\/2'K 

510.0195 506.1841 506.0815 506.0742 506.07 
4.7696 4.8239 4.8257 4.8251 4.825 

22.0287 22.1070 22.1122 22.1095 22.11 

well with those obtained by Kimura et al. (1995) and a good precision can be obtained by 
using only a few finite elements in the x-direction. 

In a horizontal porous layer with Neumann boundary conditions, the effects of the Lewis 
number and the normalized porosity on the threshold of Hopf bifurcation are studied in 
Figure 5.11. The results are presented for jRs = —100,^ = 0°,^ = 0, andar = 05 = 1. 
A strong effect of e and Le on the critical parameters is observed, and when Le becomes 

Figure 5.11 Critical parameters at the onset of Hopf bifurcation for an infinite 
layer Effects ofLe and efor Rs — —100, ^ = 0°, ar = as ~ 1, and £, — ^ 
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large enough then the results become independent of this parameter. This trend could be 
explained by the fact that the solute concentration becomes uniform within a large part of 
the enclosure, and so the solutal buoyancy force is weakened. For this situation, the critical 
values tend towards those corresponding to pure thermal convection. The perturbation 
profiles at the threshold of Hopf bifurcation are depicted in Figure 5.12 and they consist 
of small vortices aligned near the horizontal enclosure boundaries. Since the boundaries 
of the vortices are not vertical, traveling waves could be initiated above the threshold of 
Hopf bifurcation. 

To examine the oscillatory behavior of the convective flows above the threshold of Hopf 
bifurcation, some typical results are presented in Figure 5.13 for Rs — —100, Le = 10, 
£ = 1,^ = 0, and (ttT, cis) = (1? 1)» and linear stability analysis gives the value of the 
threshold to be B^^Q^ — 532 and the critical wavelength is Ac — 1.3. To simulate a flow 
with an infinite layer, an aspect ratio of 4̂ = 10 is chosen. It is observed numerically 
that the amplitude of the oscillations is very small near criticality and the flow pattern 
evolution is indistinguishable. For this reason, a thermal Rayleigh number of RT — 600 
is chosen (a little far from criticality). For this situation, the flow is periodically oscillating 
and the flow pattern remains unicellular, but the parallelism of the streamlines is broken, 
especially in the mid-height of the enclosure. The unsteadiness of the flow is characterized 
by a series of secondary circulations traveling from the center to the ends of the enclosure. 
Time evolution of the perturbation demonstrates that the vortices were observed to move 
along the enclosure walls like a closed belt, see Figure 5.13(c) for the i/̂ p profile. The 
shape and the wavelength of the formed vortices are approximately the same as those 
predicted by the stability analysis when superposing the two conjugate solutions. Similar 
time evolution of the concentration field is observed, see Figure 5.13(c). 

^ 

^ 

(a) 

(b) 

Figure 5.12 Perturbation profiles (ip, 6, and (p) at the threshold of Hopf 
bifurcation for an infinite layer with Rs — —100, Le = 10, $ = 0°, e = 1, 
^ = 0, andar = as = I: RTC"^ = 532.12, Ac = 1-297, and(a)pi = 142.46 
and (b) Pi = -142.46 
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m ^ ^ "y 

Figure 5.13 (a,b) The time history of the heat and mass transfer rates, (c) 
Streamlines, temperature, solute, and perturbed stream function contours for 
RT = 600, Rs = -100, Le = 10, A = 10, e = 1, ^ = 0, ar ^ as ^ 1, and 
$ = 0° art = 0.785 

For the same problem, the effect of the acceleration parameter, ^, on the threshold of the 
Hopf bifurcation is studied. Some typical results are depicted in Table 5.5 for Rs — —100, 
Le = 10, 6 = 1, and {ar^as) — (I7I). and it is observed that, when ^ increases 
progressively, the threshold for transition is delayed and the perturbation wavelength 
becomes very large. The oscillation frequency (i.e., pulsation) is also observed to decrease. 
As a result, the oscillatory flows could be stabilized by increasing ^. This effect could be 
obtained for the fluid having a low Prandtl number or relatively high Darcy number. 

The bifurcation diagram is illustrated in Figure 5.14 for JRT = 100, i^s — -100,Le = 10, 
A =: 10, ttT = ^5 = 1, and $ = 0°. The results are presented in terms of the local heat 
and mass transfer rates {Nu and Sh) as a function of the thermal Rayleigh number, and 
five modes are delineated in the graph. The first one, region I, corresponds to the stable 
diffusive regime in which all perturbations decay; region II corresponds to subcritical 
flows, where the diffusive state is unstable to finite-amplitude perturbations, and it should 
be noted that the heat and mass transfer rates are finite at RT — R^TC'^ region III illustrates 
the overstable regime in which perturbations grow in an oscillatory manner; region IV 
represents the stationary convection regime; and region V delineates the oscillatory finite-
amplitude convection which occurs right above the threshold of Hopf bifurcation. 
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Table 5.5 Ejfect of the acceleration parameter, ^, on the threshold of Hopf 
bifurcation in an infinite horizontal layer: Le = 10, Rs = —100, e = 1, 
$ = 0^anJ(aT,a5) = (1,1) 

? 
0 

10-3 
2 x 10-3 
5 X 10-3 

10-2 
2 X 10-2 

pHopf 

532.12 
521.19 
526.25 
583.69 
748.39 

1360.71 

Ac 

1.30 
1.38 
1.49 
1.91 
2.60 
4.02 

Pi 

±142.46 
±128.10 
±115.37 

±91.48 
±74.19 
±62.68 

Figure 5.14 Bifurcation diagram (Nu and Sh versus RT) for RT = 100, 
Rs = -100, Le = 10, A = 10, ar = as = 1, and $ == 0°. The critical 
parameters are obtained for ^ = 0 and e = 1 as Rf^ = 19.8, R^g" = 23.2, 
pose 41.6, R'r^g = 112.0, andR^^'f = 532.1 

The stability of the basic convective solution is also studied within a vertical porous 
layer. As for the case of a horizontal porous layer, the basic solution becomes unstable 
above a certain threshold, R^c^^ • It was found that the normalized porosity, e, and the 
acceleration parameter, ^, have a strong effect on the onset of Hopf bifurcation. The 
results are illustrated in Table 5.6 for Le = 10, AT = - 1 , ^ = 90°, and (GT, as) = (1,1). 
When the acceleration parameter is cancelled, the critical Rayleigh number is observed 
to decrease significantly with decreasing e. This results are in agreement with those 
reported by Mamou et al (1998b) when considering an aspect ratio A = 4. However, 
when increasing the acceleration parameter from 0 to 1, for e = 1, then a reverse trend 
is observed. The threshold and the wavelength are seen to increase with ^, i.e., the effect 
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Table 5.6 Ejfect of normalized porosity, e, and the acceleration parameter, ^, 
on the threshold of Hopf bifurcation in an infinite vertical layer for Le = 10 and 
N = -1 when (a)^ = 0 and(b) e = 1 

(a) (b) 

€ 

0.2 
0.4 
0.6 
0.8 
1 

pHopf 

20.22 
37.20 
53.00 
67.95 
79.92 

Ac 
8.09 
4.52 
3.54 
2.99 
2.65 

Pi 

±13.32 
±15.96 
±17.72 
±15.32 
±14.60 

^ 
0 

10-2 
5 X 10-2 

10-1 
2 X 10-1 

pHopf 

79.92 
88.88 

153.88 
274.26 
520.82 

Ac 

2.65 
2.97 
5.11 

10.38 
22.68 

Pi 

±14.60 
±13.40 

±9.31 
±5.60 
±3.17 

of the acceleration parameter is to delay the transition to oscillatory flows. Similar results 
have been observed by Amahmid et al. (2000) when reconsidering the case studied by 
Alavyoon and Masuda (1994). The oscillatory flows obtained by Alavyoon and Masuda 
(1994) are stabilized by Amahmid et al. (2000) by increasing the parameter ^. 

The perturbation profiles are illustrated in Figure 5.15 and are qualitatively similar to 
those observed in a horizontal layer, see Figure 5.12. The threshold of Hopf bifurcation is 
Rrj^Q* — 80. Typical finite-amplitude results are presented in Figure 5.16 right above the 
threshold, i.e., jR^ = 90. The convective flow was found to be oscillatory, as can be seen 
from the time history of Num and Shm • The flow remains unicellular but the streamlines 
are slightly distorted, indicating the presence of small vortices travelling along the vertical 
wall of the layer, see Figure 5.16(d). 

Figure 5.17 illustrates the influence of the Rayleigh number, RT, on the maximum and 
the minimum values of the stream function (^max and *min. respectively) for the case 
A = 1, ^ = 90°, Le — 10, and e = I. Starting the computations from the purely 

Figure 5.15 Perturbation profiles (ip, 6, and (p) at the threshold of Hopf 
bifurcation for an infinite layer with Le = 10, ^ = 90°, £ = landar = as = I' 
i?5^pf rr 79.92, Ac = 2.65, and(a)pi = Umand(b)pi = -14.60 
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2.67 
¥ ¥ 

(c) (d) (e) (f) 

Figure 5.16 (a,b) The time history of the heat and mass transfer rates, (c,d) 
streamlines att — 1.664 and 1.728, and (e,f) temperature and solute contours at 
t = IMAJor RT = 90, AT = - 1 , Le =: 10, A = 10,e = l and $ = 90° 

diffusive solution, it was found that this solution can be maintained when RT is below the 
critical value i?^^ == 20.45. However, for i^r > i^^^S, this rest state is unstable, although 
it continues to be the solution of the governing equations. A stable convective regime 
bifurcates from the rest state at RT — R^TQ- ^^^ resulting supercritical convective regime 
is characterized, as expected, by symmetrical solutions, as exemplified by Figures 5.17(c) 
and (d) for RT = 25 and 100, respectively. However, upon using a finite-amplitude 
flow as an initial condition, another branch of solutions was found to exist in the range 
13 ^ RT ^ 35. This second set of solutions corresponds to non-symmetrical flow 
patterns, as illustrated by Figure 5.17(b) for JRT = 25. It is noted that this non-symmetrical 
branch is maintained down to RT — 13, i.e., below i?^^ = 20.45, the critical Rayleigh 
number for the onset of supercritical convection. Thus, for 13 ^ RT ^ 20.45, two 
different types of solution are possible, a purely diffusive regime and a subcritical, finite-
amplitude convective regime. The coexistence of the two finite-amplitude solutions are 
also observed to occur in the range 20.45 ^ RT ^ 25.5. Similar results were reported by 
Charrier-Mojtabi et al. (1998). 
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Figure 5.17 RT effect on (a) flow intensity versus RT, for N = -1, Le = 10, 
e = 1, A = 1, ^ = 90°, and ar = as = 0, and on the streamlines, isotherms, 
and isoconcentrations, for (b) RT = 25, Nu-m = 1.015, and Skm = 1.480, (c) 
RT = 25, Num = 1.001, and Skm = 1.047, and(d)RT = 100, Num = 1.164, 
andShm — 4.595 

For Dirichlet boundary conditions (a^ — CLS = 0), it has been reported in the past 
that, within the overstable regime, the double-diffusive convection may be oscillatory. 
Especially in horizontal, large aspect ratio enclosures, the flow is characterized by traveling 
waves along the porous layer, see, for example, Predtechensky et al (1994) and Mamou 
and Vasseur (1999). Similar phenomena are observed in a vertical porous layer. It is found 
that, for a relatively large aspect ratio with RT = 90, Le = 2, e = 0.1, and ^ = 0, the 
oscillatory flow consists of multiple cells traveling vertically along the porous layer. For 
A = 10 (the results are not presented here), the numerical results show that the oscillatory 
flow is aperiodic. However, for A = 15, the oscillations becomes periodic and the flow 
cells are seen to travel from bottom to top, as indicated in Figure 5.18, at a nearly constant 
velocity. The cells are generated in the bottom region of the enclosure and move upward, 
without loss of intensity, until they reach the top of the layer, where they collapse. This 
phenomenon is not observed for a vertical slot with Neumann boundary conditions. The 
preferred mode for this case is the unicellular flow. The convenient way to study this type 
of phenomenon is to consider a vertical slot of a finite aspect ratio, with the use of periodic 
boundary conditions. However, since the flow is nonlinear, it is very difficult to predict 
the wavelength of the convective rolls. 
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1 2 3 4 5 

Figure 5.18 (a,b) Time history of the heat and mass transfer rates and (c)flow 
structure at dijferent instants of time for RT — 90, N = —l,Le = 2,A = 15, 
e = 0.1, aT = as = 0, and $ = 90° 

5.5 CONCLUSIONS 

The present work is devoted to numerical and analytical stability analyses of double-
diffusion convection within tilted porous enclosures of arbitrary aspect ratio, subject to 
opposing thermal and solutal gradients. Interest in this type of problems is motivated by 
its importance in many practical situations, such as in chemical engineering, metallurgy 
and underground disposal of pollutants, where convection in multi-component fluids is 
involved. 

The governing equations are solved numerically using the finite element method and 
analytically using the parallel flow approximation in an infinite layer, subject to constant 
fluxes of heat and solute. Reliable numerical techniques are developed, on the basis of 
Galerkin and finite element methods, to perform a linear stability analysis of the pure 
diffusive state, when it exists, and of the fully-developed flows within the enclosure. The 
effect of the governing parameters on the thresholds of stationary or oscillatory convective 
flows are studied for many different situations and boundary conditions. The stability 
of the fully-developed solution in slender vertical or horizontal enclosures is studied and 
the threshold which characterizes the transition from steady to oscillatory convection is 
determined. The porosity of the porous medium and the acceleration parameter are found 
to have a strong effect on the thresholds of overstability and Hopf bifurcation. Multiple 
convective states were found to exist for the same governing parameters. 
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Up to the present day, most of the studies of double-diffusive convection are theoretical 
and based on numerous approximations and assumptions. In addition, most of the studies 
are limited to two-dimensional situations, in order to understand the fundamentals of 
double-diffusive convection on one hand, and to avoid excessive computational time to 
obtain a solution on the other hand. It is well known that three-dimensional effects could 
have a significant impact on the flow behavior and on the heat and mass transfer rates. In 
addition, turbulence in double-diffusive convection, which describes the real physics of the 
flows, remains, as yet, unexploited. Also, it is observed that there is a big lack of extensive 
experimental studies to confirm the theoretical findings. Therefore, it is recommended that 
much effort is required to obtain experimental confirmation of the available theoretical 
results, in order to have a better understanding of the combined heat and mass transfer 
within porous media. 
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Abstract 

In this chapter we investigate buoyancy-driven convection in a horizontal fluid-saturated porous 
medium. Our particular focus is on the discrepancy that can exist between theoretical results and 
the results from laboratory experiments. When one conducts laboratory experiments then there 
exist a number of competing criteria that make the design of the ideal laboratory experiment 
difficult. The compromises one must make in building the media result in media that are spatially 
inhomogeneous except in cases of specially constructed systems. These heterogeneities create 
the rounding of the heat transfer curve in the neighborhood of convection onset, convection 
wave-pattern pinning, and in some cases, media in which no-flow (conductive) state cannot 
exist for any nonzero destabilizing temperature gradient. 

Keywords: ordered media, disordered media, convecrion, instability, pattern forma-
tion, defect pinning 

6.1 INTRODUCTION 

One need only search the scientific, mathemarical, and engineering literature to gauge 
the importance of the study of fluid flow in porous media. Practical applications such as 
building insulation, packed-bed catalytic reactors, electronic cooling, geothermal systems, 
and groundwater contaminant transport morivate many of these invesrigarions. Many 
of these systems are complicated and involve two-phase flow, phase change, property 
variations, localized effects such as inclusions, etc. 

One of the more easily understood and widely studied areas of scientific research in porous 
media flow is the canonical Horton-Rogers-Lapwood convection (HRLC) system. This 
problem derives its name from the independent works of Horton and Rogers (1945) and 
Lap wood (1948). We direct the reader to the recent text by Nield and Bejan (1999) for a 
detailed review of the HRLC problem. In the idealized HRLC problem, a fluid-saturated 

155 



156 CONVECTION IN ORDERED AND DISORDERED POROUS LAYERS 

porous medium is bounded above and below by two impermeable solid planes. The 
porous layer is oriented so that the direction of gravity is perpendicular to the upper and 
lower solid planes. The isothermal bounding planes differentially heat the fluid-saturated 
medium with the lower plane being the warmer of the two. A slight modification of 
the problem places a spatially uniform heat flux at the lower plate and maintains the 
upper plate at a constant temperature. In this system, one uses the vertical temperature 
difference, or the vertical heat flux, as a control parameter. Below a critical value of 
the control parameter, there is no motion of the fluid that saturates the medium and heat 
transport is due solely to the conduction of heat through both the fluid and medium (and 
between the two). After one exceeds the critical value of the control parameter, there is a 
spontaneous initiation of fluid motion though the interstitial spaces of the stationary solid 
medium. The motion of the fluid coincides with the initiation of certain flow patterns that 
may or may not be stationary in time (after some initial transients). HRLC is one of the 
simplest nonlinear pattern forming systems and therefore it is studied by researchers not 
only interested in the applications listed previously but by researchers interested in pattern 
formation and nonlinear and complex systems. 

In this chapter, we focus on HRLC in media which are completely saturated with a single 
fluid. In particular, we investigate the pattern formation near the onset of convection 
and the associated heat transfer. We also investigate the influence of the variability of 
the medium on the formation of convection patterns and on heat transfer. Relying on 
some of our previous experimental results and the results of others (both experimental and 
theoretical) we are led to the conclusion that the construction of the medium can have a 
considerable influence on the convective wave patterns and upon the heat transfer. 

6.2 HORTON-ROGERS-LAPWOOD EXPERIMENTS 

Of the many experimental investigations on buoyancy-driven convection in porous media 
with heating from below, the majority report heat transfer data. A few report pattern 
formation at the onset of convection and pattern evolution at higher control parameter 
values. In Figure 6.1, we show heat transfer data from nine experimental investigations. 
These heat transfer data are reported in terms of the porous Rayleigh-Darcy number, 
i?a^, defined by 

Ram = . (6.1) 

Here, g is the magnitude of the gravitational acceleration, P is the isobaric volumetric 
expansion coefficient of the fluid, K is the medium permeability, H is the spacing between 
the horizontal bounding plates, AT is the temperature difference, v is the fluid viscosity, 
and am is the thermal diffusivity of the fluid-saturated porous medium. The medium 
thermal diffusivity can be expressed in terms of the fluid thermal diffusivity as 

kf 
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Figure 6.1 Experimental heat transport data. Reprinted from Howie (1993), 
with the permission of the author 

where a / is the thermal diffusivity of the fluid, kf is the fluid thermal conductivity, and 
km is the effective thermal conductivity of the fluid-saturated medium. For media with 
fluid and solid whose conductivities are similar, we can approximate the medium thermal 
conductivity with the expression 

km = (t>kf + (1 - 0) ks (6.3) 

In equation (6.3), (/> is the porosity (void fraction) and ks is the thermal conductivity of the 
solid. The Nusselt number, Nu, used in Figure 6.1, is the total heat transfer normalized 
by the conductive heat transport at the same temperature difference. Accordingly, Nu 
departs from 1 as convection begins and the convective motion begins to augment the total 
heat transport. From Figure 6.1 we note the scatter in the data, particularly at larger values 
of Ram. This scatter can be reduced somewhat by a different choice of the dimensionless 
numbers, see, for example, Wang and Bejan (1987). However, most of the experimental 
results available in the literature report the heat transfer data in terms of Nu versus Ram 
so we do the same here. 

Elder's (1967) experiments included glass spheres of diameters 3, 5, 8 and 18 mm and 
styropor beads of 6 mm diameter that he glued into a porous matrix. Additionally, 
Elder performed experiments in a Hele-Shaw cell. He focused on cellular convection 
in systems with heating from below, on the role of end effects and on the role of mass 
discharge. Kaneko et al (1974) constructed porous layers with approximately spherical 
double-screened silica sand as the solid medium. They used heptane and ethanol as 
saturating fluids. Additionally, Kaneko et ah used 55 thermocouples embedded within 
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the medium to gather convection pattern information. Although their experiments studied 
various angles of inclination to the horizontal, only the zero angle results are shown in 
Figure 6.1. Yen (1974) investigated the effect of density inversion on convection in a 
water-glass porous medium. For convection in the non-density-inverted system. Yen 
found that convection begins at the predicted critical Rayleigh-Darcy number of 47r̂ . 
Combarnous and Bories (1975) report the data from experiments using a Hele-Shaw 
qualitative analogy to porous convection, convection in a layer with a free upper surface 
and in layers bounded by isothermal planes. The experiments of Buretta and Berman 
(1976) utilized porous layers of glass beads with diameters of 3, 6 and 14.3 mm saturated 
with demineralized water. They varied the bed thickness and permeability while heating 
from below with Rayleigh-Darcy numbers from 10 to 10000. Buretta and Berman 
estimated the critical Rayleigh-Darcy number to be 38, which is in excellent agreement 
with theoretical predictions. Jonsson and Catton (1987) studied the effect of Prandtl 
number on heat transfer in HRLC experiments using glass, stainless steel and lead particles. 
They used silicon oil, water and mercury as working fluids. In Figure 6.1, we include 
the results of Jonsson and Catton's experiments with low Prandtl number lead-mercury 
experiments. These results are significant because they show a substantial departure of the 
critical Rayleigh-Darcy number from the higher Prandd number experiments shown in 
the figure. We should note that lead is somewhat soluble in mercury and therefore Jonsson 
and Catton's experiment might have exhibited binary porous medium behavior. Lister 
(1990) performed HRLC experiments in a 3 m diameter 30 cm high hexagonal container 
with two different types of media. The first medium was rubberized curled coconut fibers, 
while the second medium was clear polymethylmethacrylate beads. Convection pattern 
visualization revealed the preferred wave pattern began as hexagons near the onset of 
convection. At higher Rayleigh-Darcy numbers. Lister observed complicated, irregular 
and three-dimensional patterns. Lister reported that the heat transfer curve of the bead 
medium jumped upward immediately after the onset of convection and then settled to a 
slope of about 0.52. At higher Rayleigh numbers the slope increased to a value greater 
than 1. He attributed this behavior to lateral thermal dispersion. Prasad and Kladias 
(1991) critically compared data gathered from experiments in water-glass, oil-glass, 
water-steel, heptane-glass, and glycol-glass systems with the various extensions of the 
Darcy flow model such as inertia effects, boundary viscous effects, variable porosity-wall 
channeling and dispersion effects. Among their findings, Prasad and Kladias found that 
wall channeling and variable porosity near the wall region had a significant influence on 
heat transfer and convective flows. Also included in Figure 6.1 are the results of Schneider 
(1963). 

6.3 ONSET OF CONVECTION IN A HOMOGENEOUS ISOTROPIC MEDIUM 

In the section, we derive the critical Rayleigh-Darcy number for which a horizontally 
infinite, isotropic, homogeneous porous layer loses stability to infinitesimal disturbances. 
This serves as a basis against which we can compare similar analysis from more compli-
cated media. We begin by writing the transport equations in dimensional form for flow of 
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an incompressible fluid through a porous medium. We write the respective equations for 
the mass, momentum, and energy conservation as follows: 

W'v' = 0, (6.4) 

PfCadt'V' = PfQ - Vp' - —V\ (6.5) 

adt'T + v' • V r - a m V ^ r , (6.6) 

where the prime denotes the dimensional variable. The symbols in equations (6.4) - (6.6) 
are fluid density, p / , acceleration coefficient, Ca, dynamic fluid viscosity, JJL, and heat 
capacity ratio, 

^ - ^ , (6.7) 

where the subscripts m and / refer to medium and fluid, respectively. In order to non-
dimensionalize these equations, we choose as scales 

v = —v\ r^-i-, p=-^^—p'. x^ l , t:^^t' (6.8) 
am AT cxmi^Po H H^ 

and rewrite the scaled system of equations as follows: 

V • v = 0, (6.9) 

CaPr:;;^dtV = RaTe^ - Vp - Da~^v, (6.10) 

adtT^-V'VT^V'^T. (6.11) 

In writing equations (6.9) - (6.11), we have made use of the Boussinesq approximation, 
which allows us to neglect fluid property dependence on temperature, except in the body 
force term—the first term on the right-hand side of equation (6.10)—where we assume 
the temperature-dependent fluid density has the form pj — po[l — ^ (T - To)] with the 
subscript 0 representing the reference state. In the dimensionless equations, Prandtl, 
bulk-fluid Rayleigh and Darcy numbers are respectively defined as follows: 

Pr=—, Ra=^ , Da^—r. (6.12) 
am I'a i i^ 

For boundary conditions, we take no-penetration, slip hydrodynamic conditions on the 
horizontal surfaces and fixed temperature on these same surfaces. By taking the double 
curl of equation (6.11), we eliminate the pressure gradient and use the mass conservation 
equation to remove the resulting velocity divergence terms. The perturbation equations 
for the conduction state are given by 

T = ( l - z ) - f 0 (6.13) 
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and 

V = 0-\-uex-\-vey-^-wez, (6.14) 

where the first term on the right-hand sides of equations (6.13) and (6.14) is the conduction 
solution. Upon substitution of the perturbation equations into the equations of motion, we 
arrive at the linearized marginal stability equations 

ae-w = V^e (6.15) 

and 

V2^ + ^ V ^ u ; - RamVJjQ, (6.16) 
Fr 

where the dot denotes differentiation with respect to time and the symbol V|^ is the 
horizontal component of the Laplace operator. Next, the eigenfunctions 

0«Te^'sin(i7rz)e^(^^+^^) 
(6.17) 

are selected that satisfy the vertical boundary conditions and are periodic in the horizontal 
directions. In equation (6.17), 5 is the growth rate, j is the vertical mode number, i = \ / ^ , 
and k and / are, respectively, the horizontal mode numbers in the x- and y-directions. Since 
this problem is linear and self adjoint, 5 = 0 at criticality and the layer loses stability 
through a simple eigenvalue from the conduction to steady cellular convection. Thus we 
substitute equation (6.17) into equations (6.15) and (6.16) and eliminate either w or Q 
in favor of the other and arrive at the critical Rayleigh-Darcy number for the onset of 
convection, namely 

Ram - ^ ^ ^ ^ , (6.18) 

where q^ =P -^ k'^ is the composite horizontal wave number. Minimizing equation (6.18) 
for j = 1 gives the critical wave number, qc = TT, with the corresponding critical porous 
Rayleigh number, Ra^ = 47r̂ . 

The influence of various extensions to the momentum equation on the onset of convection 
in a homogeneous isotropic porous layer has also been examined. For example, Prasad and 
Kladias (1991) examined the effects of inertia, viscous effects near boundaries (Brinkman 
extension) and quadratic drag (Forchheimer term). These extensions were found to be 
minimal at the onset of convection. These extensions of the Darcy model can, however, 
have a significant impact on secondary bifurcations and heat transfer for Rayleigh-Darcy 
numbers away from the critical value. 

Several studies have examined the preferred wave pattern near the critical point. In the 
linear stability analysis of this section, no preference for a given pattern can be found. 
Indeed, any wave pattern with a composite wave number ql — P -\-k"^ — TT̂  is possible. 
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Nonlinear theory must be employed in order to interrogate the stability (thus the preference 
towards) a given wave pattern. Joseph (1976) reports on the stability of two-dimensional 
parallel convection rolls to various three-dimensional disturbances. Joseph showed that 
the neutral stability curve for transition from convection to convection is given by 

where QC and Ra^ are the values we derived above. The stability boundary, for which 
two-dimensional parallel convection rolls become unstable to cross-rolls falls above the 
stability boundary of equation (6.19), is given by 

«̂ l = l?r^-lV. (6.20) 

In the region to the right of the onset point {q < qc), parallel rolls are unstable to sinuous 
rolls under the curve 

R a ^ _ ^ ^ U r _ ^ y ^ \ (6.21) 

Several other wave patterns, such as varicose and cross-rolls are also possible. Strauss 
(1974) computed the entire region for which rolls are stable. The closed stability balloon 
in the q-Ram plane shows that for higher Rayleigh-Darcy numbers, roll patterns have 
wave numbers greater than QC. For problems in which mid-plane symmetry is broken, 
such as asymmetric thermal boundary conditions or thermally dependent fluid properties, 
hexagons are the most stable pattern at onset. 

Although the nonlinear theory predicts rolls, or other ordered convection patterns, in 
experiments, few experiments have reported rolls. In fact, the majority of experiments 
that report wave pattern information find irregular polygons as the preferred pattern. In 
our section on the construction of laboratory experiments, we explore one possible cause 
for this discrepancy. 

6.4 ONSET OF CONVECTION IN HOMOGENEOUS ANISOTROPIC 
POROUS LAYERS 

In this section, we consider a porous medium that, due to its construction, is anisotropic 
in the medium thermal conductivity with the horizontal and vertical tensor components 
denoted as kh and ky, it is also anisotropic in the thermal diffusivity {ah and ay) and the 
permeability {Kh and Ky). For convenience, we chose to align the principal axes of the 
tensors with the coordinate directions although this is not necessary. With this notation 
we can write the second-order tensors describing the respective properties of the medium 
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conductivity, medium thermal diffusivity and permeability as follows: 

(kh 0 0 \ 
fcm = 0 kh 0 , (6.22) 

kh 
0 
0 

0 
kh 
0 

0 
0 

Ky 

^aft 0 0 \ /T/ 0 0> 
a „ = ( 0 Qft 0 = a J 0 77 0 I (6.23) 

0 0 aj \ 0 0 1; 

and 

(Kh Q Q\ (i Q 0\ 
K=\ Q Kh Q \=KAQ i 0\. (6.24) 

V 0 0 iir„/ \ 0 0 1/ 

In equations (6.23) and (6.24), the diffusivity and permeability ratios are given by 

r^ = ^ and ^ = | ^ . (6.25) 
OLy Ky 

These tensors allow us to rewrite the mass momentum and energy equations in terms of 
the anisotropic components as follows: 

(pdtPf + V • {pfu) = 0, (6.26) 

PfCadtU + fiK~'^ • u = pfQ - VP, (6.27) 

iPfc)^ dtT + V^ [{Pfc)^ Tu]=V- {kmVT). (6.28) 

For equations (6.26) - (6.28), we make two simplifying assumptions. First, we use the 
Boussinesq approximation as with our linear stability analysis of the isotropic layer. In this 
section, we also make the second simplifying assumption based on arguments by Nield 
and Bejan (1999). They showed that with even the largest experimentally reasonable 
values for the acceleration coefficient, Ca, decay times for the momentum equation are 
of the order of 1 s. Contrast this to typical thermal decay times, r — H'^/ay, of 10^ s 
and we can reasonably neglect the transient term. Shattuck et al. (1997) also showed, 
correctly, that the transient term in the momentum equations is negligible for many porous 
convection problems. With these simplifications, we rewrite equations (6.26) - (6.28) as 
follows: 

V - t x = 0, 

u = po[l-/3{T-To)] 

(pc)^ dtT -f {pc)^ uVT^V' {kmVT). 

Using these equations, one can derive the linear stability condition that separates regions 
of conduction from convection. Castinel and Combamous (1975) included anisotropic 

Kg KVP 
(6.29) 

(6.30) 

(6.31) 
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permeability in the linear stability problem. They did not include anisotropic conductivity, 
as did Epherre (1975). Both of these papers considered the case in which the principal axes 
of the tensors align with the coordinate directions and in which the tensors are isotropic in 
the horizontal plane as written above. Kvernvold and Ty vand (1979) showed, with citation 
to Epherre, that the critical Rayleigh-Darcy number is given by 

with the critical wave number 

X 1 /2 

f) +1 

\ - l / 4 

(6.32) 

qc = 7r{^r])-'^\ (6.33) 

Gustafson and Howie (1999) extended this work to include conducting horizontal plates 
above and below the porous layer. The thermal properties of the horizontal plates included 
finite conductivity, thermal diffusivity and thickness. In order to make this work applicable 
to a broad variety of experiments, the thermal boundary conditions on the outer surfaces 
of the plates were general. These conditions were modeled as general Biot number heat 
transfer surfaces. In the limit ̂ 2 -^ 0 this condition is the specified temperature (Dirichlet) 
condition, while in the limit jBi -> oo this is the specified flux (Neumann) boundary con-
dition. This work was useful in explaining the discrepancy in the critical Rayleigh-Darcy 
number between the experimental results obtained in the mildly anisotropic experiments 
by Howie et al. (1993) and the theory of Kvernvold and Tyvand, equation (6.32). Howie 
(1993) reported a critical Rayleigh-Darcy number of Ra^ — 18 db 4, while Epherre's 
theory predicts 22.5. Using boundary property data and the anisotropy ratios, Gustafson 
and Howie found the theoretical critical value Ra%^ — 18.62, which is much closer to the 
observed value. 

6.5 HETEROGENEOUS POROUS MEDIA 

In this section we review the research on the onset of convection in heterogeneous porous 
media. The heterogeneity we consider is the property variations caused by smooth spatial 
variations in medium thermal conductivity, or porosity, or permeability. Often, spatial 
variability of porosity causes the spatial changes in the other properties. For example, if 
we have a medium with different solid and fluid conductivities, then spatial changes of 
porosity on spatial scales much greater than the representative elementary volume cause 
spatial variability in the medium thermal conductivity through equation (6.3). We show, 
in a later section, that it is difficult to construct a laboratory HRL experiment with uniform 
properties. 

We begin our discussion on the onset of convection in a heterogeneous porous medium by 
deriving the necessary conditions for the existence of a conduction state in a horizontal 
porous layer. Examining the momentum equation with the velocity term set equal to zero 
we obtain the following: 

PfQ - Vp. (6.34) 
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Now assume that the density dependence on the temperature is well approximated by a 
linear function and rewrite this equation as follows: 

Po[l-^{T-To)]9 = Vp. (6.35) 

By taking the curl of equation (6.35) we obtain 

VTxg = 0. (6.36) 

This result clearly indicates that there can be no horizontal temperature gradient in order 
for the conduction solution to exist (for a nonzero driving temperature difference). This 
result holds for either homogeneous or heterogeneous media. 

Chen and Hsu (1991) performed a stability analysis on the convection of a thin fluid layer 
overlaying and saturating a porous layer. The permeability and thermal conductivity were 
anisotropic and heterogeneous. The heterogeneity was restricted to the vertical direction, 
thus ensuring the existence of the no-motion state. They found that vertically increasing 
permeability decreased stability, while vertically decreasing permeability increased sta-
bility. Braester and Vadasz (1993) showed that non-isothermal heterogeneous media, with 
conductivity functions that are not of the form km {x, y,z) = f {z) h (?/, z)—where z is 
the vertical direction—must always have convection. Neel (1992) studied the situation in 
which there is a small non-uniformity in the boundary data and found a smooth transition 
towards convection. Braester and Vadasz (1993) examined the implications of the motion-
less state on a medium with spatially varying thermal conductivity. They considered weak 
heterogeneity of the medium, resulting in spatial variability of permeability and thermal 
conductivity. They found that the existence of horizontal thermal gradients was generally 
sufficient for the existence of natural convection. Braester and Vadasz also found that 
variability in the effective thermal conductivity had a more pronounced impact on the 
flow pattern than variability in permeability. Their analysis on heterogeneous systems 
with perfect boundaries showed a smooth transition from conduction to convection at 
the critical Rayleigh-Darcy number. In a later section of this chapter, we discuss one 
experiment in a disordered porous medium that shows this type of smooth transition from 
conduction to convection. 

6.6 CONSTRUCTION OF LABORATORY EXPERIMENTS 

In the construction of a porous medium for laboratory heat transfer or convection wave 
pattern measurements, there are a number of competing factors that affect the uniformity 
of the medium. These factors, as elucidated by Shattuck et al. (1997), include the thermal 
relaxation time of the medium, the value of the Darcy number, and the extent to which the 
Boussinesq approximation is valid. The first restriction is that the medium particle size 
must be smaller than the layer height. This restricts the particle size, d, to reside above a 
line of slope 1 on a plot of c? as a function of H as shown in Figure 6.2. Ideally, we would 
like short thermal relaxation times so that the experiments avoid long transient periods, a 
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Figure 6.2 Size possibilities for the design of a porous medium experiment. 
Here, d is the representative medium (bead or bar) size and H is the medium 
layer height. The combination of maximum thermal relaxation time, maximum 
Darcy number and Boussinesq limits the possible layer height and particle size 
to the triangle shown. Note that these results produce a ratio d/H ^ 0.25, 
not a spatially refined medium. Reprinted from Shattuck et al. (1997), with the 
permission of the author 

small Darcy number and an approximately linear dependence of the density on temperature 
with negligible dependence of other fluid properties on temperature. First, consider the 
vertical thermal relaxation time r = H'^/am- For a given maximum acceptable relaxation 
time and medium diffusivity, the layer height is given by 

H = {amr) 1/2 (6.37) 

If, for example, we impose the a maximum allowable thermal relaxation time of 16 min. 
and take the medium thermal diffusivity to be that of water, we get the dash-dot line in 
Figure 6.2. Our experiment must have a layer height below this line. Next, consider the de-
sire to maintain the Boussinesq approximation. Suppose we wish to keep the temperature 
difference at the onset of convection before ATc = 10 °C, where the subscript denotes 
the critical value. The porous Rayleigh-Darcy number relates the critical temperature 
difference to the layer height but not the particle size. We can, however, relate the critical 
Rayleigh number to the particle size through the use of a correlation between the particle 
size and permeability, such as the Ergun (1952) relationship 

'2^3 
K = 

150(1 -0 )^ 
(6.38) 
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for beads of diameter d in a medium of porosity (j). If we use equation (6.38), together 
with equation (6.1), and take the critical value of porous Rayleigh number to be Rac — 
47r̂  ?̂  40, then we arrive at the expression (at critical conditions) 

^ , ^ ^ 6 x l 0 3 a . ( l - ^ f (6.39) 

Now, use the selected critical temperature difference, take properties of water at 20 °C 
and set 0 = 0.4, which is a reasonable value for media constructed from packed beads 
and one gets the solid curve in Figure 6.2. Our porous medium must fall to the right of 
this line. For a spatially homogeneous medium, we need Hjd > 1, which also implies 
Da ^ 1, and thus yields the constraint 

E^d 
150Da (1 - (/)) 

03 

-1/2 

(6.40) 

If one chooses the rather large upper limit of Da = 5 x 10"^, we get the right-limiting 
dotted line in Figure 6.2. Given the constraints of this example, Figure 6.2 shows that 
there is a limited region of possible sizes for which we can construct a medium. It should 
be noted that this allows at most ^djU. This is not a homogeneous medium! 

By relaxing these constraints even slightly, we can quickly gain unacceptably large thermal 
relaxation times, or large critical temperature differences. Shattuck et al. give the 
following example. Suppose we are interested in an experiment with water at 40 °C, 
3.175 mm plastic beads and a layer height of if = 1 cm. In this case, ATc = 10 °C. If, 
because of concerns about heterogeneity, we decrease the bead size to 1 mm, this changes 
the critical temperature difference to ATc = 100 "̂ C. This is clearly non-Boussinesq. We 
can reduce this critical temperature difference by increasing the layer height but this will 
lead to unacceptably large thermal diffusion times. Using Shattuck et al's example, by 
increasing the layer height by a factor of 3, we increase the horizontal relaxation time 
from 26 hrs to 3.6 mths. This trend is true even for small aspect ratio experiments. 

6.7 EXPERIMENTAL MEASUREMENTS 

In this section we describe some of our previous experiments using specially constructed 
ordered media and disordered media originally reported in Howie (1993) and Howie et al. 
(1993, 1997). These media are made so that a modified shadowgraph can collect wave 
pattern information while we simultaneously gather precision heat transport data. Two 
different experiments, with the same apparatus, demonstrate that 

(i) ordered media produce parallel rolls, 

(ii) side-wall forcing may not determine pattern orientation, 

(iii) ordered media have sharp bifurcations from conduction to convection. 
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(iv) disordered media have irregular polygonal wave patterns, and 

(v) disordered media generally have a rounded bifurcation from conduction to convec-
tion. 

Many experiments report wave pattern evolution for convection in bulk fluid (Rayleigh-
Benard convection). There are relatively few experiments which have pattern informa-
tion for HRLC because of the difficulty associated with signal transmission through the 
medium. Methods that have been successfully used for pattern visualization include 
Hele-Shaw analogy to porous media particle tracers on a thin overlaying clear fluid layer, 
thermal or velocity probes embedded in the medium, Christiansen effect, pH variation and 
electrolysis, magnetic resonance imaging, and modified shadowgraphy. 

Elder (1967) and Hartline and Lister (1977) used a two-dimensional Hele-Shaw cell to 
approximate convection in a porous medium. With this technique, fluid saturates the small 
gap between two transparent vertical surfaces. Because there is a significant amount of 
viscous drag on the fluid, caused by the close spacing between the vertical surfaces, this 
is a reasonable analogy for flow in a porous medium where viscous drag, due to flow 
though the pore network, is also significant. Two-dimensional flow pattern visualization 
with the Hele-Shaw analogy is gathered with interferometry or shadowgraphy. Three-
dimensional polygonal patterns approximating hexagons were observed by Bories and 
Thirriot (1969). In their experiments, a thin clear fluid layer over the porous layer allowed 
floating aluminium flakes to gather and disperse according to the convection pattern. The 
flakes gathered in regions over down flow. Combarnous and Bories (1975) and Murray 
and Chen (1989) used probes embedded within the medium to gather convection pattern 
information. With this method thermocouples or thermistors are placed in the medium, 
usually on the horizontal mid-plane. The resulting thermal map allows the reconstruction 
of the flow pattern. Bories et a/. (1991) used the Christiansen effect to visualize convection 
patterns in a vertical annulus and in a rectangular layer. The Christiansen effect uses the 
differing dependence of the index of refraction on the temperature of the fluid and solid 
phases. By correctly choosing the materials, the refractive index will be the same in both 
phases at a certain temperature and the image is undistorted on this isotherm. Away from 
this reference isotherm, the temperature is inferred by the amount of image distortion. 
Chellaiah and Viskanta (1987) used the pH variation and electrolysis for the pattern 
visualization. Lister (1990) used electrolysis of a bromothymol blue solution that was 
acidified with acetic and hydrochloric acids. Lister was then able to observe dye transport 
through a clear upper boundary. The regions of dye collection corresponded with the 
down flows. Shattuck et al. (1995,1997) used the powerful imaging method of magnetic 
resonance imaging to gather the temperature in the velocity information on convection 
porous layers. This method allows velocity and thermal structures as small as 10 fim to be 
imaged. Howie (1993) and Howie et al. (1993, 1997) used the modified shadowgraphic 
technique (MST) to non-invasively gather convection pattern in media that are constructed 
so that the fluid-solid interfaces are parallel and perpendicular to the direction of the light 
travel. Below, we give a detailed discussion of the method and of results gathered with 
MST. 
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In the experiments discussed in Howie et al. (1993, 1997), we place the fluid-saturated 
porous medium between the upper boundary consisting of a transparent sapphire window 
and a lower boundary consisting of a large, oxygen free high conductivity copper plate. 
The working fluid we use for all of the experiments is deionized degassed water. The upper 
surface of the copper plate is diamond polished to a flatness of one half of a wavelength 
of the visualizing light (632.8 nm) per inch and gold plated to provide a highly reflective 
surface for shadowgraphic visualization. A thin foil heater is affixed to the lower surface 
of the copper plate. By coupling the resistive heating to the large thermal capacity of the 
lower boundary we gain a lower boundary condition that is approximately at a constant 
temperature, rather than a constant heat flux. 

In order to provide a transparent upper boundary for shadowgraphic visualization, we use 
a 1 cm thick optically-flat sapphire window. Sapphire has the advantage that the high 
thermal conductivity (0.40Wcm~^K~^) compared to the thermal conductivity of the 
medium reduces the horizontal thermal gradients at the upper boundary of the medium. 
Cooling water flows between the sapphire upper boundary and a crown glass optical flat. 
A Neslab cooler-circulator and specially constructed thermal regulation system maintains 
the upper boundary at a temperature of 25 ± 0.002 °C. 

A 20 mW He-Ne laser provides light for shadowgraphy. The light passes through a pin 
hole spatial filter and columnator before reflecting off of a beam splitter. The light then 
passes through the crown glass optical flat, cooling water, sapphire upper boundary, porous 
medium and reflects off of the gold plated lower boundary. The light then passes a second 
time through the porous medium, sapphire, cooling water, and optical flat before passing 
though a beam splitter and projecting onto a screen. The image is then captured by a CCD 
camera and digitized by a frame-grabber card in a computer. 

We make thermal measurements with ten YSI44006 precision thermistors eight of which 
are in thermal contact with the upper boundary and two of which are in thermal contact 
with the lower boundary. We gather the thermal data with a computer controlled scanning 
multimeter. The resolution of our thermal measurement is ±0.0003 "̂ C. 

6.7.1 Ordered medium 

In this subsection, we discuss the construction of the ordered medium and present results 
from our laboratory experiments. We construct the ordered medium by stacking layers of 
bars cut from 0.159 cm clear polycarbonate sheet. Slots of width 0.159 cm are machined in 
the polycarbonate sheet with a Bridgeport milling that maintains tolerances of ±0.005 cm. 
We construct the second bar layer similar to the first but rotate the layer by 90°. The third 
layer is identical to the first, except that we offset the bars by one half of the grid period. 
This prevents the fluid from having a straight path when traveling vertically through the 
medium. We continue the rotation, offset and stacking until we have the desired number 
of layers. For the results discussed there, we use either six or seven layers of bars and 
for the medium with six layers of bars the properties are shown in Table 6.1. We show a 
drawing of the ordered medium with a rectangular planform in Figure 6.3. 
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Table 6.1 Properties of ordered medium. * denotes property estimated from 
available transport data. Prandtl and Darcy numbers are calculated with vertical 
property values 

Property Horizontal Vertical 

Permeability, K (cm^) 
Conductivity, km (W cm" ̂  K~ ̂  
Size (cm) 
Prandtl number, Prm 
Darcy number. Da 
Porosity 

3.9 X 10-^ 2.6 X 10-^ 
) Not measured 3.6 x 10"^ * 

5.56, 2.70 0.902 
3.35 

3.2 X lO-'* 
0.5 

^ rTt ri\ /~ji rti /~n /~n /-y •̂ ~* ^~> f*- »~^ ^-n /-« /TL. 

Figure 6.3 Ordered rectangular grid porous medium. The side walls are not 
shown for clarity. In most of the experiments discussed here, we use six layers of 
bars. Reprinted from Howie (1993), with the permission of the author 

The onset of convection in the ordered medium shows a sharp, well defined discontinuity 
in the slope of Nu as a function of Ram, see Figure 6.4. The onset of convection in this 
medium occurs at the critical Rayleigh-Darcy number of Ra*^^ = 50 ± 6. In reporting 
the heat transfer data in Figure 6.4, we normalize the Rayleigh-Darcy number with the 
critical value but there is no rounding of the heat transfer curve near the onset as is typical 
with heterogeneous media to within our experimental resolution of 0.1%. An interesting 
feature of Figure 6.4 is the slope of the convective portion of the heat transfer curve, 
namely 

S = ^ . (6.41) 

Joseph (1976) predicts 5 = 2, while our experiments show S = 0.53 ± 0.17. A possible 
cause for the difference is the rather large value of the ratio of the bar height to the layer 
height in these experiments. Stated another way, this medium may not be refined enough 
to be considered homogeneous. Further, we note that the experiments of Close et al 
(1985) also found a dependence of the heat transfer slope on the refinement of the porous 
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I 

Figure 6.4 Heat transport data for five consecutive experiments using the 
ordered medium. Onset of convection occurs at Ra^ = 50 i 6. The reduced 
Rayleigh number reported here, R, is the Rayleigh-Darcy number normalized 
by the critical value. Reprinted from Howie (1993), with the permission of the 
author 

layer. Other experimentally observed values are 5 ?=:̂  1 by Elder (1967) and S — 0.78 by 
ShdXinck etal. (1995,1997). 

The slope discontinuity in the heat transfer curve in Figure 6.4 corresponds to the initiation 
of parallel convection rolls. To our knowledge, these experiments and the experiments 
of Shattuck et al. (1995, 1997) are the first observation of parallel convection rolls in 
HRLC. In Figure 6.5, we show an example of convection rolls for R — 1.93. We observe 
parallel rolls from the smallest values of R at which they can be observed, R — 1.05, to 
approximately R — Z. Above this second value a secondary instability occurs and rolls 
are rarely observed. 

For the pattern shown in Figure 6.5, the wave number is g' = 3.6 ± 0.3. An interesting 
feature of this convection pattern is its 45"" orientation with respect to the side wall and the 
grid alignment. In Howie et al. (1997) we show that this is a result of the grid orientation 
and not of the side-wall forcing. 

6.7.2 Disordered medium 

In this subsection we consider another specially constructed medium that allows shadow-
graphic visualization. For this medium, however, we created a system with some amount 
of disorder. We construct this medium with the same 0.159 cm thick polycarbonate sheet. 
We drill 362 randomly placed non-overlapping densely packed holes with 0.159 cm di-
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Figure 6.5 Shadowgraphic image of the parallel convection rolls at R = 1.93. 
The bright regions correspond to cool, down flow while the dark regions 
correspond to warm up flow. Reprinted from Howie (1993), with the permission 
of the author 

ameter. We use five disks stacked vertically with 0.051 cm annular spacers between each 
disk. Additionally, we place spacers between the top disk and the upper boundary and 
the lower disk and the lower boundary. Figure 6.6 shows a drawing of the medium and 
Table 6.2 lists its thermal properties. 

Figure 6.6 Schematic drawing of the disordered porous medium. Each of the 
five disk layers contains 362 randomly placed non-overlapping holes. Reprinted 
from Howie (1993), with the permission of the author 
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Table 6.2 Properties of the disordered medium. Prandtl and Darcy numbers 
are calculated with the vertical property values 

Property Horizontal Vertical 

Permeability, K (cm^) 2.3 x 10"^ 1.8 x 10" 
Conductivity, km (Wcm-^K-^) 0.010 0.008 
Size (cm) 3.016 (radius) 1.056 
Prandtl number, Prm 4.19 
Darcy number. Da 1.6 x 10~^ 
Porosity 0.314 

In contrast to the ordered medium that shows a sharp primary bifurcation, the disordered 
medium shows rounding of the heat transfer curve at the primary bifurcation. This is 
shown in Figure 6.7 which displays heat transfer data for five experiments. Onset of 
convection in the disordered medium occurs at Ra^j^ = 37 ± 4 which is in good agreement 
with the expected critical value of i?a — 41.1 (including the effects of anisotropy, see 
equation (6.32)). For defining the critical point, we use the point of intersection of the 
fully conductive and fully convective portions of the heat transfer curves. The rounding 
noted at criticality corresponds to localized convection in regions where the properties 
combine to create a local Rayleigh-Darcy number greater than the mean value. As the 
temperature difference across the medium increases, the convection spreads out from these 
seed areas and eventually fills the entire layer. This corresponds to the point where the heat 
transfer curve first has a constant positive slope. As in the case of our ordered medium, 
the disordered medium also exhibits a Nu versus Ram slope that is less than the predicted 
value. For the disordered medium 5 = 1.35 ± 0.15. 

An additional interesting feature shown in Figure 6.7 is the different slopes for the fully 
convective portion of Nu as a function of Ram- With each cycling through the onset of 
convection, we generally obtain a different convection pattern. Each convection pattern, 
although frozen once initiated, produces a slightly different Nu versus Rdm curve. 

A typical wave pattern is show in Figure 6.8. This medium always produces irregular 
polygons as the preferred pattern with each cycling through criticality producing a different 
pattern. Due to the irregularity of the pattern, the critical wave number, g = 3 ib 0.4, has 
a relatively large uncertainty. The irregular nature of the pattern suggests that the local 
variability in the Rayleigh-Darcy number plays an important role in selecting the critical 
convection pattern. It should be noted that these experiments and the experiments in the 
ordered media from the previous section using the same apparatus are subject to the same 
thermal regulation. Therefore, we can reasonably assume that the rounding of the primary 
bifurcation is solely due to the local variability of the disordered medium. 
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Figure 6.7 Experimental heat transfer data for five experiments using the 
disordered medium. The onset of convection occurs at Ra^ = 37 ± 4. Reprinted 
from Howie (1993), with the permission of the author 

Figure 6.8 Typical irregular polygon-like convection pattern in the disordered 
medium at R — 1.27. Reprinted from Howie (1993), with the permission of the 
author 
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6.8 CONCLUSIONS 

In this chapter, we have discussed two different experiments using the same apparatus. We 
have found that order or disorder within the medium profoundly influenced the convective 
wave patterns near the onset of convection. For the ordered medium, consisting of a 
few layers of rectangular bars, we have found the preferred wave pattern at the onset of 
convection to be parallel rolls. In the disordered medium, consisting of randomly drilled 
disks, we have found irregular polygons as the preferred wave pattern. Further, with each 
cycling through the onset of convection, a new pattern has emerged. Because we have 
carried out both sets of experiments in the same apparatus, we can reasonably conclude 
that the character of the medium (ordered versus disordered) caused these differences in 
the pattern preference. 

Our experimental results have also shown that the wave pattern influences the slope of the 
heat transfer curve. For the ordered medium, where most experiments have produced the 
same pattern and wave number, the heat transfer curve was repeatable. The disordered 
medium produced different heat transfer curve slopes. In this medium, we have found that 
the slope is dependent on the convection pattern. Since each cycling through convection 
onset produced a unique convection pattern, we can expect to see different heat transfer 
curves. 

The majority of porous convection experiments are produced with a random structure and 
therefore most experiments cannot be considered to be homogeneous. This is because 
of the competing needs to have short thermal relaxation times, small-scale structure, 
and Boussinesq thermal properties ultimately limit the spatial resolution of the medium. 
The resulting inhomogeneous media produce complicated, irregular convection patterns. 
We find that most laboratory experiments, ours included, have a mesostructure that is 
neither much smaller than the size of the experiment nor much larger than the size of the 
representative elementary volume used to derive the porous flow equations. 
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Abstract 

The pore-scale mechanics of thermal conduction and creeping flow in ordered, unidirectional 
heterogeneous media is considered and only exact methods which yield detailed fields are 
included. The effective conductivity and the effective permeability depend on the shape, 
orientation, and relative location of the parallel inclusions. Of particular interest is the property 
of anisotropy, which is absent for the frequently studied circular cylinders arranged in square 
or equilateral triangular arrays. The singular case of zero-thickness strip inclusions, for which 
all theories based on the volume fraction would fail, is also discussed. 

Keywords: parallel fibers, micromechanics, effective conductivity, effective perme-
ability, anisotropy 

7.1 INTRODUCTION 

Heterogeneity is prevalent in numerous natural and artificial materials occurring in, but 
not limited to, chemical, civil, and mining engineering, physical and earth sciences, and 
biology (e.g., Happel and Brenner, 1973). The theoretical prediction of the effective 
properties of heterogeneous media has always been difficult. There exists a variety of 
semi-empirical and approximate methods, including the rule of mixtures, bounding tech-
niques, self-consistent schemes, homogenization, local averaging, etc., see for example 
Aboudi (1991), Adler (1992), Kaviany (1995), and Storesletten (1998). Most approximate 
methods do not take into account the shapes and relative positions of the phases, such that 
not only local field properties but also some global properties (such as anisotropy) cannot 
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be determined. For example, the averaging method needs closure assumptions which can 
only be obtained from micromechanics (e.g., Whitaker, 1999). Given the properties of 
the individual phases and their geometric arrangements, the most accurate exact methods 
solve the governing differential equations and the exact boundary conditions microme-
chanically. In particular, this is facilitated for ordered heterogeneous materials where a 
representative cell can be identified. The exact methods also give a detailed field, which 
would be useful in the identification of local extrema, such as temperature hot spots. On 
the other hand, a detailed flow field is essential in the computation of convective heat or 
mass transfer. 

In what follows we shall discuss only the exact methods (as described above) applied to 
a heterogeneous matrix containing ordered unidirectional (2D) fibers and the phases are 
individually homogeneous and are assumed to be in perfect contact with each other. Two 
related steady-state problems will be considered. The first problem is the prediction of 
the effective thermal conductivity of a composite containing two solid phases or a porous 
material with a stagnant fluid phase. The second problem deals with the prediction of the 
effective creeping flow permeability through a solid porous array. 

7.2 EFFECTIVE CONDUCTIVITY 

Thermal conduction of a composite or a stagnant porous medium is governed by Laplace's 
equation, and is thus analogous to electrical conduction, mass diffusion, potential flow, 
Darcy flow in porous media (of an even smaller pore scale), longitudinal elastic shear, etc. 
Therefore the solutions to such problems may appear in a variety of different fields. The 
governing equation for thermal conduction is given by 

V ^ T ^ O , (7.1) 

where T is the temperature. Between the phase boundaries, the temperature and the flux 
are to be continuous. For a given mean temperature gradient Vf, the mean flux per area 
q is obtained micromechanically. Then from Fourier's law 

q = K ( - V f ) (7.2) 

one can deduce the theoretical effective conductivity tensor K. 

Consider a material containing an ordered array of unidirectional fibers. The longitudinal 
effective conductivity may be obtained exactly by the rule of mixtures (an average weighted 
by volume fractions). This is because the flux vector is parallel to the longitudinal direction 
everywhere and the phases become independent of each other. In this chapter, we shall 
concentrate on the more difficult transverse effective conductivity. 
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7.2.1 Some properties of the effective conductivity 

It can be shown that the effective conductivity (and effective permeability of creeping flow) 
is a symmetric matrix, and this can be diagonahzed if the coordinate axes coincide with 
the principal axes of an orthotropic medium (Adler, 1992; Dullien, 1992). We now show 
that if the effective conductivity is the same for two independent transverse directions then 
the material is isotropic in all transverse directions. 

Let Kij be the conductivity tensor in a coordinate system which is aligned with the 
principal axes of an orthotropic medium. Thus Kij is diagonal. If K'^^ denotes the 
conductivity tensor in the new primed axes which are rotated through an angle S about the 
longitudinal (third) direction, the relations are given by 

K[^ = Kii cos^ S -h K22 sin^ 5, K'^^ = Kn sin^ S + K22 cos^ S, (7.3) 

K[2 = K'21 = {K22 - Kn) cosSsinS. (7.4) 

For a square array of circular cylinders, the conductivities along the transverse principal 
axes are equal, i.e., i^ii = K22 = K. Thus from equations (7.3) and (7.4), if {̂  = X22 — 
K and K'12 = K21 = 0 for all rotations 6 and the medium is transversely isotropic. 
For an equilateral triangular array (sometimes misidentified as a hexagonal array) of 
circular cylinders, the conductivities along the two transverse perpendicular principal axes 
(parallel and perpendicular to one side of the triangle) may not be equal. However, due 
to symmetry, the conductivities in a coordinate system which is rotated through an angle 
6 = 27r/3 are the same as those of the original system. Since in this new system the 
conductivity tensor must also be diagonal then from equation (7.4) we have Kn — K22' 
Applying the previous arguments for the square array shows that the equilateral triangular 
array is transversely isotropic. Similarly, the regular hexagonal array (a tiling of hexagons 
with circular cylinders at the corners) is transversely isotropic. 

Keller (1964), using potential fields, proved that the electric effective conductivity of a 
composite containing a rectangular array of circular cylinders has the following property. 
The effective conductivity ratio (effective conductivity over the matrix conductivity) in 
one transverse principal direction is the reciprocal of the effective conductivity ratio in 
the other transverse principal direction, with the conductivities of the fiber and the matrix 
interchanged. Keller's theorem has been verified for the square and triangular arrays (Lu, 
1995). If Keller's theorem is true, we only need to consider half of the number of cases, 
say, the fibers are less conductive than the matrix, since the more conductive cases can be 
deduced from the same data using Keller's theorem. 

7.2.2 Fibers of circular cross-sections 

Basically three different types of methods are used in the micromechanical analysis. The 
earliest method, used by Rayleigh (1892), summed the infinite singularities due to the 
fibers. Rayleigh's method was improved and extended by Perrins et al. (1979) who 
published tables of effective conductivities for various relative fiber conductivities. The 
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second method, by Han and Cosner (1981) and Lu (1995), used eigenfunction expansions 
in a representative cell and collocated on the boundary. Lu's results agree very well with 
those of Perrins et al Finally, finite-difference (Keller and Sachs, 1964; Adams and 
Doner, 1967) and finite element (Grove, 1990; Rolfes and Hammerschmidt, 1995; Islam 
and Pramila, 1999) methods have also been used. The results of the latter cannot be 
compared due to the poor quality of the graphs. All the above sources considered ordered 
arrays of circular cylindrical fibers in square or triangular arrays, except two specific 
rectangular arrays computed by Han and Cosner (1981). The related case of elliptic fibers 
in a rectangular array was studied by Adams and Doner (1967) using finite differences. 
Lu (1994) transformed the ellipse to a circle and then used collocation. Nicorovici and 
McPhedran (1996) extended Rayleigh's method to elliptic cylinders. 

In what follows we shall briefly discuss the anisotropic properties of a material with a 
rectangular array of circular cylinders. We shall use a modified method of eigenfunction 
expansion and collocation and Figure 7.1(a) shows the dimensions. The representative 
cell is partitioned into three regions: Region III is a quarter of a cylinder. Region II is 
a square region with a corner deleted by Region III, and a complementary rectangular 
Region I. The normalized boundary conditions for Case A, where the transverse heat flux 
is through the larger cylinder gaps, are shown in Figure 7.1(b). The general solution, Tj, 
for Region I is given by 

oo 

r,(a;,2/) = a ; + ^ > l „ s i n ( a „ a ; ) (e"'.(J'--) + e-^"(s'+"') , (7.5) 
n = l 
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Figure 7.1 (a) Cross-sectional geometry, (b) Case A, flux through the larger 
gaps, and (c) Case B, flux through the smaller gaps 
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where an = TITT and An are coefficients to be determined. The general solution, Tn, for 
Region II is given by 

Tu (r, 9) = Yi cos (M) {Bnr^" + Cnr'^") , (7.6) 

where ^^ ^ 2n — 1. Similarly, the solution, Tni, for Region III is given by 

oo 

Till (r, 9) = Y.^n cos iPne) A . (7.7) 
n = l 

The temperature and heat flux are then matched at their common boundaries. We find 

T „ ( M ) = r „ , ( W ) , (7.8) 

f i ( « ) = A § l ( W ) , (7.9, 

where X ^ KI/K is the ratio of the conductivities of the two phases. Equations (7.8) and 
(7.9) yield 

Cn - ^b^^-Bn, Dn = {l-\- fl) Bn, (7.10) 

where /x = ( l - A ) / ( l + A). Between Regions I and II the matching conditions are as 
follows: 

Ti (x, -a) = Tu (esc 9,6), (7.11) 

^ {x, -a) = KTu {esc 9,6), (7.12) 
oy 

where 

K = — =r sm9— -h ^ . (7.13) 
oy or r o6 

The remaining condition is for Tu to be unity on the right-hand side, i.e., 

rii=:(secl9,6>) = l. (7.14) 

Equations (7.11) - (7.14) are to be satisfied by collocation. 

Next consider Case B where the mean temperature gradient is applied through the smaller 
gaps. The general solutions for the three regions are as follows: 

oo 

Ti^l^Aoy^Y^An cos (a^x) (e^-(^-«) + e-"-(^+^)) , (7.15) 
n=:l 

oo 

Til (r, ^) = ^ B„ sin {M) (r^" + lih^^-r-^") , (7.16) 
n = l 
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Tin {r, e) = f^il + ti) Bn sin (M) r^ (7.17) 
n = l 

The matching conditions are equations (7.11) and (7.12) and the symmetry condition 

Lrii(sec^,6') = 0, (7.18) 

where 
fi Pi 

L ^ — = cos(9— 
ox or 

smO d 
~V"de' (7.19) 

After the temperature distribution is found, the mean heat flux can be integrated analytically 
and one can obtain the effective conductivity. Let a denote the ratio of the effective 
conductivity over the conductivity of the matrix and the aspect ratio be the distance of two 
adjacent cyhnders normal to the mean flux over that parallel to the mean flux. We find 
Keller's theorem holds and only the results for A or cr less than unity need to be presented. 
Figure 7.2 shows the effective conductivity ratio as a function of the volume fraction (j) 
for insulated cylinders (A = 0). The rectangular arrangements are complementary when 
the product of the two aspect ratios (AR) is unity and prominent anisotropy effects are 

Figure 7.2 Effective conductivity ratio as a function of the volume fraction for 
insulated cylinders 
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evident. Further, we observe that the anisotropy becomes less if the conductivity ratio A 
is closer to one and Figure 7.3 shows the variation of the effective conductivity ratio as a 
function of the volume fraction cf) for partially conducting cylinders with X = Ki/n = 0.2. 
It should be noted that the small circles in Figures 7.2 and 7.3 are for the situation when 
the cylinders touch each other. 

7.2.3 Fibers of rectangular cross-sections 

Studies of square cylinders in a (staggered) checkerboard array have been performed by 
Milton et al (1981), Fogelholm and Grimvall (1983), Gu and Tao (1988), Bao et al. 
(1990), and Lu and Bao (1992) using a variety of methods including numerical, integral 
equation, eigenfunction expansion, and collocation. For square cylinders with touching 
corners then an exact solution is possible (Bedichevskii, 1985) but it should be noted that 
Rayleigh's method does not apply. Square cylinders in a square array was solved by Lu 
(1995) using cylindrical coordinates and collocation. Since the effective conductivities in 
the two perpendicular directions are the same then the material is isotropic. 

Figure 7.3 Effective conductivity ratio for partially conducting cylinders, 
namely X = KI/K = 0.2 



184 MICROMECHANICS OF HETEROGENEOUS MATERIALS 

The non-isotropic material containing rectangular cylinders in a rectangular array was 
studied by Wang (1994), but with insulated or perfectly conducting inclusions. The case 
of staggered, insulated rectangular fibers was solved by Wang (2000). Bao et al. (1990) 
formulated the problem for staggered, partially conducting rectangular fibers but pre-
sented results only for square ones in a checkerboard array. However, their eigenfunction 
expression seems to be incomplete, see Wang (1998a). 

7.2.4 Fiber strips 

For a material containing thin strips, the volume fraction is negligible and ceases to be a 
viable parameter. Although the volume fraction is near zero, the effect of the strips on the 
conductivity is non-trivial and in these cases all previous methods which are dependent 
on the volume fraction invariably fail. Wang (1994), using eigenfunction expansions and 
point match, obtained the effective conductivities of parallel strips in a rectangular array. 
The method was extended to cross-ply strips, see Wang (1997a), and staggered arrays, 
see Wang (1999a). We shall briefly describe the procedure for the staggered array of thin 
strips. 

Figure 7.4(a) shows the cross-section. We normalize all lengths by L, and the dimensional 
temperature T' by T = {2T - TQ - Ti) / {TQ - Ti) and if the strips are insulated then 
they can only affect the conductivity in the direction normal to the surfaces. The boundary 
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Figure 7.4 (a) Cross-section of a staggered array of strips, (b) insulated strips 
under a transverse normal flux, and (c) perfectly conducting strips under a 
transverse parallel flux 
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conditions are shown in Figure 7.4(b). The general solution satisfying Laplace's equation, 
the top and bottom reflective boundary conditions at 2/ = ±1/2, and the antisymmetry 
condition T (x, y) = —T (—x, -y) is given by 

T (x, y) ^Aox + J2 ^n [e^-(^-^) - ( -1 )" e-^-^^+^^l cos K {y ± 0.5)]. (7.20) 
n=\ 

The unknown coefficients are determined by point match using a truncated series on the 
remaining boundary conditions on x = a. The other extreme is when the strips are 
perfectly conducting. In this case the longitudinal conductivity is infinite, the transverse 
conductivity normal to the surfaces is the same as the matrix, and the transverse con-
ductivity parallel to the surfaces is non-trivial. The boundary conditions are shown in 
Figure 7.4(c). The general solution satisfying the top and bottom boundary conditions 
and the antisymmetry condition is given by 

00 

T (x, y) = -22/ -f ^ Cn [e"-(^--) - ( -1 ) " e-"-(^+^)] sin K iv + 0-5)] - (7.21) 
n=l 

Again the coefficients are found by point match. The mean heat flux is then integrated 
analytically, from which we obtain the effective conductivity as a function of a, see 
Figures 7.5 and 7.6. We see that the difference between the staggered array and the 
rectangular array is quite pronounced, especially for the smaller gap widths a, although 
the shape, orientation, and 'volume fraction' of the strips are the same. It is important to 
note that Keller's theorem does not apply to strips. 

Figure 7.5 Effective normal conductivity ratio as a function of a for a staggered 
array of insulated strips (Wang, 1999a). Dashed lines are for a rectangular array 
(Wang, 1994) 
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Figure 7.6 Effective transverse tangential conductivity as a function of a for 
perfectly conducting strips (Wang, 1999a). Dashed lines are for a rectangular 
array (Wang, 1994) 

7.3 EFFECTIVE PERMEABILITY 

The slow viscous flow through an array of cylinders is important in the flow across 
a filter and biological fibers, catalytic converters, drying, manufacturing of composite 
materials, and seepage through porous media. The governing Stokes equation for steady, 
incompressible creeping flow is given by 

(7.22) 

where p is the viscosity of the fluid, u is the velocity vector, and p is the pressure. Due to 
linearity, the Stokes equation leads to Darcy's law, e.g., Scheidegger (1974), Adler (1992), 
and Nield and Bejan (1999), i.e.. 

U=-K{-\/p), (7.23) 

where U is the mean velocity vector and K is the effective permeability tensor, to be 
found micromechanically by solving equation (7.22) with the no-slip boundary conditions 
on all solid surfaces. As noted before, the effective permeability is symmetrical, and is 
diagonal if the axes are aligned with the principal axes of the medium. The previous 
isotropy proof still holds, but Keller's theorem is inapplicable. For unidirectional fibers, 
due to linearity, one can separate the flow into longitudinal and transverse directions. 

For longitudinal flow, equation (7.22) reduces to the Poisson equation 

V'w = 1, (7.24) 
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where V^ is the two-dimensional Laplacian normalized by a length scale L and w is the 
longitudinal velocity normalized by L'^Ap/fi. It is of interest to note that equation (7.24) 
also governs the torsion of elastic bars and the deflection of membranes. The longitudinal 
flow problem is not as trivial as the longitudinal conduction problem. 

For the transverse flow, equation (7.22) reduces to the biharmonic equation 

V V = 0, (7.25) 

where -0 is the stream function obtained from the continuity equation. Further, the 
biharmonic equation also governs plane elasticity problems. 

7.3.1 Fibers of circular cross-sections 

Longitudinal flow between parallel circular cylinders was solved by Sparrow and Loeffler 
(1959) using an eigenfunction expansion and collocation, Banerjee and Hadaller (1973) 
using a variational technique, and Larson and Higdon (1986) using a boundary integral 
method. However, the transverse flow, governed by a fourth-order differential equation, 
is more difficult to solve. Sangani and Acrivos (1982) used eigenfunction expansion and 
collocation, Drummond and Tahir (1984) used singularity summations, and Larson and 
Higdon (1987) used boundary integrals. Numerical methods, such as finite differences 
(Gebart, 1992; Skartsis et al, 1992; Alcocer et aL, 1999) and smooth particle hydrody-
namics (Zhu et al, 1999), have also been used. The above sources mostly considered 
circular cylinders in a square or triangular array. 

We shall present the non-isotropic rectangular array, see Figure 7.7(a), considered by 
Wang (2001), and Figure 7.7(b) shows the domain decomposition for longitudinal flow. 
The solution to Region I, satisfying equation (7.24) and the reflective conditions at y = 0, 
X = 0, and x = 1, is given by 

2 oo 

wi{x,y) = ~^-^Ao-^Yl ^ ^ [e""^^""^ + e-^-(^+^)] cos (a^rc), (7.26) 
n=l 

where a^ = TITT. The general solution of Region II satisfying equation (7.24), the no-slip 
condition air = b, and the reflective conditions at ^ = 0 and 9 — 7r/2 is given by 

7 2 2 °^ 

wii {r, 9) = - ^ + So In ( ^ ) + ^ B„ (r^" - 6''»^-2n) ^^g (2n^). (7.27) 
n=l 

The remaining conditions are the reflective condition at x = 1, namely 

I.WII {sec 9,6) = 0, (7.28) 
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Figure 7.7 faj T/ie cross-section, (b) boundary conditions for longitudinal 
flow, (c) boundary conditions for transverse flow through the larger gaps, and 
(d) boundary conditions for transverse flow through the smaller gaps 

and the matching conditions Siiy = —a, i.e., 

wi (cot 6, —a) = wu (esc 0,6) 

dy 
(cot 9, —a) = Kwu (esc 9,9). 

(7.29) 

(7.30) 

The infinite series are then truncated and equations (7.28) - (7.30) are collocated on 9 
angles spaced between 0 and 7r/2. The coefficients A and B, and thus the flow field, are 
determined. Since the solution is analytic, the mean velocity and the effective permeability 
can be integrated easily and Figure 7.8 shows the normalized permeability K* = K/L'^ 
as a function of b. 

The boundary conditions for transverse flow parallel to the cylinder rows are shown in 
Figure 7.7(c), where -0 is the stream function. The general solution of Region I that 
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Figure 7.8 Permeability K* as a function of b for longitudinal flow. Small 
circles are from Sparrow and Loeffler (1959), the dashed lines are from 
equation (7.42) and the dotted lines are from Drummond and Tahir (1984) 

satisfies equation (7.25) and the reflective conditions at y = 0, x = 0, and x = 1 is given 
by 

CXD 

rPi{x,y) = l + a + Coy + D^y^ + ^ { c „ [e""(^-") - e-'*"(^+")] 
n=l 

+ £>„ U-^y-") + e-""(2'+")] } cos {anx). 

(7.31) 
The general solution of Region II, which satisfies equation (7.25), the no-slip on the 
cylinder, and the reflective conditions at 0 = 0 and 6 = n/2, is given by 

V'li ir,9) = [(r^- ^b^r + J ) E , + fr In (^) 
r b2 

2"^ 2r 
j)2+20„ 

Fi )-sin6' 

En 

+ ,2-0„ 
52-2/3„ 

+ (̂ '0̂ ]̂ "}''"̂ "̂̂ '̂ 
(7.32) 
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where /3„ == 2n - 1 and the Es and Fs are unknown constants. The reflective conditions 
at a: = 1 are given by 

LV^„(sec<9,6>)-0, (7.33) 

IJ ipu {sece,6) = 0. (7.34) 

The matching conditions are given by 

V̂i (cot (9, -a) = ^11 (esc e, 6), (7.35) 
dtp 
dy 

- ^ (cot e,-a) = Kxpu (esc (9,0), (7.36) 
dy 

- (cot 9,-a) = K^ ipu (esc <9,6>), (7.37) 
dy'^ 

^ (cot l9, - a ) = K^ tPu (esc l9,6>) (7.38) 
dy^ 

and again point match yields the unknown coefficients. From the flow field, the mean pres-
sure drop is integrated analytically and the variation of the resulting effective permeability 
as a function of b is shown in Figure 7.9. 

Figure 7.7(d) shows the boundary conditions when the fluid is forced across the rows of 
the cylinder. The general solution for Region I is given by 

oo 

^i ( x , y ) ^ x + y2\Cn [e^-(^-^) + e-^-^^+^^l 
n=l ^ •' (7.39) 

-f Dn [e^-(^-^) - e-^-(2/+a)j I sin (^^^) 

The general solution for Region II is the same as equation (7.32), except the sines are now 
replaced by cosines. 

The reflective condition at x = 1 is now given by 

ipii {sec 6,6) = 1, (7.40) 

l^ipu{sec6,6) = 0 (7.41) 

and the matching conditions are the same as equations (7.35) - (7.38). After the mean 
pressure drop is found from the flow field, the resulting effective permeability as a function 
of b is shown in Figure 7.10. On comparing Figures 7.8 to 7.10, we see that the perme-
abilities in the three principal directions are entirely different. For the same geometrical 
arrangement, the largest permeability is longitudinal, and the smallest permeability is in 
the direction through the smaller gaps. 

It should be noted that when the fibers are sparse, or when their relative radii b is very 
small, the effective permeability becomes very large. Using a shear-free outer envelope 
approximation, Happel and Brenner (1973) showed that the drag (both longitudinal and 
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Figure 7.9 Permeability K* as a function of b for transverse flow through the 
larger gaps. Small circles are from Sangani and Acrivos (1982) and the dashed 
lines are from equation (7.43) 

transverse) for a small solid cylinder is inversely proportional to the log of the cylinder 
radius. For longitudinal flow we can deduce the formula 

K* = {a + 1) - | ln6 | + /i(a) 
TT 

(7.42) 

where / i is a constant depending on a and it is found by extrapolation from the results 
of the eigenfunction and collocation method described above. For transverse flow the 
formula is given by 

K* = ( a - M ) [ - | l n 6 | + /2 . ( a ) l , (7.43) 

where /21 is for the transverse flow through the larger gaps and /22 is for transverse flow 
through the smaller gaps. Figure 7.11 shows that all three functions are almost linear. 
Equations (7.42) and (7.43) are valid even for cylinders with a radius b as small as 10~^^ 
and fully numerical methods are unlikely to treat such small radii without serious scaling 
difficulties. 
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Figure 7.10 Permeability K* as a function of b for transverse flow through the 
smaller gaps. Dashed lines are from equation (7.43) 

Figure 7.11 The functions / i , /21, and /22 cis a function of a 
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7.3.2 Fibers of other cross-sections 

The longitudinal and transverse flow through a rectangular array of rectangular cylinders 
was solved by Wang (1996, 1997b) using eigenfunction expansions and matching. The 
results also include the effective permeabilities of zero thickness strips. The more phys-
ically prevalent staggered cases have been studied by Wang (1998b, 1999b) and some 
specific cases of elliptic fibers have been considered by Larson and Higdon (1987) and 
Ranganathan ef a/. (1996). 

Of interest is a boundary perturbation method which can be applied to longitudinal flow 
past a triangular array of cylinders (Wang, 1999c). Perturbation methods are completely 
analytic, unlike the semi-analytic boundary collocation methods, and they will be briefly 
described here. For a triangular array, each cell centered on a fiber is a hexagon whose 
boundary can be represented in polar coordinates by 

N 

r rr 1 + / ((9) = 1 -f ] ^ On COS (6n<9). (7.44) 
n=l 

The normalized mean radius is unity and the coefficients are given by 

an = {-0.05816,0.01613,-0.00734,0.00416,-0.00268, 

0.00186, -0.00137,0.00105, -0.00083,...} 
(7.45) 

and we note that | / | is small. Assuming the fiber has a six-fold symmetry then it can be 
represented by 

N 1 
11-h ^ 6n COS (6n(9) , (7.46) r = p[l-^g{e)] = p 

n=l J 

where ^ < 1. The fiber cross-sections are circular if 6n = 0 and hexagonal if hn — an-
Other shapes, such as stars or compound cylinders, can also be generated. The governing 
equation is equation (7.24) and the boundary conditions are given by 

5 ^ - 0 on r = l-f/ , (7.47) 
or] 

where rj is the normal direction, and 

i/; = 0 on r = p{l + g). (7.48) 

The longitudinal velocity is then expanded as follows: 

W^WQ (r) + wi (r, 6) -f W2 (r, 6) + ^3 (r, 6)^0 (/^) , (7.49) 

where Wi — O [p]. Equation (7.49) is then substituted into equations (7.24), (7.47), and 
(7.48) and we note the weak nonlinearities which occur from the boundary conditions. 
The process is facilitated by a computer with symbolic capabilities and the flow rate and 
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permeabilities can be easily integrated. It is of interest to note that the third-order solution 
for circular cylinders is found to differ from that given by Sparrow and Loeffler (1959) by 
about 1%. 

7.4 DISCUSSION 

Anisotropy of a homogeneous matrix containing homogeneous fibers may arise from two 
sources. One source is due to the shape of the fiber showing a preferred direction, for 
example, parallel fiber strips in a square array. The other source is due to the arrangement 
of the fibers, such as circular cylinders in a rectangular array. We have shown, whatever 
the shape or arrangement, that if the conductivities (or permeabilities) in two independent 
directions are equal then the material is isotropic. Thus, equilateral triangular fibers in an 
equilateral triangular array (with the principal axes aligned) would be isotropic. Aligned 
square fibers in a checkerboard array is also isotropic and there are many other such 
examples. 

Our method of eigenfunction expansion and collocation has been used by previous authors. 
However, for long, rectangular arrays we find convergence becomes a problem. This is 
due to the fact that cylindrical polar eigenfunction expansions can only be shown to be 
Fourier convergent on a circular boundary. The problem is not evident for regular square 
or triangular arrays, but is pronounced for long, rectangular arrays. Therefore, we added 
a complementary rectangular region to maintain the convergence of the cylindrical eigen-
function expansions. In comparison to fully numerical schemes, the collocation method 
has much fewer equations to solve, and it is also amenable to analytic differentiation or 
integration. Most important is the fact that since the boundary conditions on the fibers 
are satisfied exactly, in deriving the asymptotic formulae, the fiber radii can be made very 
small, in which case fully numerical methods would experience difficulties. 

We comment on the class of inclusions which have zero, or very small, volume fractions. 
Examples are materials with inclusions of fiber strips or flakes, and certain sponges. We 
see that these inclusions often have a large effect on the effective properties. However, the 
composite cannot be treated by many of the existing theories which rely on the volume 
fraction (such as the averaging method) and can only be solved by micromechanical 
methods mentioned in this paper. 

Experimental observations on ideal, ordered, parallel fibers agree with the theoretical 
predictions for both effective conductivity, see Perrins et ai (1979), and effective perme-
ability, see Jackson and James (1986) and Skartsis et al. (1992). However, these results are 
for isotropic arrangements of circular cylinders only. Further experimental comparisons 
are needed for anisotropic arrangements such as rectangular arrays of circular cylinders 
and fiber strips. Detailed experimental temperature distributions and streamlines are also 
of interest. 
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Abstract 

Four available methodologies for developing macroscopic turbulence models for incompressible 
single-phase flow in rigid, fully saturated porous media are reviewed. The first method, known 
as the Antohe-Lage (A-L) method, starts with the closed volume-averaged equations, which 
are then averaged in time to produce the turbulence equations. The second, known as the 
Nakayama-Kuwahara (N-K) method, makes use, first, of the closed time-averaged equations, 
and then proceeds with volume-averaging for deriving the turbulence equations. These two 
methodologies lead, in general, to distinct sets of turbulence equations because of the dijRTerent 
averaging order, i.e., space-time and time-space, respectively. A third, and probably the most 
consistent method, based on double-decomposition, is the Pedras-de Lemos (P-dL) method. In 
this method, the momentum equation is closed by using the Hazen-Dupuit-Darcy model for the 
total drag effect only after the space-time averaging (or time-space averaging) is performed. 
Although for the P-dL method the averaging order is immaterial when deriving the turbulence 
momentum equation, the difference between space-time and time-space averaging remains in 
the k-e equations. Unfortunately, detailed experimental model validation, which remains to 
be seen, is tremendously challenging because of the need to obtain time-averaged and volume-
averaged quantities simultaneously in order to compare experimental and analytical (numerical) 
results direcdy. A fourth method, the Travkin-Catton (T-C) morphology method, is discussed 
only briefly because it follows the N-K method (time-space integrating order) and no closure 
to the final equations is yet available. 

Keywords: turbulence, modeling, transport, porous media, averaging 
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8.1 INTRODUCTION 

Modeling turbulent transport in porous media can impact several critical and practical 
engineering areas. For instance, the accurate simulation of turbulent air flow permeating 
through forests, where the vegetation is seen as a porous structure, is extremely important 
for predicting bio-diversity (spreading of seeds) and mitigation of fire propagation. The 
transport and dispersion of smog through heavily built cities can also benefit from the 
accurate modeling of turbulent flow through porous media. 

Efficient and realistic overall pressure-drop along oil extraction porous wells is also 
very important. In this application, the flow of oil and gas along a radial-inward path is 
accelerated by getting near a more permeable region (the well) becoming turbulent. Proper 
mathematical characterization of the flow is necessary in order to reduce uncertainties on 
the well lifetime performance. 

Processes of solidification and fusion of certain alloys are characterized by the presence 
of three distinct domains, namely, a fluid, a mushy and a solid zone. When the flow in the 
fluid zone is turbulent, the accurate prediction of the final product (the metal) depends on 
the proper characterization of the turbulent transport process inside the mushy zone. A 
similar process is the manufacturing of optical fiber and glass, which involves the turbulent 
flow of a doping gas during the melting process. 

These engineering and environmental processes are only a few examples establishing 
the variety and importance of applications that can benefit from a proper mathematical 
analysis of turbulent flow in porous media. In a broader sense, the study of turbulence in 
porous media embraces fluid and thermal sciences, materials, chemical, geothermal, bio, 
petroleum and combustion engineering. 

So far, the term turbulence has been used here to denote turbulence anywhere within the 
pores of the porous medium. The turbulent transport within the pore network of a porous 
medium can be studied, in principle, through direct numerical simulation. However, the 
direct numerical simulation at the pore (microscopic) level is impractical not only because 
of the tremendous computational effort required to resolve all the different turbulence 
scales, but also because of the additional effort required to access, map and resolve the 
complicated internal morphology of the porous medium. 

Modeling is a natural alternative to direct numerical simulation. The objective of good 
modeling is to reduce the complexity of the mathematical formulation for studying the 
phenomenon. Averaging is a powerful modeling tool, which must be used carefully 
not to compromise the fundamental mathematical information ruling the phenomenon. 
When studying turbulent flow in individual fluid conduits, for instance, the Navier-
Stokes equation can be time-averaged and closed with the stress-strain relations for the 
Reynolds stress, leading to the well-known k-e turbulence model. This model reduces the 
complexity of the problem by eliminating the need to follow the rapid fluctuations in time 
of fluid velocity and pressure, so characteristic of turbulence. Instead, the final model 
equation deals only with time-averaged quantities. Although information is invariably 
lost when time averaging the equations, it is hoped that the major characteristics of the 
transport process be retained by the model. 
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When considering transport in porous media, the complexity is the internal morphology 
of the porous medium, which is extremely complicated in general. In this case, volume 
averaging is the tool of choice. For instance, by volume averaging the Navier-Stokes 
equation, and closing the resulting equation with the Hazen-Dupuit-Darcy (HDD) model 
(also known as the Forchheimer-Darcy model), the macroscopic general momentum 
equation is obtained. This equation involves only volume-averaged quantities eliminating 
(as hoped!) the requirement for detailing the interior morphology of the porous medium. 
Again, information is invariably lost by the averaging process. Nevertheless, the major 
characteristics of the transport process are to be captured by the model. 

To consider turbulence in porous media is to bring together the difficulties in modeling 
turbulence (time variation) and in modeling transport in porous media (space variation). A 
natural modeling approach is to simply apply the time averaging (for handling turbulence) 
and the space averaging (for handling the morphology) to the microscopic equations (valid 
at the pore level, e.g., Navier-Stokes). It is exactly at this point that modeling turbulence 
in porous media becomes excitingly challenging. For example, is the averaging order 
(time-space or space-time) important? If it is, then what is the proper order? 

The main objective of this chapter is to attempt to answer these questions by reviewing 
and critiquing four different available methodologies for developing macroscopic turbu-
lence models for incompressible single-phase flow in rigid, fully saturated porous media. 
These methods are the Antohe-Lage (A-L) space-time method, the Nakayama-Kuwahara 
(N-K) time-space method, the Pedras-de Lemos (P-dL) double-decomposition method, 
and the Travkin-Catton (T-C) morphology method. Although much is yet to be accom-
plished in this area, it is expected that the contribution herein will provide insight into the 
continuous progress in modeling turbulence in porous media. 

8.2 TRANSITION TO TURBULENCE IN POROUS MEDIA 

The topic of transition to turbulence in porous media is among the interesting topics 
reviewed by Lage (1998), who discussed several experimental studies related to transition 
to turbulence in porous media, and Masuoka (1999). It is important to point out that 
the available quantitative measurements indicating transition to turbulence are all local, 
i.e., performed at a particular location within a pore. We refer to these as pore-level or 
microscopic measurements. 

The determination in a porous medium experiment of the critical Reynolds number at 
which turbulence appears is not a straightforward matter. Even considering a porous 
medium with simple internal morphology, say of conduit type in which the pore space 
consists essentially of tubes of varying cross-section. Here there is the possibility of 
relaminarization in the diverging portions of the tubes of turbulence that appears in con-
verging portions. Ideally, one would like to put probes in the narrowest part of the tubes, 
but of course that is difficult in practice and almost certainly has not been achieved in 
experiments reported to date. Also, it should be noted that the appearance of a signal 
chaotic in time at a single position is probably an excellent indication, but not conclusive 
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evidence, of the onset of turbulence. One needs to observe also what is happening at a 
neighboring point in order to be sure that turbulence is occurring. 

This argument is because, for a constant volume flux through a tube, the mean velocity is 
inversely proportional to tube cross-section, and hence inversely proportional to the square 
of the tube diameter. The local Reynolds number, which involves the product of the mean 
velocity and the tube diameter, is thus inversely proportional to the tube diameter. This 
means, in the wider portions of the tube, that the local Re value may drop below the 
critical value necessary to maintain the turbulent state. In other words, relaminarization 
may occur. Using the same argument, the onset of turbulence is likely to occur first in 
those parts of the channel where the local Re is highest, namely in the narrowest part of the 
tubes. When porous media with more complicated internal morphology are considered, 
then the phenomenon of flow separation might come into play, inducing turbulence locally. 
The difficulty is not only to place a probe and measure the internal turbulence level but also 
to determine the location(s) within the pore network more prone to turbulence. For that, 
one would need to know the internal flow structure before performing the measurement. 

Although controversial, see Lage and Antohe (2000), the pore-based Reynolds number 
Rep is commonly used in the literature for recognizing distinct flow regimes in porous 
media. Dybbs and Edwards (1984), for instance, used their pore-level experimental 
observations to classify the flow regimes as follows: 

(a) Darcy, or viscous-drag, dominated flow regime (Rep < 1), 

(b) Forchheimer, or form-drag, dominated flow regime (1 ~ 10 < Rep < 150), 

(c) post-Forchheimer flow regime (unsteady laminar flow, 150 < Rep < 300), and 

(d) fully turbulent flow (Rep > 300). 

Keep in mind that the characterization of regimes (c) and (d) are based on point mea-
surements (with probes placed at a specific location inside the porous medium). For 
Rep < 150, classical mathematical treatment of flow in porous media, see Lage (1998), 
invokes the notion of a representative elementary volume (REV), for which macroscopic, 
volume-averaged transport equations are derived and closed using empirical models, e.g., 
the HDD model. These macroscopic equations carry less detail of the flow pattern inside 
the REV, revealing only volume-averaged flow characteristics. 

The mathematical description of the last regime, for high Reynolds number (Rep > 300), 
has given rise to interesting discussions in the literature and remains a controversial issue. 
Turbulence models presented in the literature for studying this regime follow two different 
approaches. In the first approach, see Lee and Howell (1987), Wang and Takle (1995), 
Antohe and Lage (1997), and Getachew et al (2000), the governing equations for the 
mean and turbulent fields are obtained by time-averaging the volume-averaged equations 
(space-time averaging sequence, the A-L method). In the second approach, see Masuoka 
and Takatsu (1996), Takatsu and Masuoka (1998), Nakayama and Kuwahara (1999), 
Travkin et al (1999), and Pedras and de Lemos (2001a), a volume-average operator is 
applied to the local time-averaged equation (time-space averaging sequence, the N-K 
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method). We mention in passing that Nield (1997) and Lage and Antohe (2000) pointed 
out that the works of Masuoka and Takatsu (1996) and Takatsu and Masuoka (1998) are 
based on a misconception about the identity of the onset of turbulence and the form-drag 
term (Forchheimer term) taking significantly large values. 

Included in these two approaches are two alternative methods, namely the Travkin-Catton 
(T-C) morphology method, see Travkin et al. (1999), and the Pedras-de Lemos (P-
dL) double-decomposition method, see Pedras and de Lemos (2001a). In the following 
sections we present and discuss each one of these methods and their limitations. 

8.3 AVERAGING TURBULENCE MODELS 

The Travkin-Catton (T-C) morphology method follows the time-space integration se-
quence of the N-K method. After mentioning several of their papers in which turbulent 
transport equations for porous media were developed based on the generalized volume 
averaging theory (VAT) for highly porous media, Travkin et al. (1999) wrote (page 2) 

Antohe and Lage (1997) presented a two-equation ... turbulence model for incom-
pressible flow within a fluid saturated and rigid porous medium that is the result of 
incorrect procedures. 

Travkin et al (1999) did not explain why they considered those procedures to be incorrect, 
and the reader was left to guess that any procedure that are not based on VAT must be 
incorrect. Travkin et al (1999) proceeded to derive their own form of the k-e equations, 
displayed as their equations (35) and (37). These complicated equations contain various 
integrals dependent on the morphology of the porous medium, and there is no indication 
in the paper of how closure is to be completed, despite the claim (page 6) that 'closure 
examples are given'. 

In his discussion of Nield (2001), which will be published at the same time as that paper, 
Dr Travkin writes 

It is not to say that the closure problem for the VAT equations is solved completely. 
Of course, it is not even close to a final determination, but the ways and means already 
have substantial progress. 

Much of Dr Travkin's discussion is concerned with thermal non-equilibrium, but heat 
transfer matters are outside the scope of our chapter. We invite our readers to read Dr 
Travkin's discussion and decide for themselves which of his claims have merit. 

At first sight, the method of volume averaging is a rigorous procedure, as it is claimed by 
Travkin et al. (1999). It is indeed a rigorous procedure but only up to the stage at which 
the system of equations is closed. For that, the integrals remaining in the VAT must be 
solved or modeled. The first alternative is viable only for porous media with extremely 
simple morphology, e.g., a bundle of parallel capillaries, and even in this case the solution 
is not trivial. Hence, in order to make practical progress, approximations have to be made 
to evaluate the remaining integrals, and from then on the procedure is not rigorous. It 
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is inevitable that physical information is lost at the closure stage; see, for example, the 
discussion of the 'filter' in Whitaker (1999, Sections 1.3.4,1.6.4). 

In performing the closure one is guided by physical experience. In other words, the 
closure process is a semi-empirical matter and the usefulness of the final model is critically 
dependent on the skill that one employs at the closure stage. We note that Travkin and his 
colleagues have written extensively on this subject, see Travkin and Catton (1994, 1995, 
1998), Catton and Travkin (1996), and Gratton et al. (1996). However, we find that their 
main contribution has been to stress that morphology is very important for the closure 
procedure, without indicating how to perform the closure. 

We then concentrate our attention in the A-L and N-K methods. In the literature, the A-L 
and N-K methods lead to models having different governing equations and, apparently, 
to contradicting overall conclusions. It is important to be very careful when comparing 
these two methods. 

The closing of the equations after each averaging and the different averaging order (space-
time and time-space) yield equations that are valid at different scales. A piece of clear 
evidence of this fact is the different turbulence kinetic energy that emerges naturally in 
each method. The turbulence kinetic energy in the N-K model (time-space averaging 
sequence) is defined as the volume averaging of the time averaging of the square of the 
fluid velocity fluctuations (the microscopic turbulence kinetic energy). This is different 
from the turbulence kinetic energy defined in the A-L model, equal to the time averaging 
of the square of the volume-averaged fluid velocity fluctuations. These two quantities 
are different because the time-integration does not commute with the space-integration, 
because the integrand (spaced-averaged velocity fluctuation square) is nonlinear. 

In this regard, Nield (1991) and Nield and Bejan (1999) expressed the view that it is impor-
tant to distinguish between turbulence in the pores of a porous medium and turbulence on 
a macroscopic scale (the global scale, that of the apparatus in an experiment). Subsequent 
investigations have shown results that are consistent with the statement by Nield (1991, p. 
271) that 

A further consequence of our physical argument is that true turbulence, in which 
there is a cascade of energy from large eddies to smaller eddies, does not occur on a 
macroscopic scale in a dense porous medium. 

For example, the turbulence model of Antohe and Lage (1997), derived using the A-L 
method, leads to the conclusion that the only possible steady state solution for unidi-
rectional, fully developed turbulent flow is zero macroscopic turbulence kinetic energy. 
Antohe and Lage (1997) does deal with macroscopic turbulence in a sensible fashion. Of 
course, their model says nothing about the turbulence within the pores. 

On the other hand, the model by Nakayama and Kuwahara (1999), derived from the 
N-K method, is concerned with the effect of turbulence within the pores and not with 
true macroscopic turbulence. This aspect may have led Nakayama and Kuwahara (1999) 
to misinterpreted the 'zero' turbulence conclusion (for unidirectional, fully developed 
turbulent flow) of Antohe and Lage (1997), by writing on p. 427 of their paper: 
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Antohe and Lage (1997) examined their model equations for the turbulence kinetic 
energy and its dissipation rate, assuming a unidirectional fully-developed flow through 
an isotropic porous medium. Their model demonstrates that the only possible steady 
state solution for the case is 'zero' macroscopic turbulence kinetic energy. This 
solution should be re-examined, since the macroscopic turbulence kinetic energy in 
a forced flow through a porous medium must stay at a certain level, as long as the 
presence of porous matrix keeps generating it. (The situation is analogous to that of 
turbulent fully-developed flow in a conduit.) Also, it should be noted that the small 
eddies must be modeled first, as in the case of LES (Large Eddy Simulation). Thus 
we must start with the Reynolds averaged set of the governing equations and integrate 
them over a representative control volume, to obtain the set of macroscopic turbulence 
model equations. Therefore, the procedure based on the Reynolds averaging of the 
spatially averaged continuity and momentum equations is questionable, since the 
eddies larger than the scale of the porous structure are not likely to survive long 
enough to be detected. 

Evidently, Nakayama and Kuwahara (1999) neither considered the possibility of a pore-
network with morphology very different from that of a single conduit (damping turbulence, 
instead of producing it), nor realized the special meaning of the turbulence kinetic energy 
defined by Antohe and Lage (1997). The Antohe-Lage result says nothing about the 
existence or otherwise of microscopic turbulence, and its failure to do so should not be 
used as negative criticism of the model. 

Nakayama and Kuwahara (1999) went on to describe their own work: 

The macroscopic turbulence kinetic energy and its dissipation rate are derived by 
spatially averaging the Reynolds-averaged transport equations along with the k-e 
turbulence model. For the closure problem, the unknown terms describing the pro-
duction and dissipation rates inherent in porous matrix are modified collectively. 
In order to establish the unknown model constants, we conduct an exhaustive nu-
merical experiment for turbulent flows though a periodic array, directly solving the 
microscopic governing equations, namely, the Reynolds-averaged set of continuity, 
Navier-Stokes, turbulence kinetic energy and dissipation rate equations. The micro-
scopic results obtained from the numerical experiment are integrated spatially over a 
unit porous structure to determine the unknown model constants. The macroscopic 
turbulence model, thus established, is tested for the case of macroscopically unidirec-
tional turbulent flow. The streamwise variations of the turbulence kinetic energy and 
its dissipation rate predicted by the present macroscopic model are compared against 
those obtained from a large scale direct computation over an entire field of saturated 
porous medium, to substantiate the validity of the present macroscopic model. 

We now make some specific comments on the Nakayama and Kuwahara (1999) model. 
Having integrated the Reynolds averaged equations over an REV, Nakayama and Kuwa-
hara (1999) obtained their momentum equation, equation (11). This is unexceptional. 
However, they then proceed to replace the last two terms of equation (11) by viscous-drag 
(Darcy) and form-drag (Forchheimer) terms to obtain equation (14). This is a standard 
procedure for laminar flows but it appears that this replacement is still highly question-
able in the context of turbulence modeling. In the paragraph containing equation (14), 
Nakayama and Kuwahara (1999) wrote 
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In the numerical study of turbulent flow through a periodic array, Kuwahara et al. 
(1998) concluded that the Forchheimer-extended Darcy's law holds even in the turbu-
lent flow regime in porous media. 

That too is an acceptable statement but it does not justify the transition from equation (11) 
to equation (14). For one thing, equation (14) is substantially different from the standard 
Forchheimer-extended Darcy equation. Furthermore, there is a gap in the argument in 
proceeding from an equation for the turbulence regime in a bulk form, in which the total 
pressure-drop is related to the bulk fluid speed via an expression quadratic in the velocity, 
to an equation involving a differential expression. In summary, it seems that Nakayama 
and Kuwahara (1999) have made an assumption of a relationship between microscopic 
turbulence and macroscopic drag that cannot be justified except in the gross sense that for 
high Reynolds number the form-drag (Forchheimer) term will be dominant. Even in this 
case, this argument is not expected to be valid for high porosity porous media. 

Further, there is a fundamental difficulty with any model in which time averaging 
(Reynolds averaging) is followed by space averaging. This procedure precludes the 
incorporation of the interaction between fluctuating quantities and the solid matrix of the 
porous medium, other than the minor effect of fluctuations in pressure and shear stresses 
along the interfacial solid-fluid area. This aspect was clearly stated by Antohe and Lage 
(1997) as the A-L method suffers from a similar handicap: volume averaging followed by 
time averaging precludes the incorporation of the turbulence effect by the space fluctuating 
quantities. 

Finally, because of their assumption of periodic domain (periodic on the pore scale) 
when performing their numerical calculations, Masuoka and Takatsu (1996), Takatsu and 
Masuoka (1998), Nakayama and Kuwahara (1999), and Pedras and de Lemos (2001a) 
were unable to treat eddies on a scale larger than their period length. This means that 
global eddies were ruled out a priori. 

8.4 MODELING: AVERAGING OPERATORS 

We now present the mathematical foundation for deriving volume-averaged and time-
averaged transport equations. Subsequently, the P-dL double-decomposition method, see 
Pedras and de Lemos (1999), used in deriving another turbulence model, is discussed in 
detail. 
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8.4.1 Volume averaging 

The macroscopic governing equation for flow through a porous medium can be obtained 
by volume averaging the corresponding microscopic equations over a representative el-
ementary volume, AV, see Figure 8.1. For a general fluid property, the intrinsic and 
volumetric averages are related through the porosity (/> as. Bear (1972), 

(¥>) ' = —[ ipAv, {^y = 4>{vy, 4>^ "AF' (8.1) 

where AF/ is the volume of the fluid contained in A F . The property ip can then be 
defined as the sum of ((p)' and a term related to its spatial variation within the REV, ̂ tp, as 

¥' = {'PY + V- (8.2) 

From equations (8.1) and (8.2) one derives ( V ) ' = 0. Figure 8.1 illustrates the idea 
underlined by equation (8.2) for the value of a property of vectorial nature (e.g., velocity) 

Figure 8.1 Representative elementary volume (REV), intrinsic average, space 
and time fluctuations, see Pedras and de Lemos (2000a) 
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at X. The spatial deviation is the difference between the real value (microscopic) and its 
intrinsic (fluid based average) value. 

For deriving the governing flow equations, it is necessary to know the relationship between 
the volumetric average of derivatives and the derivatives of the volumetric average. These 
relationships, presented in Slattery (1967), Whitaker (1969), and Gray and Lee (1977), 
are known as the theorem of local volumetric average, namely 

(V<^r = v(0(</>r) + ^ | n^dS, (8.3) 

( V - ^ r = V - ( < ^ ( ^ r ) + ^ / n .<pd5 , (8.4) 

where Ai and Ui are the interfacial area and velocity of phase / and n is the unity vector 
normal to Ai. The area Ai should not be confused with the surface area surrounding 
volume A F in Figure 8.1. For single-phase flow, phase / is the fluid itself and ui — Q 
if the porous substrate is assumed to be fixed. In developing equations (8.3) - (8.5), the 
only restriction applied is the independence of A F in relation to time and space. If the 
medium is further assumed rigid then AV) is dependent only on space. 

8.4.2 Time averaging 

The need for considering time fluctuations occurs when turbulence effects are of concern. 
The microscopic time-averaged equations are obtained from the instantaneous microscopic 
equations. For that, the time-average value of property (p, associated with the fluid, is 
given by 

(/?dt, (8.6) 1 r 

where At is the integration time interval. The instantaneous property (p can be defined as 
the sum of the time average, Jp, plus the fluctuating component, ^p', and so is given by 

^p^Tp^^'. (8.7) 

Hence, (p' — {). 
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8.4.3 Commutative properties 

From the definition of volume average, equation (8.1), and time average, equation (8.6), 
one can conclude that the time average of the volume average of property (̂  is given by 

1 /•*+^* r 1 r 
dt. (8.8) 

On the other hand, the volume average of the time average is given by 

ft+At 

dV. (8-9) 

As mentioned, for a rigid medium, the volume of fluid, AV/, is dependent only on space. 
If the time interval chosen for temporal averaging. At, is the same for all REVs, then 
the volumetric average commutes with time average because both integration domains 
in equations (8.8) and (8.9) are independent of each other. In this case, the order of 
application of the average operators is immaterial, and equations (8.8) and (8.9) lead to 

i^y = {^y or {ipY = {ifY' (8.10) 

8.4.4 Double decomposition—space and time fluctuations 

Figure 8.1 shows that for any point located at a certain position x, surrounded by a 
volume A y , a volume-average can be defined. This value will be different depending on 
the selected volume /SV. Also, for this very same entity (point x), a time-average can 
be defined, according to equation (8.6), being dependent only on the time interval At. 
Further, from equations (8.1) and (8.7), we have 

A K / J A V / A V / J^Vf 
(8.11) 

and combining equations (8.2) and (8.6), we obtain 

nt+At 1 pt-\-At 

At 
if : 

-. rt+At 1 pt+At 

- y ^dt - — y [{^y + v ) d̂  - M' + v . (8.12) 

Further, the space-averaged value (ipY can also be decomposed into a time-mean and 
fluctuating component as follows: 

M ' - ivY + {'PV • (8.13) 
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Using now the fact that the averages commute, equation (8.10), a comparison of equations 
(8.11) and (8.13) validates the following relationship: 

i'P'y = ivf • (8-14) 

Equation (8.14) means that the volume average of the time varying component of a single 
quantity is equal to the time fluctuation of the volume average of the same quantity. 
Similarly, if we consider the time average component having also a spatial distribution, 
then 

^ = ( ^ ) ^ 4 - V . (8.15) 

Likewise, comparing equations (8.12) and (8.15), in the light of equation (8.10), 

V = V , (8.16) 

or say, the spatial deviation of the time-average quantity is equal to the time average of 
the spatial deviation. 

Further, since both time and space decompositions are based on the same value for cp, one 
can promptly write 

^^Tp-\-ip' = {^Y + 'ip. (8.17) 

Space averaging the second and third terms of equation (8.17), and time averaging the 
fourth and fifth terms, we obtain 

^-(^r + (^r+v+M^')-(^r+v+(^r +(v) • (8.18) > — ^ — - >—^—^ 

Equation (8.18) presents two possible equivalent ways to double-decompose ip. It is 
interesting to note the meaning of the fifth and ninth terms in equation (8.18). The 
term ^ ((/?') is the spatial component of the time varying term whereas (V) is the time 
fluctuation of the spatial component. However, using equations (8.10), (8.14), and (8.16), 
equation (8.18) can be simplified to 

^(< '̂) = ( V ) ' , (8.19) 

and, for simplicity of notation, one can write both superscripts at the same level in the 
format V'- Taking now the time average of the fluctuating component, written as 

(̂ ' = ((^)^'+V = ((^T + V , (8.20) 

yields *(/?' = 0. Likewise, volume averaging the spatial component, written as 

V - v + V = V + V', (8.21) 

results in (V')^ ~ ^' 
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With these relationships in mind, integration of local (microscopic) flow governing equa-
tions applied to the domain of Figure 8.1 can be more easily treated by using the double-
decomposition approach. 

Figure 8.2, see Rocamora, Jr and de Lemos (2000a), is helpful in understanding the 
double-decomposition concept. The figure shows a three-dimensional diagram for a 
general vector variable (p. For a scalar, all the quantities shown would be drawn on 
a single line. Also, notice that the points B, C, D and E fall in the same plane, with 
segments BC and BE parallel to ED and CD, respectively. The path ACF represents the 
standard space-decomposition given by equation (8.2) whereas equation (8.7) is pictured 
by the path AEF. Further, equation (8.11) is represented by the path ABC and equation 
(8.15) by path ABE. Triangles EDF and CDF are associated with equations (8.20) 
and (8.21), respectively. Equation (8.10) is represented by segment AB and the two 
equations (8.14) and (8.16) by the equivalence between the parallel segments BC and 
ED and between segments BE and CD, respectively. Finally, equation (8.18) follows 
the sequence ABCDF, or the path ABEDF, both of them decomposing the same general 
variable (p. 

Figure 8.2 General three-dimensional vector diagram for a quantity ^p, see 
Rocamora, Jr and de Lemos (2000a) 
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8.5 TRANSPORT EQUATIONS 

In deriving the time- and space-averaged transport equations for modeling turbulence in 
porous media, we consider incompressible single-phase flow in a saturated, rigid porous 
medium. The microscopic continuity equation for a fluid flowing in a clear (of porous 
medium) domain is given by 

V u = 0. (8.22) 

Recalling that the fluid speed at the solid-fluid interface is zero, equation (8.4) can be used 
to take the volume-average of equation (8.22). Then, taking the time-average, equation 
(8.6), of the resulting equation (recall that the time-integral commutes with the divergent 
operator) leads to 

V • (Ja)^ = 0. (8.23) 

One can now take the time-average of equation (8.22), using equation (8.6), and then take 
the volume-average of the resulting equation using equation (8.4). The result is 

V- ((tir)-o, (8.24) 

which is exactly the same as equation (8.23), according to equation (8.10). Hence, the 
averaging order is immaterial for the continuity equation. 

If we now expand the velocity field of equation (8.22), using the double-decomposition, 
equation (8.18), one obtains 

V • u = V • (^{uY + {u'Y + % + ^ix') -0. (8.25) 

Comparing equation (8.25) and equation (8.24), the divergence of the sum of the last three 
terms within the parentheses in equation (8.25) must equal zero. 

The microscopic momentum equation for a fluid with constant properties is given by the 
Navier-Stokes equation 

du 
~dt 

-I- V • {uu) -Vp + iJ,V^u-\- pg. 

Taking the time-average using u = u-{-u' gives 

dt 
-h V • (uu) = -Wp 4- /iV^n + V • {-pu'u') -h pg, 

(8.26) 

(8.27) 

where the stresses —pu'u' are the well-known Reynolds stresses. On the other hand, the 
volumetric average of equation (8.26), using equations (8.3) - (8.5), results in 

d_ 

dt 
((^(ti) ')-fV-[(/>(uix)']] - - v ( 0 ( j 9 ) ' ) + / i V 2 ( 0 ( t x ) ' ) + ( / > p g + R, (8.28) 
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where 

R= ^ ^ylniS7u)dS-^l^npdS (8.29) 

represents the total-drag force per unit volume due to the presence of the porous matrix, 
being composed by both viscous-drag and form-drag. Further, using equation (8.2) to 
write u = {uY + ^u in the convective inertia term, one obtains 

= - V (</> (p)') + nV^ (0 (u) ' ) - V • [(̂  ( 'u^u)'] + (f>pg + R. (8.30) 

Hsu and Cheng (1990) pointed out that the third term on the right-hand side of equation 
(8.30),V-((/>('«'u)') , represents the hydrodynamic dispersion due to spatial deviations. 
Note that equation (8.30), closed by replacing R with the viscous-drag (Darcy) term and 
the form-drag (Forchheimer) term, models typical porous media flow for Rcp < 150-200. 
However, when extending the analysis to turbulent flow the time varying quantities have 
to be considered. 

The set of equations (8.27) and (8.30) are used when treating turbulent flow in clear fluid 
or low Rcp porous media flow, respectively. Each one of those equations was derived 
by applying only one averaging operator, either time or volume, respectively, into the 
microscopic equation. For modeling turbulent flow in porous media, it is necessary to 
apply both operators. Hence, the volume average of equation (8.27), giving for the 
time-mean flow in a porous medium, is given by 

= - V (</. {p}') + M V (<A (n) ' ) + V • (^-P4> ( ^ Z V ) ' ) + 4>pg + R, (8.31) 

where 

f n{Vu)dS--^ f npdS (8.32) 

is the time-averaged total-drag force per unit volume, due to the solid matrix, composed 
of both, viscous-drag and form-drag terms. 

Likewise, applying now the time average operation to equation (8.28), one obtains 

d 
p U^ (</. (u -I- w') ') +V-(^<t>{iu + u') {u + « ' ) ) ' ) 

= - V ((/. (p -I- p ' ) ' ) + MV^ {(t> {u + w')') + # 9 + R (8.33) 
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Dropping terms containing only one fluctuating quantity results in 

d 
- ( ( A ( t z r ) + V . ( 0 ( ^ u r ) 

= - V (0 (p)') + /iV^ (0 (tl)^) + V • ( - P 0 (^IV) ' ) 4- (t>P9 + S , (8.34) 

where 

=-^ I n(Vu)dS — [ npdS. 
(8.35) 

Comparing equations (8.31) and (8.34) one can see that also for the momentum equation 
the order of the application of both averaging operators is immaterial as long as the total-
drag term is not closed after the volume averaging operation. Pedras and de Lemos (2000a) 
propose that the term R, appearing in both equations (8.31) and (8.34) (compare equations 
(8.32) and (8.35)) be modeled by the Hazen-Dupuit-Darcy (HDD) model extension (also 
known as the Darcy-Forchheimer model). This approach is consistent with the fact that 
the HDD model seems to correlate experimental data well even when the flow within 
the pores is turbulent. In other words, the HDD model results from the time and space 
averaging of the turbulent flow. 

Consider now the convective inertia term and the Reynolds stress component of equation 
(8.31). These two terms can be decomposed using equation (8.15) as follows: 

V. [(t> ({uuY + (u^y)] = V • |(/> \{({uy+%) [{uY+%))' + (^?^)'| I 
= V • {(̂  [{uY {uY + (%%)' 4- {^^iJu^y] } . 

(8.36) 

Now, invoking equation (8.20) to write u' = {u'Y + ^u'. the term to the right of the equal 
sign in equation (8.36) becomes 

V . [(t> [{uY {uY + Cu'uY + (u'u'Y]} 

= vU {uY {uY + (%%)' + ((^{u'Y + ^u') (^{u'Y + 'u') 

- V • {0 [{uY {uY + {'u'uY + {u'Y {u'Y 

+ (^{u'Y 'wy -h (^'u' {u'Yy+(^'u'vy i . 
(8.37) 



214 MODELING TURBULENCE IN POROUS MEDIA 

The fourth and fifth terms on the right-hand side of equation (8.37) are zero because they 
contain the volume average of one space varying quantity. Equation (8.36) then reduces 
to 

(8.38) 
V . ((f){uuY^ = V • [0 ({uuY + (u ' t i ' ) ' ) ] 

Using the equivalence equations (8.10), (8.14), and (8.16), equation (8.38) can be further 
simplified into 

V • (0 (UUY) - V • I ^ [ ( ^ ( ^ -f {uY' {uY' + / ^ ^ ) ' + (^^T^yl I . (8.39) 

Another route to follow is to start with the application of the space decomposition in the 
convective inertia term, as usually done in classical mathematical treatment of porous 
media flow analysis, and then follow with the time average. The result is as follows: 

= V'[(t)({uY{uY + {'u'uY)]-
(8.40) 

The time average of the right-hand side of equation (8.40), using equation (8.11) to express 
{uY = (n)* -f- (TX')\ is given by 

V- [(t>({uY{uY + {'u'uY)] 

= V'U [({uY + {U'Y) {{UY + {U'Y) + {'U^UY] I (8.41) 

- V • {0 [{uY {uY + {u'Y {u'Y + {'U'UY\ }. 

With the help of equation (8.21), one can write ^u = ^u + ^u\ and equation (8.41) 
becomes 

V • {0 [{uY {uY + {u'Y {u'Y + {^U^UY\ } 

= V • {(̂  [{uY {uY + {u'Y {u'Y + {{^u + V) {m -f 'u')Y\} 

= V J 0 {uY {uY + {u'Y {u'Y + Ou'u 4- 'u'u' + 'u'^u -h 'u''u'\ \ . 

(8.42) 

The fourth and fifth terms on the right-hand side of equation (8.42) are zero for containing 
the time average of one time fluctuating component. In addition, recalling the equivalence 
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{u'Y — (w)^ , equation (8.14), and using equation (8.10) to write {uf — {u)\ and 
equation (8.16) for ^u = ^u, equation (8.42) becomes 

V-[(/)((u)'(Tx)' + (^u^n)')] 

= V • U\{uy {uY + {u'Y {u'Y + ( % % ) ' 4- {^^^?^y 11, (8.43) 

III IV 

which is identical to equation (8.38). Therefore, the averaging order is also immaterial 
when expanding the convective inertia term. The physical significance of each term in 
equation (8.43) is: 

I convective term of macroscopic mean velocity; 

II turbulent (Reynolds) stresses divided by density p due to the fluctuating component 
of the macroscopic velocity; 

III dispersion associated with spatial fluctuations of microscopic time mean velocity, 
note that this term is also present in laminar flow, or say, when Rcp < 150; and, 

IV turbulent dispersion in a porous medium due to both time and spatial fluctuations 
of the microscopic velocity. 

Consider now the Reynolds stresses appearing in equation (8.27). For clear flow, the use 
of the eddy-diffusivity concept for expressing the stress-rate of strain relationship for the 
Reynolds stress gives 

-pvJvJ = iJ,t2D - -pkl, (8.44) 
o 

where D = VtH- (Vil) /2 is the mean deformation tensor, k = u' - u'/2 is the 
turbulent kinetic energy per unit mass and / is the unity tensor. Applying equation (8.44) 
in equation (8.27) results in 

du ^ . 
-V (p -f -pk) + ^V^tx + V • {pt2D) -h pg. (8.45) 

To obtain an equivalent expression for the macroscopic Reynolds stress tensor, the volume-
averaging operator is applied in both equations (8.27) and (8.45). Making use of equations 
(8.3) - (8.5), the several terms in equations (8.27) and (8.45) become 

(Vp)^ = v(<^(p) ' ) + ^ | npdS, (8.48) 
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(V • wuy = V • {vny + ̂  / ^ (vtz) ds 

Equation (8.27) gives further 

and equation (8.45) 

(V . ( « 2 5 ) ) ' = V . ( / . . .2(B) ' ) + -1^ j „ • (i„2D) AS. 

where 

= 5 { [v (^ (n)^) + [V (0 (n)^)] "̂ j + ^ / ^ [n« + inu)"] d5} 

(8.49) 

(8.50) 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

(8.55) 

On noting that at the fluid-soHd interface u = u'u' = fit = k = 0, the equation for the 
macroscopic momentum equation for turbulent flow in porous media, based on equation 
(8.27), is given by 

p[|(^(n)')+V-(^(«n)')] 

= - V (0 (p)') + ^ V (</> («)') + V • (-p.^ (H^y) + (t>pg + H, (8.56) 

and based on equation (8.45) is given by 

[ I (0(u)^)+V-(0{««)')] 

-V (<̂  (^Y + -̂/-P (fc)') + MV^ (<̂  («)') + V • {iit,2 {DY) + ,/>̂ g + R, 

(8.57) 
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where R is given by equation (8.32). Furthermore, the term —p(j){u'u') in equation 
(8.56) is the macroscopic Reynolds stress tensor. Moreover, the deformation tensor in 
equation (8.57) is given by 

{DY = 1 [V [4>{UY) + [V (^(n)')]^] • (8-58) 

A proposal for the macroscopic Reynolds stress tensor can be made by comparing equation 
(8.56) and (8.57) term by term, namely 

-p<i> {ijj^y = fxt,2 (py - ^cj>p {ky i, (8.59) 

which is similar to the eddy-diffusivity model for microscopic flow embodied in equation 
(8.44). However, it should be noted that the coefficient /i^^ appearing in equation (8.59) 
is defined according to equation (8.54) and is not necessarily the same coefficient used 
for modeling clear flow, used in equation (8.44). Further, in this work, for simplicity, an 

•2 

expression of the type /i^^ = pc^ {kY / {sY is used. 
The macroscopic Reynolds stresses tensor of equation (8.31), modeled herein by equation 
(8.59), can be further expanded, with the help of the equality u' = {u'Y + ^u'^ as follows: 

p0 {u'u'Y = -p(j) {u'Y {u'Y + Ou' 'u'\ (8.60) 

The first term on the right-hand side is associated with time fluctuations of the macroscopic 
mean velocity, whereas the second term represents the turbulent dispersion in porous 
medium due to both time and spatial fluctuations of the microscopic velocity, see the term 
IV in equation (8.43). 

Also interesting to note is the intrinsic (fluid) average for k, given here as (A:)\ and 
appearing for the first time in equation (8.52). The turbulence kinetic energy used in Lee 
and Howell (1987), Wang and Takle (1995), Antohe and Lage (1997), and Getachew et aL 

(2000), differs from (kY and is given by km — {u'Y * (^OV^- P̂ ^̂ ^̂ s and de Lemos 
(2000a), using the double-decomposition approach, derived the relationship between these 
two quantities, namely 

{kY = ^ {^H^^y = ^{u'Y-{u'Y + ^{'u'-'u'Y = km-\-^ ( ^ i x ' - V ) ' . (8.61) 

The last term on the right-hand side of equation (8.61) is an extra turbulent kinetic energy 
term obtained by adding the elements of the main diagonal of the term IV in equation 
(8.43). 
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8.5.1 Equations for the fluctuating velocity 

The N-K model applied the time-space sequence and obtained an equation for (A:)*. Using 
the double-decomposition concept, equations for (tx')* and km were presented by Pedras 
and de Lemos (2001a), where the authors compared similar terms in both proposals for k. 
The starting point for an equation for the turbulent flow kinetic energy is an equation for the 
microscopic velocity fluctuation u'. Such a relationship can be written after subtracting 
the equation for the mean velocity u from the instantaneous momentum equation, see 
Hinze (1959), and Warsi (1998), as follows: 

p < ^ - + V • [uu' + u'u + u'u' - u'u'l > = -Vp' + iJiV'^u'. (8.62) 

Now, the volume average of equation (8.62) is given by 

p ^ ((/) (txV) + pV • {0 [{uu'Y + {u'uY + {u'u'Y - (^IV) ' ] } 

= - V (0 ( P T ) + /iV^ (0 (tx')') + E!, (8.63) 

where 

R' = - ^ f n {Vu') d5 - - ^ / np' dS (8.64) 
^ ^ J A, ^^ JAi 

is the fluctuating part of the total-drag due to the porous structure. 

Expanding further the divergence operators in equation (8.63) by means of equations 
(8.15) and (8.20), the following equation for {u'Y is found: 

p | (0 («')') + pv • {<A [{uy {u'Y + {u'Y {uY + {ui («')• 

+ ( ' « ' « ' ) ' + {'u'%)' + {'u''u'Y - {u'Y {u'Y - (h^^y] I 

= -\/[<f>{p'Y)+fiy'{4>{u'Y)+R'. 
(8.65) 

Another route to follow in order to obtain the same equation is to start out with the 
macroscopic general momentum equation (8.30) and use of the double-decomposition 
concept given by equation (8.18). The result is given by 

+ V • L ([{uY + {u'Y + 'u +'«'] [{uY + {u'Y + %+ '« ' ] ) 1 1 

= - V [0 [{PY + {p'Y)] + A'V^ [<!> [{uY + {u'Y)] + 4>P9 + R, 
(8.66) 
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which can be simplified to 

+ V • [.̂  ((«)' {uY + {uY {u'Y + {u'Y {uY + {u'Y {u'Y 

+ {'u'uY + {'u'u'Y + {'u''uY + {'u''u'Y)] I 

= -V [0 [{PY + {p'Y)] + MV^ [0 (^{uY + (u'Y)] + cj,pg + R. 
(8.67) 

Taking now the time average of equation (8.67), one obtains 

p I ̂  (</. (UY) + V • !</. huY {uY + {u'Y {u'Y + {'u'uY + (^^7v)'] 11 

= - V (<t> (p)') + p V (0 {«)') + <i>pg + R, (8.68) 

where 

« = ^ / n (Vn) d S ~ ^ l npdS (8.69) 

represents the time-averaged value of the instantaneous total-drag given by equation (8.29). 

An equation for the fluctuating macroscopic velocity is then obtained by subtracting 
equation (8.68) from (8.67) and one obtains 

p | (0 {ur) -f pv • {0 [{uY {u'Y + {u'Y {uY + {u'Y {u'Y 

-f {'u'u'Y + {'u''uY + {'u''u'Y - {u'Y {u'Y - ( V ^ y ] } 

(8.70) 

Here R' is also given by equation (8.64). Comparing equation (8.70) with equation (8.65) 
we observe that these two equations are identical. 

8.5.2 Equation for turbulence kinetic energy 

As mentioned previously, the determination of the flow macroscopic turbulent kinetic 
energy follows two different paths in the literature. In the A-L method (space-time 

averaging sequence) the turbulence kinetic energy is defined as km = {u'Y • {u'Y/'^- On 
the other hand, the N-K method (time-space averaging sequence) defines the turbulence 
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kinetic energy as {kY = {u' • u') /2 . The objective of this section is to derive the 

transport equation for both, km and (A:)\ and compare the results. 

From the instantaneous microscopic continuity equation, equation (8.24), one has 

v-(.^(«r)=o. (8.71) 

Taking the scalar product of equation (8.63) and ( u ' ) \ using equation (8.71) and time 
averaging the result, an equation for k^ is developed, having the following terms: 

p(n')'-|(0(«f)=P 
d {<t>km) 

dt •• 

p{u'Y-[v-(4>{u'u')^} 

= p{u'Y • {V • U {uf {u'Y + ̂  (^IZ'«')1} 

= pV-[4> {uY km] + p{u'Y • {V • [0 ('n'«')'] }, 

(8.72) 

(8.73) 

p{u'Y-[v-(j>{u'u'Y)] 

= p{u'Y • {V • [0 {u'Y {uY + 0 {'W 'u)*l} 

= pcPiu'Y {u'Y : V {uY + p{u'Y • {V • [</) {iu' iuY] }, 

p{u'Y-{v-{4>{u'u'Y)} 

= p{u'Y • {V • U {u'Y {u'Y + 4> {'w iu'Y]} 

i {u'Y-{u'Y 
4>{u) + p{u'Y -{y • U(^it''it')']}, 

p{u'Y-{v •[-<!> {u'u'y)} = Q, 
-(nf • V (0 (p')') =-V • [0 («f (P'r), 

tx{u'Y • V2 ( 0 (« ' ) ' ) = M V ' {<j>km) - P<l>Sr, 

{u'Y -R' = Q, 

(8.74) 

(8.75) 

(8.76) 

(8.77) 

(8.78) 

(8.79) 

where Sm = ''V {u'Y ' (V {u'Y) • In handling equation (8.77) the porosity 0 was 
assumed to be constant only for simplifying the manipulation to be shown next. However, 
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this procedure does not represent a limitation in deriving a general transport equation for 
km since equation (8.77) requires further modeling. 

Another important point is the treatment given to the scalar product shown in equation 
(8.79). Here, a different view from the work in Lee and Howell (1987), Wang and 
Takle (1995), Antohe and Lage (1997), and Getachew et al (2000), is considered. The 
fluctuating drag form R' acts through the solid-fluid interfacial area and, as such, on 
fluid particles at rest. The fluctuating mechanical energy represented by the operation in 
equation (8.79) is not associated with any fluid particle movement and, therefore, is here 
considered to be zero. 

A final equation for km gives 

d{(t)km) 
^ dt 

pV • ^(j) {uY kmj 

= -pV'{cj>{ur 
{p'Y ^ {u'Y'{u'Y (8.80) 

+ / i V ' ( # ^ ) - p(l){u'Y {U'Y ' V {uY - P(t>£m - Dr, 

where 

Dm - p{u'Y • {V • [0 [{^u^u'Y + {'W ^uY + {'W ^u' )^)] } (8.81) 

represents the dispersion of km given by the last terms on the right-hand side of equations 
(8.73), (8.74) and (8.75). It is of interest to point out that this term can be either negative 
or positive. 

The first term on the right-hand side of equation (8.80) represents the turbulent diffusion 
of km and is normally modeled via a diffusion-like expression resulting for the transport 
equation for km. see Antohe and Lage (1997) and Getachew et al (2000), as follows: 

p ^ m + pv 
dt 

<t>{uYkm}^ 

= V + Pm - P<f>£n Dr. 

where 
Pm = -pckiu'Y {U'Y : V {uY 

(8.82) 

(8.83) 

is the production rate of km due to the gradients of the macroscopic time-mean velocity 
{uY. 

The A-L model uses the above equation for km considering R' as the HDD (Darcy-
Forchheimer) model with macroscopic time-fluctuation velocities (u'Y- The mode also 
does not include all dispersion terms that were here grouped into Dm equation (8.81). It 
should be noted that the averaging order in this case does matter. 

The other procedure for composing the turbulence kinetic energy is to take the scalar 
product of equation (8.62) by the microscopic fluctuating velocity u'. Then apply both time 
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and volume averaging operators for obtaining an equation for (fc)* = {u' • u') / 2 . It is 
worth noting that in this case the order of application of both operations is immaterial since 
no additional mathematical operation is conducted in the averaging processes. Therefore, 
this is the same as applying the volume operator to an equation for the microscopic k. 

The volume average of a transport equation for k has been carried out in detail by de Lemos 
and Pedras (2000a) and Pedras and de Lemos (2001a). Only the final resulting equation 
is presented here, namely 

d_ 
dt 

(ct>{k)')+V'{uD{k)') 

= V . + ^)v (*«- ) 
(8.84) 

-\-Pi + Gi-p(t){e)\ 

where 

Pi = -p{u'u'y : VUD, 

{ky\uD\ 
Gi = Ckp(t>-

VK 

(8.85) 

(8.86) 

are the production rate of {kY due to mean gradients of the seepage velocity and the 
generation rate of intrinsic k due the presence of the porous matrix. 

A comparison between terms in the transport equation for km and {kf can now be 
conducted. Expanding the correlation forming the production term Pi by means of 
equation (8.2), a connection between the two generation rates can also be written as 

Pi = -p{u'u') : VUD 

-p ([u'Y {u'Y : VUD + {'W'u'Y : V U D ) (8.87) 

^ Pm - P{'U''U'Y • ^UD-

One can note that all the production rate of km due to the mean flow constitutes only part 
of the general production rate responsible for maintaining the overall level of {kY -

The dissipation rates also carry a similar correspondence if one expands 

{sY = V (Vu' : {Vu'f 

(8.88) 
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Considering further constant porosity, 

{sY ^em^y[' (VtxO : ' {Vu'f) . (8.89) 

This indicates that an additional dissipation rate is necessary to fully account for the energy 
decay process inside the REV. 

8.6 MACROSCOPIC MODEL ADJUSTMENT 

Pedras and de Lemos (2000b, 2001b, 2001c) performed numerical simulations on periodic 
REV cells, with the solid matrix represented by cylindrical, longitudinal and transversal 
elliptic rods. These simulations were used to calibrate the Pedras and de Lemos turbulence 
model. The microscopic (pore level) flow equations were numerically solved inside an 
elementary REV. In all cases, a periodic boundary condition was imposed along the axial 
direction. The Reynolds number Ren based on the cell height H was varied from about 
0.35 (creeping flow) to L2 x 10^ (fully turbulent regime). A version of the k-e model for 
low Re flow was also incorporated in the code, following the damping functions presented 
by Abe et al. (1997). The non-orthogonal grid was based on a generalized coordinate 
system, leading to a total of 150 by 100 irregular control volumes for the high Re model 
and 300 by 200 for the low Re cases. Samples of the numerical grid are shown in Figure 
8.3. For Ren = 12 x 10^, both k-e models were calculated for comparison. 

The numerical method SIMPLE was employed for relaxing the mean and turbulence 
equations within the domain. The dimensions of the periodic cell for the cases considered 
were i? = 0.1m, 5 = 2iJ, D = 0.03 m (0 = 0.8), 0.05 m (0 = 0.6) and 0.06 m 
((/) = 0.4). The solutions were grid independent and all normalized residuals were reduced 
to 10~^. Also, relaxation parameters for all variables were kept equal to 0.8. A summary 
of all relevant parameters for the circular rod case is presented in Table 8.1. The constant 
Ck introduced in the equation for {k)\ via equation (8.86), was determined for closure of 
the macroscopic mathematical model proposed by Pedras and de Lemos (2001a). In that 
work, a methodology was devised in order to obtain such value. Accordingly, the need of 
computing the fine flow properties in order to obtain the volume-integrated quantities has 
motivated the development of adequate numerical tools. As mentioned, those calculations 
were needed for adjusting the model and considered either the high Re k-e closure, 
Rocamora, Jr and de Lemos (1998), as well as the low Reynolds version, Pedras and 
de Lemos (2001b). Heat transfer analysis was also the subject of additional research, 
Rocamora, Jr and de Lemos (1999). One of the outcomes of this development was the 
ability to treat hybrid computational domains with a single numerical tool, Rocamora, Jr 
and de Lemos (2000b, 2000c). 

For macroscopic fully developed uni-dimensional flow in isotropic and homogeneous 
media the limiting values for {kY and {eY in the additional terms introduced in equation 
(8.84) and its accompanying equation for {eY (not shown here) are given the values k(f, 
and e<p, respectively. In this limiting condition, the transport equations for {kY and {eY 
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(a) 

(b) 

H 

2H 

(c) 

H 

2H 

Figure 8.3 Model of REV, periodic cell and elliptically generated grids: (a) 
cylindrical rods, (b) longitudinal elliptical rods, and (c) transverse elliptical rods. 
See Pedras and de Lemos (2001c) 

reduce to 

{ey = ck 
{kr\uD\ {sY 

VK ' {ky 
= Cfc 

VK 
(8.90) 

Using the limiting cases k^ and e^, the pair of equations (8.90) can be combined into the 
non-dimensional form 

E^sfK ki, 

I «D I 
C f c — - [ 2 -

\UD\ 
(8.91) 



J. L. LAGE ET AL. 225 

Table 8.1 Parameters for microscopic computations (speeds in m/s) 

Ren 1.20 x 10^ 1.20 x 10^ 1.20 x 10^ 1.20 x 10^ 1.20 x 10^ 

) = 0.4 
1.80 X 10^ 1.80 X 10° 1.80 X 10^ 

4.50 X 10^ 
uu 1 .80x10- '^ 1 .80x10- _ _ _ . . _ _ 
(n)* 4.50 X 10"^ 4.50 x 10"^ 4.50 x 10° 4.50 x 10° 

"^D 1.79 x lO- ' * 1 .79x10-1 1 .79x10° 1 .79x10° 1,79 x 10^ 
{uY 2.99 X 10-^ 2.99 x 10"! 2.99 x 10° 2.99 x 10° 2.99 x 10^ 

"^D 1 . 7 9 x 1 0 - ^ 1 .79x10-1 1 .79x10° 1 .79x10° 1.79 x 10^ 
~ ' {uf 2.24 X 10-^ 2.24 x 10-^ 2.24 x 10° 2.24 x 10° 2.24 x 10^ 

Turbulence 
model 

Laminar Low Re Low Re High Re High Re 

The permeability used in equation (8.91) was calculated by solving the flow equations 
for all three geometries and for the Darcy regime (creeping flow, Reu < 1). In order to 
obtain Ck, the microscopic computations described above for different porosity and Ren 
were used to calculate the corresponding limiting values fc^ and £0. Once these intrinsic 
values were obtained, then they were plugged into equation (8.91). The value 0.28 found 
for Ck from Figure 8.4 correlates very well the data. 

|UDI 

1.2 

1.0 

0.8 

0.6 

^ Transversal ellipses 1 ^ , , , , ,^^^, ^ 
'^ > Pedras and deLemos (2001c) 

A Longitudinal ellipses 
D Pedras and de Lemos (2001 a) 
O Nakayama and Kuwahara (1999) 

I I I I 1 I I I I I I I I 

Figure 8.4 Determination of the Ck value from the best fit using 
\UD\ = Ckkcf,/ \UD\ for different geometry, porosity and Reynolds 

number See Pedras and de Lemos (2001c) 
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8.7 CONCLUSIONS 

One can establish a general classification of the turbulence methods presented in the 
literature based on the sequence of application of averaging operators, on the handling of 
surface integrals and on the applications reported so far. A summary of this classification 
is presented in Table 8.2. 

The A-L method derives the transport equations for km instead of {k)\ The initial model, 
based on this method, and developed by Antohe and Lage (1997), was refined by Getachew 
et al. (2000). This method is based on time-averaging to macroscopic (volume-averaged) 
equations. 

Table 8.2 Classification of turbulence models fi)r porous media (from de Lemos 
and Pedras, 2001) 

References General characteristics Integration Applications 

A-L Lee and Howell (1987), 
Wang and Takle (1995), 
Antohe and Lage (1997), 
Getachew et al. (2(X)0). 

Surface integrals are not 
applied since models are 
based on macroscopic 
quantities subjected to 
time-averaging only. 

Space-time Only theory presented. 
Numerical results using 
this model are found in 
Chm etal. (2000). 

N-K Masuoka and 
Takatsu (1996), 
Kuwahara ^r a/. (1998), 
Takatsu and 
Masuoka (1998), 
Nakayama and 
Kuwahara (1999). 

Masuoka and Takatsu 
(1996) assumed a non-null 
value in their equation (11) 
for the turbulent shear stress 
St — —pu'u' along the 
interfacial area Ai. Takatsu 
and Masuoka (1998) 
assumed in equation (14) a 
different from zero value 
for d = {fi/p + p^t/cTkp) V/c 
at the interface Ai. 

Time-space Microscopic computations 
on periodic cells of square 
rods. Macroscopic model 
computations presented. 

T-C Travkin and Catton (1994, 
1995, 1998), Catton 
and Travkin (1996), 
Gr2Mon etal. (1996), 
Travkin e/fl/. (1999). 

Morphology-based theory. 
Surface integrals and 
volume-average operators 
depend on media 
morphology. 

Time-space Only theory. No closure 
for the macroscopic 
equations is presently 
available. 

P-dL Pedras and de Lemos 
(2000a), 
Rocamora, Jr and 
de Lemos (2000a), 
Pedras and de Lemos 
(2001a, 2001b). 

Double-decomposition 
theory. Surface integrals 
involving null quantities at 
surfaces are neglected. The 
connection between space-
time and time-space 
theories is unveiled. 

Time-space Microscopic computation 
on periodic cell of 
circular and elliptical rods 
and for hybrid domains 
are found in de Lemos 
and Pedras (2000b), 
Rocamora, Jr and 
de Lemos (2000b, 2000c). 
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In this sense, the sequence space-time integration is employed and surface integrals are 
not manipulated since macroscopic quantities are the sole independent variables used. As 
stated so precisely in the abstract of Antohe and Lage (1997) 

Turbulence models derived from the [A-L method] . . . will inevitably fail to charac-
terize accurately turbulence induced by the porous matrix in a microscopic sense [at 
the pore level]. 

Application of this theory is found in Chan et al. (2000). 

The N-K method constitutes the second class of models here compiled. It is interesting to 
mention that Masuoka and Takatsu (1996), when deriving their model based on the N-K 
method, assumed a non-null value for the turbulent shear stress, St = -pu'u', along the 
interfacial area in their equation (8.11). With that, their surface integral jj^ St-ndA was 
associated with the Darcy flow resistance term. Yet, using the Boussinesq approximation 
as in their equation (8.7), St — 2^tD - \kl, one can see that both /i^ and k will vanish 
at the surface Ai, ultimately indicating that the surface integral in question is actually 
equal to zero. Similarly, Takatsu and Masuoka (1998) assumed for their surface integral 
in equation (8.14), / ^ d • n dA, a non-null value, where d — {/j>/p + pt/c^kP) VA:. Here, 

it is worth noting also the identity VA: = u' • [Vu') . Moreover, at the interface Ai we 
have VA: = 0 due to the no-slip condition. Consequently, the surface integral of d over Ai 
is zero. In regard to the average operators used, the N-K method follows the time-space 
integration sequence. Calibration of models derived following the N-K method is possible 
for microscopic computations on a periodic cell, see Nakayama and Kuwahara (1999). 

The work developed in a series of papers using a morphology-oriented theory is here 
grouped under the T-C method. In this morphology-based theory, surface integrals 
resulting after application of volume-average operators depend on the media morphology. 
The governing equations set up for turbulent flow, although complicated at first sight, 
just follow the usual volume integration technique applied to the standard k-e and k-L 
turbulence models. In this sense, the time-space integration sequence is followed. No 
closure is proposed for the unknowns surface integrals (and morphology parameters) so 
that practical applications of such development in solving practical engineering problems 
is still a challenge to be overcome. 

Finally, the P-dL method uses the double-decomposition theory. The connection between 
space-time and time-space averaging models is made possible due to the splitting of the 
dependent variables into four (rather that two) components. For the momentum equation, 
the averaging order is immaterial (as long as the closure for the total-drag is done only 
after the averaging operators are applied). For the turbulence kinetic energy equation, 
however, the order of application of such mathematical operators will lead to different 
quantities being transported. Results for hybrid domains (porous medium-clear flow) are 
found in de Lemos and Pedras (2000b), and Rocamora, Jr and de Lemos (2000b, 2000c, 
2000d). 
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Abstract 

We experimentally and theoretically investigate the turbulence characteristics in porous media. 
Experiments are made on the flow through a bank of tubes in a narrow gap to examine the 
microscopic turbulent field in porous media and we recognize that the flow through porous media 
becomes turbulent at high Reynolds number and that flow distortions due to the obstructions in 
the solid matrix produces additional mixing to that of the interstitial vortex. Then we introduce 
the concept of the eddy diffusivity which is characterized by the pseudo vortex and the void 
vortex, and we propose the macroscopic momentum and energy equations for the turbulent 
flow through porous media The present 0-equation model describes well the Forchheimer flow 
resistance and the thermal dispersion, and we clarify that the void vortex mainly contributes to 
the Forchheimer flow resistance and that the pseudo vortex mainly contributes to the thermal 
dispersion. Furthermore, we discuss the mechanism of the production and thermal dissipation 
of the turbulence in porous media and we estimate Kolmogorov's micro-length scale. 

Keywords: porous media, forced convection, turbulent flow, dispersion, Forchheimer 
flow resistance, turbulence model, flow visualization 

9.1 INTRODUCTION 

For the flow through porous media, we know that the Forchheimer flow resistance and 
dispersion occurs at high Reynolds number. However, most of the previous theoredcal 
studies have been based on laminar flow theory. For example, the Forchheimer flow 
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resistance is considered as an inertial effect on the flow offered through the solid matrix, 
i.e., the form drag, see Vafai and Tien (1981). Many models on the dispersion have 
been developed from the correlation term between the spatial fluctuations of the velocity 
and temperature (or concentration) quantities, see Brenner (1980), Kaviany (1991), and 
Lage (1998). On the other hand, experiments have shown that the deviation from the 
Darcy law is observed at the Reynolds number Red {= pfUodp/^x) « 10 and that not 
only the effect of the Forchheimer flow resistance but also the effect of the dispersion 
gradually becomes dominant as Red increases, see Bird et al. (1976) and Kaviany (1991). 
The internal geometry of the porous media, such as packed beds, is complex but only a 
few measurements and visualizations have been performed for the internal velocity and 
temperature fields. There is an interesting remark, see Bear (1972), in which he states that 
turbulence vortices begin to appear at Red « 10 and gradually they cover the full flow 
domain as the Reynolds number increases. Further, the velocity measurements with a hot-
wire anemometer confirm the existence of turbulence in packed beds, see Mickley et al. 
(1965) and van der Merwe and Gauvin (1971). Dybbs and Edwards (1984) also recognize 
a highly unsteady and chaotic flow for Red > 300, which qualitatively resembles a 
turbulent flow, from the flow visualization in a complex rod bundle-porous media. The 
Forchheimer flow resistance and dispersion observed at high Reynolds number are closely 
connected with turbulent mixing (diffusion) in porous media. 

On examining turbulence models for the flow and heat transfer characteristics in the 
turbulent flow through porous media then it is of importance in such a prediction as the 
thermal dispersion in packed beds. The macroscopic conservation equations in porous 
media can be obtained by the microscopic conservation equations which are locally 
averaged over a representative volume and such a physical quantity as the velocity or 
the temperature is related with the local volume average of fluid phase or solid phase, 
see Slattery (1972, 1999). We have to construct the turbulence model which reflects 
the microscopic vortex behaviors which are intrinsic to porous media. Thus, we should 
observe that the eddy viscosity for porous media has a close relevance to the microscopic 
turbulence mixing and the geometric structure in porous media. For the turbulent flow 
through porous media with high porosity, Rudraiah et al. (1985) introduced the concepts 
of the eddy viscosity and thermal conductivity, and Lee and Howell (1987) proposed the 
k-£ model. Travkin et al. (1993) developed the turbulence model along with a statistical 
and numerical methodology, and Masuoka and Takatsu (1996) proposed the turbulence 
model in which the concepts of the interstitial vortex and pseudo vortex is introduced to 
reflect the microscopic vortex behaviors intrinsic to porous media. In recent years there 
has been new interest in the production and dissipation of the turbulence in the porous 
media, see Antohe and Lage (1997), Kuwahara et al. (1998), Takatsu and Masuoka (1998), 
Nakayama and Kuwahara (1999), Getachew et al. (2000), and Pedras and de Lemos (2000, 
2001). 

The present study has two aims: 

(i) to obtain the experimental evidences of turbulent vortices related to the momentum 
and energy transport in flow through porous media at high Reynolds number, see 
Takatsu and Masuoka (1998), and 



T. MASUOKA AND Y. TAKATSU 233 

(ii) to propose a turbulence model for the flow through porous media, see Masuoka and 
Takatsu(1996). 

As the geometric complexity of the porous media prevents the measurement and the 
visualization of the microscopic velocity and temperature fields, a new experimental 
model for the flow through porous media is required. We utilize a flow through a bank of 
tubes in a narrow gap as an experimental model of the flow through porous media. The flow 
visualizations by dye emissions show the existence of turbulent vortices in porous media at 
high Reynolds number where the organized motion of the turbulent vortices is identified. 
Then, we examine the role of the turbulent vortex mixing in the transport of momentum and 
energy at high Reynolds number and we construct the macroscopic governing equations 
for the turbulent flow through porous media. Furthermore, we examine the Forchheimer 
flow resistance and the thermal dispersion on the basis of the 0-equation model. Finally, 
we clarify the production and dissipation intrinsic to the turbulent flow through porous 
media, and we estimate the Kolmogorov micro-length scale. 

9.2 EXPERIMENTAL APPARATUS 

Experiments were conducted in a recirculating water channel. To make the measurements 
and the flow visualizations for the microscopic velocity and temperature fields, we have 
adopted the flow through a bank of tubes in a narrow gap as a model for the flow through 
porous media, see Figure 9.1. The flow passage consists of acrylic material and it has 
an internal cross-sectional dimension of 10 x 200 mm^ and it is 680 mm in length. The 
staggered bank of tubes have a diameter of 22 mm and they are arranged in a narrow 
gap of the passage. A 30 /im-thick stainless foil heater is spirally wound on a midpoint 
tube which is located at the distance of 460 mm from the inlet and an electric current 
was supplied by a stabilized DC power. The mean (Darcian) velocity for the passage 
was in a range of UD = 0.004-0.4 m/s, which corresponded to the Reynolds number 
Re{= pfUodhllj) « 5 X 10-5 x 10^ {Rea « 10^-10^). Measurements of the flow 
rate were made by rotameters and we have confirmed that the same value of flow rate was 
obtained in an overlapping range of rotameters. Static pressure taps of 0.5 mm in diameter 
were built into the center of the pore region which is surrounded with solid tubes and 
spaced at intervals of 40 mm, and the inclined manometer was used for the measurement 
of the pressure at low Reynolds numbers. To eliminate the entrance and exit effects for 
the measurements of the streamwise pressure distribution, we obtained the pressure drop 
from the region where the pressure variation changed linearly. 

A couple of dyes, which are colored with Methylene Blue Trihydrate (Blue) and Rho-
damine B (Red), were injected through fine needles with internal diameter (ID) = 0.3 mm 
and outer diameter (OD) = 0.6 mm in the bottom wall of the passage to mark the flow 
structures in porous media. For the measurements of the instantaneous velocity and 
temperature, a 25A*mPt miniature film probe (KANOMAX, MODEL 1277M-10AW) 
was located in the center of the pore region surrounded by the solid tubes. The hot 
film probe was operated by a constant temperature anemometer (KANOMAX, MODEL 
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Figure 9.1 Flow through a bank of tubes in a narrow gap 

1010), and the cold film probe (resistance thermometer) by a constant current anemome-
ter (KANOMAX, MODEL 1016). For the signals from the anemometers, the real time 
sampling frequency was 256 Hz and the number of data points per measurement is 32 768. 

9.3 FLOW CHARACTERISTICS AND FLOW PATTERNS 

Flow characteristics of the present experimental data are compared with the empirical 
correlations for staggered tube banks in Figure 9.2, see Knudsen and Katz (1958) and for 
packed beds, see Bird et al (1976). We require the small pressure drop at low Reynolds 
number Re to estimate the permeability K but we have not, as yet, obtained the reliable 
pressure drop at Re ^ 10^. Therefore, we use the non-dimensional pressure drop and 
the Reynolds number based on the hydraulic diameter dh instead of y/K. The hydraulic 
diameter dh is defined by 4V//^iy, see Figure 9.6, and the hydraulic diameter dh for the 
present flow configuration is 2(ip/ [dp/b -1 -2(1-0) /(/>], where 0 is the porosity. The 
empirical correlations of the pressure drop for staggered tube banks, see Knudsen and 
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Figure 9.2 Flow characteristics 

Katz (1958), and for packed beds, see Bird et al. (1976), are expressed as follows: 
laminar flow across a bank of tubes: 

pUl/2 T t \ n J Re 

turbulent flow across a bank of tubes: 

(9.1) 

{AP/L)dH 
pUl/2 

= 8.49 0 /_£_ 
0.7 

flow through packed beds: 

{AP/L)dH _ 
pUl/2 <t>Re ^ cp' 

133 2.33 
+ 

Re 
2 ( 1 - 0 ) 

- 0 .2 

(9.2) 

(9.3) 

The non-dimensionalization, which is based on the hydraulic diameter dh, exhibits that 
the flow characteristics for a bank of tubes and packed beds are gradually approaching 
each other at low Reynolds number, where the non-dimensional pressure drop is inversely 
proportional to the Reynolds number Re. The present data at high Reynolds number 
indicates the transition to turbulent flow and this can also be confirmed from the visu-
alization and velocity measurements which are mentioned later. Although there is not 
sufficient data at low Reynolds numbers for the present flow configuration, the present 
flow characteristics may lie on the curve for a bank of tubes and the packed beds at 
low Reynolds numbers. The non-dimensional pressure drop for the present apparatus is 
higher than that for a bank of tubes and this is because the top and bottom walls, which 
hold the bank of tubes, induce the enhancement of wall turbulence in the present porous 
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media. However, the non-dimensional pressure drop for the present data is lower than 
that for packed beds and this is attributed to the enhancement of the turbulence by the 
three-dimensional complicated structures of the solid matrix in the flow through packed 
beds. 

Figure 9.3 indicates the time history of the output signal from the velocity anemometer 
and we examine the flow condition from the raw output signal. The time response of the 
velocity remains flat at i?e = 5 x 10 {Red = 10^) in Figure 9.3(a) and the flow is laminar. 
The fluctuations appear at about i?e = 5 x 10^ {Red — 10^), see Figure 9.3(b), and the 
fluctuations increase with an increase in the Reynolds number as shown in Figure 9.3(c). 
These series of time histories clearly exhibit the existence of turbulence at high Reynolds 
number. As the present experimental data at i?e ?̂  2 x 10^-6 x 10^ in Figure 9.2 
approximately satisfy the Forchheimer flow regime, where the drag term is proportional 
to the square of velocity, we can consider that the Forchheimer flow resistance becomes 
gradually dominant in the flow characteristics with an increase in the turbulence. 

Figure 9.4 shows the photographs of the flow visualizations by dye emissions which 
correspond to the flow conditions in Figure 9.3. The tracers of the flow are from left 
to right. The streaks are steady at i?e = 5 x 10 {Red = 10^), and the spreading 
phenomenon of the tracer, which is a feature of the dispersion, cannot be recognized. In 
the photograph at iie = 5 x 10^ {Red = 10^), we observe the intermittent separation of 
the boundary-layer which develops along surfaces of the solid matrix and a pair of small 
vortices behind the left tube. At Re = 5 x 10^ {Red = 10^), the turbulent boundary 
layers develop along the solid surface. Furthermore, we can remarkably recognize the 
spreading phenomenon of the tracer with an increase in the Reynolds number. Re. Thus 
we can confirm the transition from laminar to turbulent flow in porous media from not 
only probe measurements but through visualizations. We will focus on the organized 
motion of turbulent vortices in porous media and we consider that the obstruction due to 
the solid matrix plays an important role in the transport process of turbulent flow through 
porous media. Visualizations show that the existence of a solid matrix imposes spatial 
restrictions on the magnitude of the interstitial vortices in the pore region. This means 
that the existence of a solid matrix forces larger eddies than its representative length dp to 
be dissipative into the interstitial eddy of the pore region. Furthermore, it is recognized 
that the obstruction due to a solid matrix induces the flow distortion. The interferences 
between the turbulent boundary layers due to the flow distortion form the mixing zone 
which is in contact with a pair of small vortices behind the left tube and the fluid in the 
mixing zone is transported by the flow distortion with the mixing length being of order 
dp. In other words, the flow distortion produces the additional mixing which is of order 
dp to that of the interstitial vortex. 

The distribution of the power spectral density for temperature time series at Re = 5x10^ 
{Red = 10"̂ ) is shown in Figure 9.5. We observe that there is a fast decay with a slope 
of —5/3 in the high frequency range and this range corresponds to the inertial-convective 
subrange for turbulent flow, see Tennekes and Lumley (1989). The dominant frequency 
is observed to be at / « 20 Hz, and the Strouhal number St at i?e = 2.5 x 10^ - 5 x 10^ 
indicates a higher value of 1 -1 .1 compared with that for a single tube where 5t =: 0.19-
0.21. Judging from the values of 5t(=: /dp/Uo) ^ IsLndUo '^ v ^ , the mixing length is 
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Figure 9.3 T/m^ history of the output signal from the velocity anemometer for 
(a) Re = 5x 10, (b) Re = 5 x 102, and(c) Re = 5 x lO^ 
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Figure 9.4 Photographic illustrations of the dye emissions for (a) Re = 5x10, 
(b) Re = 5x 10^, and (c) Re = 5 x 10^ 

of the order dp, and the dominant frequency / « 20 Hz is induced by the flow distortion. 
This fact suggests that the heat is transferred by the diffusion of the large eddy which 
corresponds to the mixing due to the flow distortion. Furthermore, the power spectral 
density converges to a small value at low frequencies which are less than f ^ 20 Hz, and 
we deduce that the larger eddy less than / J^ 20 Hz is dissipated by the obstruction due to 
the solid matrix. 
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Figure 9.5 Power spectral density for the temperature time series when Re 
5 x 10^ 

9.4 MACROSCOPIC MOMENTUM EQUATION 

Before we develop the macroscopic governing equations for the turbulent flow through 
porous media, we present a brief discussion on local volume averaging, see Slattery (1972, 
1999). If B is any scalar, spatial vector, or second-order tensor, associated with the fluid 
phase, then the local volume average over Vf of a quantity B associated with the fluid 
phase is defined as follows: 

(B) BdV, (9.4) 

and the local volume average over Vg of a quantity B associated with the solid phase is 
defined as follows: 

vsL BdV. (9.5) 
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where Vf and Vs are as indicated in Figure 9.6. Furthermore, the theorems for the volume 
average of a gradient and a divergence is expressed by the following equations: 

{VB)(^) = V(B)(-^) + ^ / BndA, 

(div B)^f^ = div(B)(-^> + rr f BndA, 

(9.6) 

(9.7) 

where A^, is the area of the interface between the fluid and solid phase in V {=Vf + Vs). 

In the turbulent flow through the porous media, the microscopic momentum equation can 
be given by the Reynolds equation coupled with the Boussinesq eddy viscosity formulation 

Pf 
dU_ 
dt 

+ div (UU) div (S + St), 

where the molecular and turbulent stress tensors, S and St, are given by 

S = 2fj,D - PI, 

and 

St = 2ntD - -kl. 

£> = ^[vt/ + (vc/)^]. 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

If the eddy viscosity /it is constant within V), then the local volume average of equation 
(9.8) leads to the macroscopic Reynolds equation for the turbulent flow through porous 

Figure 9.6 Control volume of the local volume averaging of porous structure 
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media, namely 

Pf 5<a!^.(div(ar))<« = {^lY {S ^ St))^^\ (9.12) 

The drag forces around the solid particles are derived from the right-hand side of equation 
(9.12), with the aid of equation (9.7), as follows: 

(div5)(-^)-div(5)(^> + - i - / S-nAA, (9.13) 

(divS,)(^) = div(5,)(^) + 77- / St-nAA. (9.14) 

The second term on the right-hand side of equation (9.13) is the drag force caused by 
the molecular stress tensor S and that of equation (9.14) is the drag force caused by the 
Reynolds (turbulent) stress tensor St. We observe that the second term on the right-hand 
side of equation (9.13) is the original Darcy flow resistance, while Vafai and Tien (1981) 
formulate it by a linear combination of the Darcy flow resistance and the Forchheimer 
flow resistance, namely 

yfL. S'ndA = -(l>-^{U)^^l (9.15) 

Attention should be given to the dominant regime of the Forchheimer flow resistance 
{Re > 10^) in order to clarify the nature of this flow resistance. The behavior of the 
turbulent flow is made explicit in the present experimental data at high Reynolds number 
and the contribution of the turbulence vortex must be reflected in the flow characteristics. 
If the laminar form drag FLU^ due to the spatial obstructions exists, except for the flow 
resistance FTU^ due to the turbulent vortex, the drastic variation should be recognized 
in the flow characteristics (FLU^ -> {FL -h F T ) U^,) when turbulence occurs. However, 
such a phenomenon has not ever been reported in previous studies, see Bird et al. (1976). 
Furthermore, the laminar form drag FLU}) increases with an increase in the wake region 
in the flow across a sphere or a circular cylinder, see Batchelor (1967), but the solid matrix 
imposes spatial restrictions on the development of the wake region in the flow through 
porous media. The present flow visualization recognizes a pair of very small vortices 
behind the left tube, see Figure 9.4, and such a phenomenon has been also reported in 
staggered tube banks, see Fujii et al (1986). The laminar form drag FLU}) due to spatial 
obstructions may affect the deviations from the Darcy law. However, it is impossible 
to consider that this narrow wake region produces the large laminar form drag at high 
Reynolds numbers, and the Forchheimer coefficient FL due to the laminar form drag is 
much less than the Forchheimer coefficient FT due to the turbulent vortex at high Reynolds 
numbers. Thus the flow characteristics in porous media can be explained by the molecular 
drag force (the Darcy law which is proportional to the velocity) and the turbulent drag 
force (the Forchheimer law which is proportional to the square of the velocity) around the 
solid matrix. 
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Now we discuss the Reynolds stress tensor St- As shown in Figure 9.7, it is expected 
that two types of vortices, namely, the void and pseudo vortices, play an important role 
in the transport mechanism of the turbulent flow through porous media. Taking notice of 
the flow around the solid particles in Figure 9.7, we can suppose that the interruption due 
to the solid particles induce the forced flow distortion. The flow distortion will transport 
the fluid far away and cause the associated exchange of momenta. So we refer to this 
momentum diffusion as the mixing of the pseudo vortex. The void vortex is the interstitial 
vortex which is formed in the pore between the solid particles. It can be estimated that the 
characteristic length scale of the pseudo vortex is the order of magnitude of the particle 
diameter dp and that of the interstitial vortex is of the gap width Vl{. Thus, we consider 
the eddy viscosity /j,t in equation (9.10) as the algebraic sum of the eddy viscosities which 
are defined by the characteristic length scales of the pseudo and void vortices, namely 

fJ't = /J't,p-^ fJ'ty, (9.16) 

where the first term on the right-hand side of equation (9.16) is the pseudo eddy viscosity 
/jit^P, and it is characterized by the pseudo vortex, and the second term is the void eddy 
viscosity fj,ty, and it is characterized by the void vortex. It is fair to say that the Reynolds 
stress tensor related to the void eddy viscosity, which is characterized by the interstitial 
vortices, contributes towards the drag force, because the pseudo vortex takes the role of a 
long distance momentum transport due to the forced flow distortion, while the void vortex 
directly determines the velocity profile of the turbulent shear flow along the solid particle 
due to the effect of its short-distance momentum exchange. Furthermore, equation (9.14) 
reduces to equation (9.17) on the grounds that the drag force caused by the molecular 

Pseudo vortex Particle 

Figure 9.7 Schematic model of the vortices in packed beds 
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Stress tensor S is expressed by equation (9.15) as follows: 

(div5,)(^)=div(S,)(^) + - ^ / St'ndA = d\y{St)^^^-a(l>^{U)^^\ (9.17) 

where a is the correction factor which is introduced in order to extend the concept of the 
hydrodynamic conductance defined by the Darcy law to the turbulent flow. We estimate 
the correction factor as cr ;:̂  1 by considering the similar contributions of the turbulent 
kinetic energy k and the pressure P to the stress tensors defined by equations (9.9) and 
(9.10). Here, we may note that the second term on the right-hand side of equation (9.17) 
represents the damping effect due to the void vortex associated with the local homogeneous 
and isotropic effects of turbulence. 

Now we concentrate on the inertial term in equation (9.12). The microscopic velocity 
vector U can be decomposed into the sum of the mean velocity vector (spatial average) 
and the deviation velocity vector (spatial fluctuation), i.e., 

U=^ [ UdV + U^ = {U)^f^ + U^. (9.18) 

On substituting equation (9.18) into the inertial term of equation (9.12) we obtain 

div([/t/)(^) = div [{U)^^HU)^^^] -f div(f/^f/^)(^). (9.19) 

The porous structures are commonly held periodic in the representative length scale related 
to the representative volume V, so that the spatial fluctuation may be considered as an 
almost periodic function of the representative length scale. As the divergence operator is 
valid for the representative length scale in principle, it is supposed that the second term on 
the right-hand side of equation (9.19) is negligible due to its periodic nature as compared 
to the first term. Therefore, the inertial term can be approximated by 

div(C/t/)(-^> = div Uu)^^\U)^^A . (9.20) 

Using the above closure modeling for the drag force and the inertia, the macroscopic 
momentum equation for the turbulent flow through porous media becomes 

Pf 
d{U)^f^ 

dt 
•diY{UU) if) = div(5 -f 5,)(^) - 0 ^ i ± ^ ( C / ) ( / ) . (9.21) 
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9.5 MACROSCOPIC ENERGY EQUATION 

The microscopic energy equations for the fluid and solid phases are given by 

PjCf dt 
+ div (J7T) + divq/ = 0, 

0, 

where the heat flux vectors for the fluid and solid phases are given by 

dT ,. 

Qf = - (A/ + Xt) VT, 

Qs = -AsVT. 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

With the aid of equations (9.4) and (9.5), the local volume averages of equations (9.22) 
and (9.23) yield the macroscopic energy equations for the fluid and solid phases, namely 

PfCf 
d{T)(f) 

dt 
+ div(tyT)<-^) + div(q/)(-'') + — / qfnAA = Q, (9.26) 

P ^ c . ^ ^ ^ + div(g,)W + -^ /" qs-ndA = 0. (9.27) 

As the heat flux vector is continuous at the interface between the fluid and solid phases, 
the interface condition is given by 

/ Qf •ndA= Qs-ndA. (9.28) 

On substituting equations (9.26) and (9.27) into the above interface condition we have 

-AJP/C/ [^^|^ + div(f7T)(/)] +div(g/)(/)| 

a{T)(«) 
+ (1 - 0) PsCs- dt 

+ div(gs) (s) 

(9.29) 

= 0. 

Now we focus on the eddy thermal conductivity. Suppose that an analogy exists between 
the eddy viscosity and the eddy thermal conductivity, then the eddy thermal conductivity 
Af can be represented as the algebraic sum of the eddy thermal conductivities defined by 
the characteristic length scales of the pseudo and void vortices, namely 

At = Xt,p + A(,v, (9.30) 

where the first term on the right-hand side of the above equation is the pseudo eddy 
thermal conductivity Xt^p, which is characterized by the pseudo vortex, and the second 
term is the void eddy thermal conductivity At, v. which is characterized by the void vortex. 
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The pseudo vortex contributes to the long distance heat transport due to the forced flow 
distortion, so that the thermal tortuosity cannot be produced from the heat flux vector 
related to the pseudo eddy thermal conductivity. Accordingly, the heat flux vectors can be 
reduced, with the aid of equations (9.4) and (9.5), as follows: 

(^,)(/) = - ( A , 4 - A 0 V ( T ) ( / ) - ^ ^ - ^ / TndA^ (9.31) 

{q,)(^) = -A,V(T)(^) - ^ [ TndA, (9.32) 

We define the local volume average of the temperature over the fluid and the solid phases 
as follows: 

(T)(m) ^}_ f BdV = (/>(T)(̂ ) + (1 - 0) {T)^'\ (9.33) 
y Jv 

and we make use of the local thermal equilibrium assumption, see Slattery (1972,1999), 

Now we concentrate on the advection term in equation (9.29). The microscopic velocity 
vector U and the temperature T can be decomposed into the mean component (spatial 
average) and the fluctuating component (spatial fluctuation), as follows: 

U=^[ UdV-\-U^^ = {U)^^^-]-U^, (9.35) 
Kf Jvf 

T=^ [ T d y - f T ^ - ( r ) ( ^ ) - f r ^ . (9.36) 
^f Jvf 

On substituting equations (9.35) and (9.36) into the advection term of equation (9.29) we 
obtain 

div(Lrr)(^^ = div ((Lr)(-^)(T)(-^)) + div(t7^r^)(^>. (9.37) 

The second term on the right-hand side of equation (9.37) is the correlation term between 
the spatial fluctuations of the velocity and the temperature, and the previous studies have 
considered the correlation as the thermal dispersion effect, see Koch and Brady (1985), 
Levee and Carbonell (1985), Georgiadis and Catton (1988), Koch et al (1989), and Hsu 
and Cheng (1990). The porous structures are commonly held periodic in the representative 
length scale related to the representative volume V, and the divergence operator is valid 
for the representative length scale. For simplicity, if we consider the fully-developed flow, 
then the spatial fluctuation should be the periodic function of the representative length 
scale and this leads to the following equation: 

div(l/^T^)(^) = 0. (9.38) 

We can observe the dispersion even in the fully-developed flow, where no contribution 
due to the spatial fluctuations are expected. Therefore, the correlation term between the 
spatial fluctuations of the velocity and temperature quantities can be neglected, and the 
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enthalpy transport term in equation (9.29) can be approximated by 

div(C/T)(-^) = div ((C/)(^)(r)(^)) . (9.39) 

Furthermore, on introducing the concept of the effective thermal conductivity, as proposed 
by Kunii and Smith (1960), we obtain 

AeV(T)(^) = [(t>Xf + (1 - 0) A,] V(r)(^^ + ^^~/' [ TndA. (9.40) 

Using the above closure modeling for the turbulent heat flux and the enthalpy transport 
terms, the macroscopic energy equation for the turbulent flow through porous media 
becomes 

[cf>pfCf + (1 - 0) PsCs] ^ ^ ^ -f ct>pfCf div ((C/)(/)(r)(-)) = div ( A ^ V ( T ) W ) , 

(9.41) 
where 

and 

Ap = Ae + (l>Xt + ftXty (9.42) 

^ Ae-[ ( />A;-f ( l -0)A,]^ ^^^3^ 

9.6 THE 0-EQUATION MODEL 

We propose the 0-equation model for the eddy viscosity and the eddy thermal conductivity. 
For the fully-developed one-dimensional turbulent flow, the macroscopic momentum 
equation becomes 

- ^ = -^Uo, (9.44) 
dx K 

and the empirical correlation for the flow resistance of packed beds at high Reynolds 
number, see Bird et at. (1976), is given by 

- ^ = F ^ , (9.45) 
dx y/K 

where 

F = } ' ^ ^ (packed bed). (9.46) 
v/Tso^ 

Equation (9.45) is the so-called Forchheimer flow resistance equation which is observed 
at high Reynolds numbers. On comparing equations (9.44) and (9.45), we can find the 
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void eddy viscosity //t,v as follows: 

^^y = LpUD\fK. (9.47) 
a 

On the other hand, we can estimate the void eddy viscosity iit,v from the Kolmogorov-
Prandtl expression, see Rodi (1982), as follows: 

/it,v - C^pfVkL. (9.48) 

If the velocity scale Vk is of the order UD and the length scale L is of the order \ / ^ , we 
can derive the same order of magnitude as the void eddy viscosity nty obtained from the 
empirical correlation 

^t,v-^PfUD^^ (9.49) 

Thus, it follows that the void vortex contributes to the Forchheimer flow resistance. 

Now we discuss the mutual relation between the void and the pseudo eddy viscosities 
(thermal conductivities). The eddy viscosity ratio 7 is defined as 

7 = ^ ^ . (9.50) 

If the turbulent Prandd number Prt is independent of the vortex length scale, then the 
void and pseudo eddy thermal conductivities are given by 

Xt,p = -^Pit,p, (9.51) 

\t,v = ^l^ty- (9.52) 
Pn 

On substituting equations (9.50) - (9.52) into equation (9.42), we can rewrite the thermal 
dispersion Xp as follows: 

^ = ^ + ^ ^ + / , ^ = ^ + mh^MMpe, (9.53) 
A/ Xf Xf Xf Xf crPrt 

where the Peclet number Pe is defined as follows: 

P e = ^ ^ ^ = 2 £ ^ . (9.54, 

If the turbulent Prandtl number Prt is independent of the Peclet number Pe in equation 
(9.53), we can find the relationship that the thermal dispersion Xp is proportional to the 
Peclet number Pe, see Yagi et al. (1960), Georgiadis and Catton (1988), and Hsu and 
Cheng (1990). The permeability of the packed beds is given by the Blake and Kozeny 
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expression, see Bird et al. (1976), as follows 

K = 
4>'dl 

150(1 -0 )^ 

and we can estimate the eddy viscosity ratio 7 by 

(9.55) 

7 - - ^ « 30, (9.56) 

where the porosity (f> is treated as approximately 0.4, see Yagi et al (1960). 

The contribution of the eddy viscosity ratio 7 to the thermal dispersion is shown in 
Figure 9.8, with the empirical correlation of Yagi et al. (1960) given by 

- ^ = 7.5 + 0.8 Ped (glass spheres), 

- ^ = 13 + 0.7 Pea (steel spheres), 

where the particle Peclet number Pcd is given by 

(9.57) 

(9.58) 

(9.59) 

It can be seen from Figure 9.8 that the increase of the eddy viscosity ratio enhances the 
thermal dispersion and such a tendency is large in the region of high particle Peclet number. 
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Figure 9.8 Comparison of the present model with the empirical data of Yagi et 
al. (7960; 
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We observe that the present result when 7 = 100 is in good agreement with the empirical 
data of Yagi et al (1960). Although this value of the eddy viscosity ratio, 7 = 100, is 
somewhat greater than the value estimated from equation (9.56), both estimates can be 
considered to be of the same order of magnitude. 

Table 9.1 indicates the relationship between the thermal conductivity ratio ^ (= A//A5) 
and the coefficient ft defined by equation (9.43) at porosity 0 = 0.4. As the coefficient 
ft is very small compared with the eddy viscosity ratio 7 — 100 in equation (9.53), we 
can consider that the contribution of the void eddy thermal conductivity to the thermal 
dispersion is negligible. In other words, the mixing of the pseudo vortex mainly contributes 
to the thermal dispersion and equation (9.53) reduces to 

Ap ^ A^ F(jyy 
Xf Xf aPrt 

Pe. (9.60) 

It has been suggested that the mixing of the void vortex mainly contributes to the Forch-
heimer flow resistance and the mixing of the pseudo vortex to the thermal dispersion. 
The turbulent drag force around a solid matrix, i.e., the Forchheimer flow resistance, is 
independent of the transport of the fluid due to the pseudo vortex as the inner region of 
the turbulent boundary-layer has a self-sustaining structure, see Maruyama and Tanaka 
(1987). However, the pseudo vortex can produce the energy exchange due to the tempera-
ture difference of the fluid. In the present visualization, the coherent structures due to the 
obstruction of a solid matrix in porous media are observed. One is the spatial restriction 
of the interstitial vortex and the other is the mixing induced by the flow distortion. Thus 
the interstitial vortex formed in the pore between the solid matrix is reflected in the void 
vortex in the model which has the effect of the short distance turbulent mixing due to 
the spatial restriction. On the other hand, the diffusion induced by the flow distortion is 
characterized by the long distance turbulent mixing of the pseudo vortex in the model. 
From the viewpoint of spectral dynamics, see Figure 9.5, the void vortex is characterized 
by the small vortices in the high frequency range and the pseudo vortex is characterized 
by the large vortex with the dominant frequency of the order ofSt':^ 1. This experimental 
evidence is well supported in our turbulence model which introduces the concepts of two 
types of vortices. 

Table 9.1 Relationship between thermal conductivity ratio ^ and the coefficient 
ft 

^ 0.01 0.1 1 10 100 

ft 1.02x10-^ 9.37x10-^ 2.00x10-1 2.93x10-1 5.15x10-1 
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9.7 PRODUCTION AND DISSIPATION OF TURBULENCE 

Now we look carefully into the k-e model. We emphasize the experimental evidence that 
the fully-developed turbulent flow remains with no damping due to the turbulence in the 
direction of the main flow. This is in disagreement with the k-e model of Antohe and 
Lage (1997) which has pointed out that k and e must be zero in the fully-developed flow 
through porous media. Antohe and Lage (1997) and Getachew et al. (2000) derived the k-e 
model from the time averaging of the momentum equation and this has been averaged by a 
representative elementary volume of the porous medium. This means that the resolution of 
the vortices for the k-e model is larger than the representative elementary volume, because 
the k-e model takes no account of the smaller eddies than the representative elementary 
volume in the spatial averaging process. In other words, the modeling of the production 
term, which is dependent only on the macroscopic average velocity gradient, brings about 
no turbulence in the fully-developed flow through porous media. However the order of 
time averaging and spatial averaging is independent of the final form of the turbulence 
model so long as the contribution of the microscopic eddies to the macroscopic turbulence 
field is justifiably modeled in the averaging (filtering) process, see Pedras and de Lemos 
(2000, 2001). Therefore, we need to focus on the behaviors of the microscopic eddies in 
a representative elementary volume of the porous medium to clarify the mechanism of the 
production and dissipation of the turbulence. 

It is well known that the k equation of the k-e model is a good approximation to many 
flow configurations, see Bradshaw et al. (1984), and this equation may stand even for the 
microscopic turbulent fields in porous media. We can write the microscopic k equation 
for the turbulent flow through porous media as follows: 

dk 
— + div (Uk) =: div d -f Pro - e, (9.61) 

where the first term on the right-hand side of equation (9.61) represents the diffusion term, 
and Pro and e are the production and the dissipation, respectively. The local volume 
average of equation (9.61) leads to the macroscopic k equation for the turbulent flow 
through porous media, namely 

^^— + (div {Uk))^^^ = (divd)(^) -f (Pro)(^) - {e)^^l (9.62) 

With the aid of a theorem for a volume average of a divergence, see Slattery (1972,1999), 
the advection term in equation (9.62) leads to 

(div(LrA:))(-^) = div(C/A:)(-̂ ) + 77" / {Uk)-ndA = div{Uk)^f\ (9.63) 
^f J A,, 

where A^ is the interfacial area between the fluid and the solid phases. The porous structure 
is commonly periodic in the representative length scale associated with the representative 
elementary volume and the divergence operator is valid for the representative length scale. 
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This principle ensures the following expression: 

div(LrA;)(^) = div \{U)^^^k)^^A . (9.64) 

Use of the divergence theorem with the diffusion term of equation (9.62) yields 

(divd)^-^) = div(rf)(^> + TT / dndA, (9.65) 

where the vector d may be expressed by 

d =: — f// + — 1 VA: (9.66) 
Pf \ (^kj 

and ak is the effective Prandtl-Schmidt number. The turbulent mixing in porous media 
can be characterized by the pseudo and void vortices, namely 

fJ't = jJ't.p^ P't.v, (9.67) 

where the pseudo eddy viscosity and the void eddy viscosity exhibit the long distance 
turbulent mixing and the short distance turbulent mixing, respectively. We can estimate 
the second term on the right-hand side of equation (9.65) as follows: 

1 / d.nAA^-^L+^{k)^f\ (9.68) 

and this shows that the obstruction of a solid matrix in porous media forces larger eddies 
than its representative length to be dissipative to the interstitial eddy. Introducing the 
correction factor aki, equation (9.68) is reduced to 

^ f d-ndA = -a,,^(^^+f^){k)(fl (9.69) 
yf JA^ PfK V (^k ) 

We may estimate the correction factor as Gki ~ 1. Judging from {k)^^"^ ^ 0, equation 
(9.69) exhibits the dissipation intrinsic to the turbulent flow through porous media. This 
term physically means that the obstruction of a solid matrix forces larger eddies than its 
representative length to be dissipative to the interstitial eddy. 

Now we focus on the production term in the macroscopic kinetic energy equation. The 
microscopic production term may be expressed as follows: 

Pro =—Sf grad U ^— [div (StU) - div SfU], (9.70) 
Pf Pf 

and the local volume average of equation (9.70) is given by 

{Pro)^f) = — [(div (StU))^^^ - (div St • U)^^A . (9.71) 
Pf L J 
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The first term on the right-hand side of equation (9.71) can be reduced to 

(div(5tC7))(^)=div(S,C/)(^)-f-^ / {StU)'ndA = diY{StU)^^\ (9.72) 

and the use of the periodic condition of a porous structure leads to 

(div {StU))^^^ = div(5,C/)(^) = div [(5,)(^){C/)(^)] . (9.73) 

With the aid of the following relationship: 

div 

we can obtain 

(5,)(-^){t/)(^)] = (S,)(^) . grad(C/)(^) + div(S,)(^) • {U)^f\ (9.74) 

(div (Sif/))(^) = {St)^f^ . grad(f/)(-^) + div(5i)(-^) • {U)^^\ (9.75) 

On substituting equation (9.75) into equation (9.71), we obtain the macroscopic production 
to be given by 

{Pro)^f) = — \{St)^f^ • grad(Lr)(^) + div(5,)(^) • {U)^^^ - (div St • U)^^A . 
Pf L J 

(9.76) 
If we make the following decompositions: 

div St = (div St)^^^ + 5 ^ , (9.77) 

U ^iU)^^"^ + U^, (9.78) 

then the third term on the right-hand side of equation (9.76) becomes 

(div5t • U)^^^ = {div St)^^^ ' (Lr)(^) + ( 5 ^ . U^)^^l (9.79) 

The second term on the right-hand side of equation (9.79) means that the turbulence is 
produced by the vorticity due to the deviation from the local volume average velocity 
in the core region of the fluid phase. Judging from the large pressure drop for the flow 
through porous media, we can expect the active mixing due to the turbulent vortices rather 
than the flow of the pure fluid. As the active mixing due to the turbulent vortices makes 
the fluid velocity profile uniform, we may neglect the contribution of the second term on 
the right-hand side of equation (9.79). With the aid of the following relationship: 

(divS,)(^)r.div(5,)(^^ + - ^ / SfndA = div{St)^^^-(J(I>^{U)^^\ (9.80) 

we can obtain 

(div5,)(-^) . (C/)(^) - diy{St)^^^ ' (U)^^^ -a(t>^{U)^^^ • {U)^^\ (9.81) 
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and the macroscopic production term becomes 

{Pro)^f) = —{St)^f^ • grad((7)(^) + ^ ^ ^ ( f / ) ^ ^ ^ • {U)^^^. (9.82) 
Pf PfK 

The second term on the right-hand side of equation (9.82) exhibits that the production 
is intrinsic to the turbulent flow through porous media. This term physically means that 
the turbulence is produced by the vorticity which the solid wall induces. Pedras and 
de Lemos (2001) have intuitively found the similar production term to the second term on 
the right-hand side of equation (9.82) as follows: 

Referring to equations (9.47) and (9.69), we notice that equation (9.83) corresponds to the 
dissipation intrinsic to the turbulent flow through porous media in our model. 

By using the closure modeling, the macroscopic kinetic energy equation in porous media 
becomes 

m!l+6w[m"Hk)^»] 

Pf 

PfK \ Gk J PfK 
(9.84) 

9.8 KOLMOGOROV'S LENGTH SCALE 

The macroscopic kinetic energy in the fully-developed turbulent flow is represented by 

(e)(^) + a . i ^ f/i-i- ^ l (k)^'^ = cjct>%{U)^f^ . (t/)(/), (9.85) 

PfK \ Gk ) PfK 
and we may estimate the order of the dissipation as follows: 

i^e)U) ^ ^J^Ul. (9.86) 

With the aid of the void eddy viscosity obtained from the turbulent model, namely 

^ty = -pfUo^fK, (9.87) 

a 
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equation (9.86) can be reduced to 

( . ,<«-^§ . (9,88, 

By using the above equation, we can estimate the Kolmogorov micro-length scale as 

where 

Re = ^ ^ 5 ^ . (9.90) 
u 

For example, the Forchheimer coefficient for packed beds is given by 

F=-^£L=. (9.91) 

and Table 9.2 indicates the Kolmogorov length scale for packed beds. 

9.9 CONCLUDING REMARKS 

This study has experimentally examined the turbulence characteristics in porous media in 
detail and we have proposed a model for the vortex transport in turbulent flow through 
porous media. The following conclusions may be derived: 

(a) The flow through porous media becomes turbulent at high Reynolds number, where 
the Forchheimer flow resistance and the thermal dispersion which have been reported 
in previous studies are considered as the turbulent phenomena. 

(b) The momentum and energy transports for the turbulent flow can be explained by the 
introduction of the concept of two types of vortices. One is the interstitial (void) 
vortex, which is of the order of thickness of the gap width \ / ^ , and it is formed in 
the pores between the particles and the other is the pseudo vortex, which is of the 

Table 9.2 Kolmogorov's length scale for packed beds 

Redi^Updp/jy) Re IK/^ 

1 X 10^ 3.44 X 10 6.45 x IQ-^ 
1 X 10^ 3.44 X 10^ 1.15 X 10-2 
1 X 10^ 3.44 X 10^ 2.04 x IQ-^ 
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order of the particle diameter dp, and it reflects the forced flow distortion due to the 
presence of the solid particles. 

(c) Introducing the eddy diffusivities, which are characterized by the pseudo vortex 
and the void vortex, we have constructed the macroscopic momentum and energy 
equations for the turbulent flow through porous media. The Forchheimer flow 
resistance and the thermal dispersion which have been reported in previous ex-
periments at high Reynolds number, are well described by the present 0-equation 
model. Further, we have clarified that the void vortex mainly contributes to the 
Forchheimer flow resistance and that the pseudo vortex mainly contributes to the 
thermal dispersion. 

(d) We have clarified the production and dissipation, intrinsic to the turbulent flow 
through porous media. The resistance due to a solid matrix forces larger eddies than 
its representative length to be dissipative to the interstitial eddy, and the turbulence 
is produced by the vorticity which the solid walls induce. 
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Abstract 

In this chapter, coupled heat and moisture transfer in unsaturated porous media have been 
reviewed and a generalized coupled model, containing the equations of heat and mass balance, 
is used to study some representative engineering problems. The model includes both the effects 
of temperature and moisture and in the case of high-intensity drying, a pressure potential is 
added. Transport coefficients in the coupled system play an important role and they may 
be determined either by experimental measurement or through a theoretical derivation. Such 
determinations are currently very difficult but both are very important. Thus researchers in this 
field are advised to be prepared to expend considerable effort in this endeavor but it is hoped 
that future research will improve the speed and accuracy of the determination of the governing 
transport coefficients. 

Keywords: coupled heat and mass transfer, porous material, stored grain, drying 
process, moisture migration, moisture content, phase change, temperature gradient, 
pressure potential 

10.1 INTRODUCTION 

Heat and mass transfer in porous media is a very complicated phenomenon and this is 

because the heat transport occurs not only in the solid but also in the fluid phases. The 

movement of mass in the media contributes to the heat transfer and it is affected by 

heat, concentradon and pressure, and it is frequently accompanied by phase changes. 

These coupled processes have been widely studied by mechanical, civil, chemical and 
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agricultural engineers. However, it is very difficult to accurately describe the energy and 
mass transfer within the media due to the various porosity characteristics such as the 
shape, size and interconnection of the pores. Therefore a generalizable model for the 
application to various porous structures under different operating conditions has proven a 
very difficult task. 

Modeling coupled heat and mass transfer in porous media is an area of continuing re-
search interest for various disciplines see, for example, the recent books by Ingham and 
Pop (1998), Nield and Bejan (1999) and Vafai (2000). Philip and de Vries (1957) and 
Krischer (1963) have independendy considered systems of coupled temperature and mois-
ture transfer in porous materials. Based on irreversible thermodynamics, Luikov (1966) 
developed a set of coupled partial differential equations which involve the temperature, 
moisture potential and, in the case of very intense drying, an addition to the pressure. 
Whitaker (1977) developed the conservation transport equations for each phase using the 
local volume-averaging technique. The equations in this model are quite systematic and 
complete, yet the form is inconvenient for use due to the fact that numerous transport 
coefficients must be known. Huang et al (1979) proposed a model which involves the 
temperature, moisture and pressure for the natural drying of concrete slabs. Eckert and 
Faghri (1980) developed a model for the moisture migration caused by temperature dif-
ferences in a sand bed, which is an unsaturated non-hygroscopic porous medium. In this 
medium almost all the moisture can migrate from the warm region to the cold region 
leaving behind a dry region. However, hygroscopic materials have a finite capacity for the 
desorption of moisture and, unlike a sand bed, can not exhibit a region of zero moisture 
content. Thomas et al (1980) applied the Luikov model (Luikov, 1966) to study the 
drying behavior in timber using the finite element method. The drying of wood has been 
of continuing interest due to its wide range of uses and therefore Plumb et al. (1985) 
used the procedure of Whitaker (1977) to develop a set of coupled equations that describe 
both the heat transfer and capillary and diffusive transport of moisture for a wood-drying 
process. 

Many of the previous papers have been limited to specific applications with regard to 
either hygroscopic or non-hygroscopic materials. Stanish et al (1986) have developed 
a model that can be applied to both hygroscopic and non-hygroscopic materials. This 
model contains five governing equations: two mass balances, one energy balance and two 
equilibrium equations. Fairly satisfactory results for the temperature and moisture content 
as a function of the time were predicted by the model and measured in corresponding 
experiments. Chen and Pei (1989) have presented a two-region drying model which 
contains both wet and sorption regions. In the sorption region the main mechanisms of 
moisture transfer are the movements of bound water and vapor transfer, while in the wet 
region the main mechanism is the capillary flow of free water. The drying behavior of 
bricks, wool and com kernels have been studied using this model, yielding satisfactory 
agreement between the model predictions and experimental measurements. A similar two-
region model was proposed by Ilic and Turner (1989) to investigate the drying process of 
bricks. 

Thus it appears that a two-region model can satisfactorily describe the drying of wet ma-
terials. However, the more complicated the model used, the more transport coefficients 
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that are required. It is necessary to obtain the appropriate coefficients by performing 
more experiments but often such experiments are difficult to perform. High tempera-
ture air provides a greater potential heat supply and, in general, increases the rate of 
moisture movement to the surface. Thus, convective drying in superheated steam or high-
temperature air is a commonly applied technique and many mathematical models and 
experimental studies have dealt with high-temperature or steam drying, see, for example, 
Perre et al (1993), Hager et al (1997), di Blasi (1998) and Irudayaraj and Wu (1999). 

Coupled heat and mass transfer also occurs in building structures and often this has a 
large influence on the temperature, humidity and the heating or cooling loads of indoor 
air. Various researchers have studied the moisture transport in building structures and 
the effect of simultaneous heat and moisture transfer on space air in building envelopes 
has been investigated by Wong and Wang (1990). A model involving coupled air heat 
and moisture transfer in building structures was developed by Haupl et al. (1997) and 
the distributions of the temperature and moisture in multi-layer walls were obtained. A 
similar study has also been performed by Budaiwi et al. (1999). 

Moisture migration induced by temperature gradients in stored grain is a well-studied 
problem. This is because the temperature and moisture content of the grain is generally 
considered to be the most important factors in controlling the quality during grain storage. 
To limit the growth of harmful microorganisms, it is necessary to keep the temperature 
and moisture content in the grain at certain levels. Moisture migration in stored grain is 
generally induced by seasonal and diurnal variations of the ambient temperature. To attain 
a local equilibrium with the surrounding air, grain in the warmer region loses moisture 
while grain in the colder region gains moisture, a process inherently unsteady due to 
the chaotic nature of the ambient conditions. The coupled moisture migration and heat 
transfer problem is due to the latent heat interaction of evaporation and condensation. 

Several investigators have studied grain moisture migration during storage. Stewart (1975) 
stated that temperature gradients provide the driving force to moisture movement. Freer 
et al. (1990) have modified a model by Nguyen (1986) to predict the effect of the ini-
tial grain temperature and moisture content on moisture migration. Obaldo et al. (1991) 
have formulated a finite-difference model to predict the moisture changes in stored corn. 
Khankari et al. (1994) have developed a mathematical model to study the moisture dif-
fusion in stored grain due to temperature gradients and their predicted results show good 
agreement with the experimental data. 

In the first part of this chapter we present the generalized governing equations for the 
coupled heat and mass transfer processes in porous materials and in the second part we 
apply these equations to some practical engineering applications. 

10.2 MATHEMATICAL FORMULATION 

This chapter provides a review of the existing literature on the behavior of coupled heat 
and moisture transfer in porous materials. For the convenience of mathematical analysis, 
the following assumptions are made: 
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(i) The materials are homogeneous, isotropic and non-deformable. 

(ii) Gravity effects are neglected. 

(iii) The behavior of the moisture can be described by an equation for the total moisture 
content which is the sum of the continuity equation for the liquid phase and the 
continuity equation for the vapor phase. 

(iv) There is local thermodynamic equilibrium between the moisture and the porous 
matrix. 

Based on the above assumptions, the mathematical equations for the coupled heat and 
moisture transfer in a porous medium can be expressed as the following generalized 
forms: 

p C p ^ = V-(A:Vr) + Q, (10.1a) 

p-^ = V-iDmVm)-hM, (10.1b) 

where T and m are the temperature and the moisture content, respectively, the moisture 
content in this chapter denotes dry basis moisture content, t is the time, p is the material 
density, Cp is the heat capacity of the material, k and Dm are the thermal conductivity 
and moisture diffusivity of the material, respectively, Q is the heat transfer caused by the 
moisture and pressure, and M is the moisture flow caused by the temperature and pressure. 

In the next section, these coupled equations are applied to the analysis of the moisture 
migration in stored grain and the drying behavior of the materials. 

10.3 APPLICATIONS 

10.3.1 Moisture diffusion in stored grain 

Khankari et al (1994) developed a model for the simultaneous heat and moisture transfer 
to predict the moisture migration in stored wheat due to diffusion. It is assumed that 
the air in the intergranular spaces of the wheat is stagnant and transport mechanisms 
due to convection are not considered. The moisture in the air can be assumed to be 
negligible in comparison to that in the grain. Thus the heat source term in equation 
(10.1a), Q, represents the latent heat of condensation/evaporation due to the change in the 
grain moisture and the moisture flow term in equation (10.1b), M, denotes the moisture 
transport due to the temperature gradient. 

Therefore, the unsteady one-dimensional governing equations can be written, see Khankari 
etal (1994), as follows: 

dT d (,dT\ ^ dm ^^^^ , 
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^^^(D —] +—(D —] (102b) 
dt dx \ ^ dx J dx \ dx J ' 

where DT is the moisture diffusivity due to the temperature gradient and hiv is the heat 
of evaporative phase change. 

The partial pressure of the water vapor Py in the grain and the partial pressure of the 
surrounding air are assumed to be the same due to the assumption of local thermodynamic 
equilibrium. In general, the equation of the sorptional isotherm of the system can be 
represented by 

Pv = f{m,T), (10.3) 

and therefore we have the expression 

dPy=.(^\ dm+(^) AT. (10.4) 

Equation (10.4) can be rewritten as 

dPv = o-dm H-cjdT, (10.5) 

where 

For wheat, the sorption isothermal curve can be given by, see Chen and Morey (1989), 

Pv_ 
Ps 

1 - exp 1-1.2299 x 10"^ [T (°C) + 64.346] (lOOm)^"^^^^} , (10.7) 

where Ps is the saturation pressure of the water vapor. Using equation (10.7), the variation 
of the moisture content and the temperature with respect to the relative humidity for wheat 
is shown in Figure 10.1. The parameters a and u) in equation (10.6) can be evaluated 
using equation (10.7) and they are shown in Figures 10.2 and 10.3. From the Figures 10.1 
to 10.3, it can be found that 

(a) the moisture content of a porous material depends on the temperature and the 
humidity of the surrounding air, 

(b) an increase in the temperature increases the values of both the parameters a and cj, 
and 

(c) under conditions of higher moisture content, the parameter uj is governed only by 
the temperature gradient and becomes a constant value. 

The diffusivity coefficients Dm and DT can be obtained from the expressions given by 
Khankari et al (1994), namely 

^™ = ^ k g m - s - (10.8a) 
rRyT 
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Figure 10.1 Variation of the moisture content with the relative humidity in bulk 
wheat 
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Figure 10.2 Variation of the vapor pressure with the moisture content at 
constant temperature in bulk wheat 
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Figure 10.3 Variation of the vapor pressure with the moisture content in bulk 
wheat 

and 

DT = -D^ 
a 

kgm' - l ^ - l o ^ - l (10.8b) 

where (/> is the porosity and r is the tortuosity and their values were assumed to be 0.4 
and 1.53, respectively, Ry is the water vapor gas constant, and Dy is the diffusivity of 
the water vapor in air and can be determined from the expression given by Thorpe (1980), 
namely 

Dy - ^ _ ̂ ^^ ^^ m'̂ s \ (10.9) 
T -f 245.18 

To demonstrate the moisture migration phenomenon in bulk wheat enclosing the grain 
between two parallel plates, which are a distance E apart, the upper one has a higher 
temperature to prevent natural convection and the lower one has a 10 °C temperature 
difference and the side boundaries have zero flux conditions. All boundaries of the 
calculation domain are assumed to be impermeable to moisture flow. The associated 
boundary and initial conditions are given by Khankari et al. (1994), namely 

T ( 0 , t ) - 2 5 ° C , 

T(jFf,0-:35°C, 

1^.^(0,.)-M..f (0,^)^0, dm 
''Fa 

dm dT 
D^'-^iH,t) + Dr^iH,t)^0, 

(10.10a) 

(10.10b) 

(10.10c) 

(lO.lOd) 
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r(x,o) = 30^c, 
m(x,0) = 13.5%. 

(10.11a) 

(lO.Ub) 

Numerical calculations of these formulations were made by Khankari et al (1994) and 
the results obtained were also compared with experimental measurements. The principal 
parameters used in his calculations were as follows: 

p = 690kgm~^ 

iJ = 0.203 m, 

Cp = 1.398-h 0.0409 X 

A: = 0.117-h 0.00113 X 

100m 
1 0 0 - m 

100m 

1 0 0 - m 

kJkg-^K, 

Wm~^K, 

(10.12a) 

(10.12b) 

(10.12c) 

(10.12d) 

where the thermal properties of wheat are obtained from the ASAE Standards (1990). 

Comparison between the predicted results and the experimental measurements of the 
moisture content is shown in Figure 10.4 and both results show a high moisture content 
near the cold side, i.e., the H value along the abscissa is small in Figure 10.4. According 
to the experimental report, there was a slight development of the mold near the cold side, 
resulting in a recommendation of grain aeration during storage, see Chang et al (1994). 

1 month (predicted) 
2 month (predicted) 
7 month (predicted) 

O 1 month (experimental) 
A 2 month (experimental) 
D 7 month (experimental) 

0.20 

Figure 10.4 Comparison of the numerical and experimental predictions with 
the experimental data 
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10.3.2 Heat and moisture transfer in the drying process 

Low-intensity drying process 

A typical heat and mass transfer problem is governed by the Luikov (1966) equations 
which relate to the drying of a porous moist slab. The phase change occurring within the 
slab acts as a heat source or a heat sink, resulting in the coupled relationship between the 
mass transfer and heat transfer. It is assumed that the material properties and pressure are 
constant throughout the material. Therefore, the heat source term in equation (10.1a), Q, 
is the latent heat of evaporation due to the moisture change, while the moisture flow term 
in equation (10.1b), M, is the moisture transport due to the temperature gradient. The 
unsteady one-dimensional governing equations for the cases of a slab, hollow cylindrical 
and hollow spherical geometries can be written as, see Chang and Weng (2000), 

^ " ' - ' " § = " i ( - ' " " i ) + - » ™ e ^ . - - ' " ^ , (10.13.) 

where n — 1/2 for a slab, n = 0 for a hollow cylinder and n — - 1 / 2 for a hollow sphere. 
Further, m^ is the moisture potential, k and DM are the thermal and moisture conductivity 
coefficients, respectively, Cp and Cm are the heat and moisture capacities of the medium, 
respectively, p is the material density, HLV is the heat of evaporative phase change, 5 is 
the thermogradient coefficient, and e is the phase conversion factor of liquid into vapor. 
For a more detailed description, see Luikov (1975). All the material properties mentioned 
above are effective properties and the moisture potential rrip is related to the moisture 
content m by the expression m = CmTrip. 

To simplify the notation, we use the expression for d/dx (x^~^^9T/5x), which is ob-
tained from substituting equation (10.13a) into equation (10.13b), and then rearrange the 
two new equations yields the following equations: 

where 

ox \ 

Dx^--'-^(x'-
ox \ 

pcp 

D — 
pCm 

_,,dT\_dT 
dxj dt 

~dx~J ~ "df 

» 

kDM 
{k + ehivDMS)' 

CmShLV 

drrij) 

dT 

(10.14a) 

(10.14b) 

(10.15a) 

(10.15b) 

(10.15c) 
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X _ CpDM^ 

{k + ehivDMS)' 
(10.15d) 

In equation (10.14), u and A are positive coupling coefficients related to the moisture 
migration and heat conduction, respectively, L and D are positive quantities which express 
the equivalent temperature diffusion coefficient and the equivalent moisture diffusion 
coefficient, respectively. The moisture potential in equation (10.14a) plays the role of 
a heat source for the temperature distribution if the moisture potential rate is positive 
(i.e., drrtp/dt > 0), and it acts as a heat sink if the moisture potential rate is negative 
(i.e., drrip/dt < 0). Similarly, the temperature may play the role of a moisture source 
or a moisture sink, depending on whether the temperature rate is positive or negative. 
Therefore, the coupling of the diffusion system can be rewritten more compactly as 
equation (10.14) and this clearly represents the same physical process as modeled by 
equations (10.13a) and (10.13b). 

At the boundaries of the domain, the latent heat of vaporization becomes part of the energy 
balance, and the mass diffusion caused by the temperature gradient and the moisture 
gradient affects the mass balance. The associated hygrothermal boundary and initial 
conditions are given by, see Luikov (1966), 

dT 
k—{xi,t) = hc\ [T(xi, t) - Tool] + ( ! - £ ) hLvhmi [rrip {xi, t) - rriooi], 

(10.16a) 

x)2] , 

(10.16b) 

dT 
-k-—{x2,t) = hc2[T{x2,t) -T002] + (1 -e)hLvhm2[mp{x2,t) - moo2], 

DM-w^{xi,t) -i-DMS—ixi.t) = hmi [rripixut) - mooi], (10.16c) 

~DM-^{x2,t) - DMS—{x2,t) = hm2[mp{x2,t) - moo2], (10.16d) 

T{x,0) = To, (10.17a) 

mp(x,0) =mo. (10.17b) 

The coupled partial differential equations and boundary conditions are first subjected to a 
Laplace transformation. The governing equations are next reduced to ordinary differential 
equations and then they are converted into a single fourth-order ordinary differential 
equation by introducing a transformation function. Finally, the temperature and the 
moisture distributions in the transform domain are given by, see Chang and Weng (2000), 

f ( x , 5 ) = ^ ^ ^ , ( 5 ) ( ^ , ( x , S ) + ^ , (10.18a) 

fhp {x,s) = E ( i - ?«') ̂ ' (•̂ ) <̂ ' (^'^) + T ' ^^^-^^^^ 
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where S is the Laplace transformation parameter, ipi (x, S) represents the functions in 
Table 10.1, which are specific for a slab, hollow cylindrical and hollow spherical geome-
tries. The coefficients ^i (5) can be determined by using the boundary conditions (10.16a) 
- (10.16d). Applying the Laplace transformation to equations (10.16a) and (10.16b) 
and introducing equations (10.18a) and (10.18b) into these equations, we can obtain the 
following matrix form: 

[^]4X4U(-?)}4X1 = {^}4X1 (10.19) 

and 

in which 

oci 
/2D 

, D ^ / / DV AXUD 

1/2 

(10.20) 

(1 - e)hLvhml 2 n - l ^ 

dx dx J + 
ku difj 

L dx 
Mj = -" 'g "x-" ^— [x^ 

1 
[hciJ^ + {1 - e)hLvhmi]^j on x = xi for j = 1,2,3,4, 1_ 

L 
(10.21a) 

•̂  S dx \ dx J L dx 
1 
j[hc2i^+ {l-e)hLvhm2]^3 on x = X2 for j = 1,2,3,4, 

(10.21b) 

Mj^ 
DM d 

S dx 
, 2 n - l d / , _ , , d ^ \ 

dx \ dx J 
^ ^ ^ 2 n - l A /^^l-2ndy^.? 

S dx \ dx 

H—z—[01/-\-1)—^ —-(pj on X = xi for j = 1,2,3,4, 
L ax L 

(10.21c) 

Table 10.1 The functions (pi (x,5), given in equation (10.18), for a slab, a 
hollow cylinder and a hollow sphere 

Geometry ^i 

Slab i 

Hollow cylinder 0 

eP»^ for 2 = 1,2,3,4 

lo {Pix) for 2 = 1,2 
Ko (pix) for 2 = 3,4 

Hollow sphere - 1 ^e^*^ for i = 1,2,3,4 
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Aij^ 
DM d 

5 dx 
Jln 

dx 

DM 

r. l-2 

dx 
, hm2 2n-l ^ , i'-t) 

E3 = - ^ ( m o - m o o i ) , 

E4 = - ^ (mo - moo2) 

_ ( (5 i /+ l )—^ T^^j o^ X = X2 for j = : 1,2,3,4, 
L ax L 

(10.21d) 

(10.21e) 

(10.21f) 

(10.21g) 
(10.21h) 

^1 = ^ [^ci (^0 - ^ooi) 4- (1 - £) hLvhmi (mo - mooi)], 

^2 = ^ [/iC2 (To - T002) + (1 - e) hLvhm2 {mo - moo2)], 

and 

0^1^= \ 

Pi = 

1 for 
= 1,2 for a slab or a hollow sphere, 

= 1,2,3,4 for a hollow cylinder, 

- 1 for i = 3,4 for a slab or a hollow sphere. 

-1 for i = 1,3, 

1 for i = 2,4. 

Since it is difficult, in general, to find the inverse Laplace transformation of the functions 
T (x, 5) and fhp (x, 5) analytically, a numerical inversion method may be used, see Chen 
et al. (1992). However, for some special cases, the functions at any given time can 
be evaluated using the inversion theorem for the Laplace transformation. The Luikov 
equations have been also solved by Lobo et al. (1987), Liu and Cheng (1991) and Pandey 
etal{l999). 

To verify the above solution, a wood slab, which is subjected to a symmetrical hygrothermal 
loading, was considered by Chang and Weng (2000). For the wood slab they used the 
geometric and material properties as used by Liu and Cheng (1991), and these may be 
summarized as follows: 

n = - , To = 10°C, Too = 110°C, m o = 8 6 ° M , moo = 4°M, 

p = 370kgm-^ k = 0 .65Wm-^K-\ DM = 2.2 x IQ-^kgm-^s'^^M, 

HLV = 2500kJkg-\ hci = hc2 = he = 2.25Wm"2K, e = 0.3, 

Cp = 2500Jkg-2K, Cm = 0.01kg-^°M, S = 2 ° M K ~ \ 

hmi = hm2 '='hm = 2.5 X 10"^ kg m"^s°M, / = 0.012 m. 
(10.22) 

The temperature and moisture evolution with time at the surface and at the middle of the 
slab are shown in Figures 10.5 and 10.6. Clearly, the results of the two different methods 
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Figure 10.5 Temperature at the center and at the surface of the wood specimen 

agree well, even though there is some initial moisture content deviation, see Figure 10.6. 
This discrepancy may be the result of not including enough complex eigenvalues when 
using the eigenvalue method, see Pandey et al. (1999). 

High-intensity drying process 

Using superheated steam as the drying medium, high temperature and high vapor pressure 
within the materials are induced during the drying process, thus promoting more intense 
moisture transfer throughout the materials. However, the steam drying process involves the 
simultaneous transfer mechanisms of heat, gas and liquid. To simplify the mathematical 
analysis, Hager etal. (1997) developed a model for the drying of a ceramic sphere in which 
the liquid water balance and the gas balance are added to the moisture balance. The model 
assumes that Darcy's law holds for the gas and liquid phases and uses an energy and mass 
balance. The heat transfer term in equation (10.1a), Q, represents the evaporation heat of 
the gas phase due to the pressure gradient. The moisture flow term in equation (10.1b), 
M, combines the effects on the moisture transport due to the temperature gradient and the 
pressure gradient. Therefore, the one-dimensional governing equations can be expressed 
as follows: 

ar _ i_d_ 
"̂"̂  dt ~ r2 dr 

-'k 
dT_ 
dr 

\_d_ 
J.2 Qj. rW.^'S\ 

HG dr J 
(10.23a) 
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1000 

Figure 10.6 Moisture content at the center and at the surface of the wood 
specimen 

dm \_d_ 
J.2 Qj. •'D, 

dm 

' dr 

1 
J.2 Qj. 

•HD, 
' dr J.2 Q^ fJ'L fJ'G J dr 

(10.23b) 

where r is the radius of the ceramic sphere, HLV is the heat of evaporative phase change, 
KG and KL are the respective permeabilities of the gas and the liquid, /JLG and /IL are 
the respective kinematic viscosities of the gas and the liquid, S is the thermogradient 
coefficient, P is the pressure in the material, which satisfies the following thermodynamic 
relationship: 

P = ^{m)Ps{T), (10.24) 

and $ is the quotient of the actual pressure P and the saturation pressure Ps at the prevailing 
temperature. This equation was determined from using experimental data. In this simu-
lation, the specific steam temperature is 175 °C, the steam mass flow is 0.35kgm~^s~^ 
and the initial pressure within the material is 1 bar. The transport coefficients used in the 
above equations were either measured experimentally or were derived theoretically from 
the pore size distribution of the material and they are given by, see Hager et al (1997), 

Drn = 
2KL7{T) fdr,{m) 

jiirl (m) V dm 
m^s (10.25) 
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6 = 

KL = 

1 d^jT) (dln[r,{m)] 
'-l{T) dT \ dm J J. ) T 

ST[l^pV{r\ 
2dV ^ 2 

r —— dr m , 
or 

KG 
ST[l + pV{r\J 

r 
dr m^, 

(10.26) 

(10.27) 

(10.28) 
to t J -^r 

where V is the specific void volume, V {r)^^^ is the total void volume per unit mass of 
the dry solid, R is the radius of the sphere, which in the problem under investigation takes 
the value 5 mm, 7 (T) is the surface tension and is a function of the temperature, r^ is the 
equivalent radius which has a more detailed description, see Dullien (1979), and r is the 
tortuosity which is the only adjustable parameter in this simulation by Hager et al. (1997) 
and a value of 20 was used for this fitting parameter. 

The boundary conditions at the center of the sphere are written as equations (10.29a) and 
(10.29b) due to the spherical symmetry of the material. The surface boundary condition 
of the material, equation (10.29c), can be obtained by differentiating equation (10.24) 
with respect to time and using the relationship Pl^^ji = Poo^ and the second boundary 
condition at the surface, equation (10.29d), can be obtained from combining a heat and a 
mass balance over the surface of the sphere. The initial temperature and moisture content 
of the material, equations (10.30a) and (10.30b), are uniform and they are equal to the 
saturation temperature and the pressure of the surrounding steam. They are given by 

dr 

dm 

dr 

dT_\ 
~dt 

= 0, 
r = 0 

= 0, 
r = 0 

- 1 

r=R 

[dPsy 1 d^ dm 
^ V ar ; ^^dm dt r=R 

pDmh LV 
dm. 
dr r=R 

dT_ 
dr 

dT KL, dP 

r=R f'L dr r=R 

(10.29a) 

(10.29b) 

(10.29c) 

(10.29d) 

r=R 
+ h {Tl^n - ^oc) + eV* {T\^^ - T^) - 0, 

T(r ,0) = 100°C, (10.30a) 

m(r ,0) = 15%, (10.30b) 

where s* is the emissivity and it is assumed to be unity and cr* is the Stefan-Boltzmann 
constant. 

Based on the above conditions, Hager et al. (1997) have obtained numerical simulations 
and experimental measurements which are compared in Figures 10.7 to 10.9. It can be 
observed from these figures that the drying process includes a period with a constant drying 
rate and a period with a decreasing drying rate. During the constant drying rate period, 
the material remains wet, the evaporation phenomena takes place only at the surface and 
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Figure 10.7 Comparison of the numerical predictions with the experimental 
data 

the drying rate is controlled by the convective heat and mass transfer. Therefore, the 
material temperature remains at the wet bulb temperature, the moisture content drops 
linearly and the pressure within the material is equal to the surrounding pressure. In 
contrast, during the decreasing drying rate period, the evaporation front recedes from the 
surface, a sorption zone appears in the material next to the wet zone and evaporation 
takes place at the evaporation front as well as in the sorption region. The moisture 
content in the material drops, the temperature and the inner pressure increase, and the 
surface pressure remains equal to the surrounding pressure. As the moisture content of 
the material approaches equilibrium, the inner pressure also approaches the surrounding 
pressure and the temperature approaches the surrounding temperature. 

10.4 CONCLUSIONS 

This chapter has provided a review of coupled heat and moisture transfer in porous material. 
In the first part of this chapter the generalized governing equations for the coupled heat 
and moisture transfer are proposed and in the second part some practical engineering 
applications are analyzed by using these equations. The results show that the transport 
coefficients in the coupled system play an important role but it is difficult to accurately 
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Figure 10.8 Pressure at different locations in the ceramic sphere during drying 
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Figure 10.9 Moisture content in the porous sphere during drying 
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determine these coefficients. An inverse method of coupled heat and mass transfer for 
parameter estimation, or function estimation, with some temperatures measured on the 
surface or in the interior of the material, may be recommended for estimating these 
coefficients. 

Furthermore, as the more efficient and advanced computer technology develops, the 
substantial insight into microscopic features at atomic or molecular levels is necessary 
to analyze the complicated behavior of heat and mass transfer. In the near future, the 
molecular dynamics simulation should be applied to the nanoporous materials involving 
the heat and mass transfer phenomena. 
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Abstract 

Nucleation and growth of bubbles in porous media are important problems encountered in 
processes such as pressure depletion and boiling. After a recap of the basic principles of 
nucleation and bubble growth in the bulk, we discuss some of the results obtained during the 
last ten years within the framework of percolation and pore network models. In particular, 
results of experiments of liquid-to-gas phase change by pressure decline of supersaturated CO2 
solutions in 2D transparent etched networks are reported in order to understand the phenomena 
in porous media. 
The observations confirm the heterogeneous nature of nucleation, i.e., the decisive role of the 
capillary roughness of the pore walls. Contrary to the bulk or Hele-Shaw cells, gas clusters 
have irregular and ramified shapes typical of invasion percolation patterns. As a result, the 
growth rate of a single gas cluster is different than the growth rate of an isolated single bubble 
in the bulk. 
Numerical simulations of the growth pattern and of the growth rate of a single gas cluster are 
performed with a numerical automaton. Based on a pore network modelling technique and on a 
set of hypotheses derived from the observations, this automaton is first validated by comparing 
the numerical results with the experimental data. Then the automaton is used to explore the 
influences of the Jakob number, pressure decline rate. Bond number, and wettability. 
In a last part, the closure of the macroscopic mass balance equations is discussed. 

Keywords: nucleation, bubble growth, pore network, experiments, simulation, inva-
sion percolation 

2 7 6 
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11.1 INTRODUCTION 

The liquid-gas phase change processes in porous media play a vital role in many techno-
logical applications. These include such areas as oil recovery from petroleum reservoirs, 
geothermal systems, nuclear waste disposal, drying of materials and enhanced heat trans-
fer systems, to name only a few. Two main different processes can be at the origin of a 
liquid-gas phase change: the boiling nucleation and bubble growth which occurs in super-
heated liquids and the isothermal nucleation and bubble growth resulting from a pressure 
reduction in supersaturated multicomponent liquid mixture. As emphasised by Firooz-
abadi and Kashchiev (1993), this latter process, i.e., the isothermal formation of a new 
gas phase when the pressure is lowered below the saturation pressure, is a kinetic process 
which plays a very important role in petroleum engineering. Called solution gas-drive, 
this process is classified as one of the five main mechanisms of oil recovery from fractured 
and unfractured reservoirs (the others four being gravity drainage, capillary imbibition, 
viscous displacement and compressibility effects both from rock and fluid). Contrary to 
external displacement processes, such as drainage, where the oil is produced by injecting 
a gas inside the reservoir, in internal drives oil is pushed out of the pores by the growth of 
gas bubbles coming from its own dissolved gas when pressure on the reservoir is reduced. 
In direct relation with this particular process, many unresolved issues, such as the value 
of the critical gas saturation, i.e., the maximum gas saturation existing before any flow of 
gas may occur, and the influence of pressure decline rate, are of great importance. 

Whatever the mechanisms involved in the phase change, the main problem in the modelling 
of this non-equilibrium phenomenon in porous media at Darcy's scale is the determination 
of the gas phase formation rate Tg which appears as a source term in the mass balance 
equations 

d_ 
dt 

(ep,5,) + V . (p,[7,) = ± r „ (11.1) 

where t is the time, e the porosity, Ui the superficial velocity, pi the density, and z = / for 
the liquid and g for the gas. The -h sign in the right-hand side of equation (11.1) is used 
for the gas and the - sign for the liquid. However, despite this key role played by Tg, few 
studies have been devoted to the gas formation in porous media, and in most cases Tg is 
simply derived from thermostatic conditions (dashed line in Figure 11.1). As can be seen 
from Figure 11.1, which shows the kinetics of the formation of a gas phase by pressure 
decline, such a description is clearly very questionable and therefore justifies the works 
performed on this problem for some years. 

However, as emphasised by Yortsos and Parlar (1989), the problem of bubble nucleation 
and bubble growth in porous media has not only practical interests but also theoretical 
ones. The interaction between nucleation, mass transfer and fluid flow and the effects of 
pressure decline rate or superheat on the growth of the gas phase add indeed many novel 
aspects not previously encountered in typical displacements, i.e., in drainage. 

Without going into the details of nucleation, in this chapter we briefly describe the phe-
nomenology of this important process and we present the particular aspects of the phe-
nomenon in porous media. 
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Figure 11.1 Measured non-equilibrium gas saturation as a function of P for 
constant pressure decline rate data, see Moulu (1989) 

11.2 BASIC PRINCIPLES 

Gas phase formation in supersaturated or superheated liquids is a first-order transition 
which requires two consecutive mechanisms: 

(i) bubble nucleation, which appears when the liquid is brought to its saturation condi-
tions, and 

(ii) bubble growth, due to the mass or heat diffusion driven by pressure lowering or 
superheat and generally controlled by inertia, viscous and surface forces. 

11.2.1 Nucleation 

According to Zettlemoyer (1969) and Springer (1978), the liquid-gas nucleation is defined 
as the spontaneous formation of bubbles in the liquid. This phenomenon occurs when, 
for instance, at constant temperature and pressure lower than the saturation pressure of a 
pure liquid, see Figure 11.2(a), thermodynamic fluctuations of sufficient magnitude form 
growing molecular gas clusters which give rise to gas bubbles. 

Let us consider for instance the vaporisation of a liquid in the isothermal, isometric 
system presented in Figure 11.2(b). If we assume that this system is isolated from its 
surroundings, so that its total energy remains constant in time, its density is uniform on a 
macroscopic scale. However, this is not true at the scale of individual molecules where the 
local density is changing constandy due to the molecules random motions and collisions. 
Due to collisions between vapour molecules, aggregates, embryos, nuclei and droplets 
form in the system. The size of an aggregate, embryo, etc., is characterised by the number 
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Figure 11.2 (a) Liquid-gas equilibrium curve, (b) Schematic of homogeneous 
nucleation 

n of molecules contained in any of these molecular formations. An aggregate contains a 
minimum of two molecules and may contain as many as n* - 1 molecules, the value of 
n* being sufficiently small for 

(i) the aggregate to disintegrate spontaneously into n single vapour molecules, and 

(ii) the aggregate to be treated as gas like. 

On the other hand, embryos contain a sufficiently high number of molecules (n > n*) so 
that each embryo can be treated as a continuum medium which has the same properties 
of the bulk vapour. A particular important consequence of this definition is that the 
macroscopic flat film surface tension a is assumed to have a meaning even for embryos 
consisting of only a few molecules. 

According to classical nucleation theory, based on the previous hypothesis, a nucleus will 
only grow and become a bubble if it exceeds a certain critical size for a given degree of 
super saturation. The critical size can be derived from the work of formation AG, i.e., 
the Gibbs free energy of a spherical cluster of radius i?, see Frenkel (1946) and Springer 
(1978), namely 

4 - ^ ^ 2 ^ (11.2) AG = ^nR^a 
3 R R* 

where i?* is the critical radius as explained hereafter. As can be seen from the right-hand 
side of equation (11.2), the work of formation depends on of the competition between two 
effects. The first one is the volume energy of the cluster and represents the decrease in 
chemical potential due to the forming of the gas cluster. The second one is the contribution 
of the surface free energy to AG and represents an increase in the chemical potential. 

As shown in Figure 11.3, where the variation of AG with radius R is plotted for fixed 
values of supersaturation and temperature, AG first increases with R and reaches a 
maximum at some value ofR = R* and then decreases continuously. According to the 
condition of equilibrium, at the maximum point AG* (i?*) the nucleus is in equilibrium 
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Figure 11.3 Variation of the Gihhsfree energy with bubble radius for a vapor 
bubble spontaneously formed in a superheated or supersaturated liquid 

with its surrounding liquid and at this equilibrium, which is a metastable one, correspond 
respectively to the critical radius R* and the free energy barrier 

AG* = 
47ri?* 

(11.3) 

When R < R* the nucleus tends to condense and disappears, while for R > R* it will 
tend to grow. Unless the free energy barrier AG* is reached then the cluster cannot reach 
a critical size and cannot become a bubble. 

We thus arrive at the important conclusion that for a cluster to become a bubble then the 
free energy barrier must first be reached. Once this barrier is reached then the addition of 
a single molecule puts the cluster over the top of the AG as a function of R curve. From 
this point, AG decreases very quickly and the nucleus (which is now called supercritical 
nucleus) grows extremely rapidly until the normal saturation pressure Pgs is established in 
the vapour and a bubble forms. Therefore the onset of phase change is taken to correspond 
to the condition AG = AG* at which, as we have seen, clusters of size R* form. 

When R > i?*, thermodynamic (mechanical and chemical) equilibrium defines the radius 
of the gas bubble. This radius is given by the Laplace equation 

R=^ Pi 
2a 

(11.4) 

where Pg and Pi, with Pg > Pi, are the pressure in the gas and the liquid, respectively. At 
equilibrium, the total gas pressure Pg is related to the temperature, concentration of the 
dissolved gas in the liquid and radius of curvature of the interface by the Kelvin equation. 
In many cases this equation can be approximated by 

9 _ 2(7 \ 

Pp. " ' " " ^ l PiROlTJ 
(11.5) 
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where Pg and Pgs are the gas pressure and the saturated gas pressure, i.e., the pressure 
at which the liquid and the corresponding or the dissolved gas phase can coexist at 
temperature T, see Defay and Prigogine (1951), and !R is the constant for an ideal gas. 

The difference AP = Pgs — Pi or Pg - Pi that characterises the mechanical equilibrium 
for a given curvature of the gas-liquid interface is called supersaturation. As shown in 
Figure 11.4, this difference can help us to understand why a liquid pressure lower than the 
saturation pressure is needed to observe nucleation. 

Three kinds of nucleation processes are generally distinguished, namely: 

(i) The homogeneous nucleation, see Frenkel (1946), Springer (1978) and Blander 
(1979), when nuclei form in the bulk of the liquid in the absence of foreign matter. 

(ii) The heterogeneous nucleation, see Jarvis (1975), Hwu etal (1988), Lubetkin( 1988) 
and Sheu et al (1988), when the nuclei take place on a foreign matter, such as the 
walls of the container or at the interface between two immiscible fluid phases. 

(iii) The nucleation due to the capillary trapping of pre-existent stabilised microbubbles 
inside the roughness of the solid surface, see Bankoff (1958). 

In homogeneous nucleation, the energy of cluster formation is given by equation (11.3). 
In heterogeneous nucleation this energy is reduced by the combined effects of surface 
roughness and wettability of the solid by the liquid phase. In that case the energy barrier is 
given by (AG')heterogeneous = <l> i^G*\omo^,,,,,s^ with </.<!. The factor </. takes into 
account the energy reduction and is a function of the shape and size of the heterogeneities of 
the solid surface, and of the liquid-solid wetting angle 9, see Moulu (1989) and Kashchiev 
and Firoozabadi (1993). 

Heat 
diffusion 

Superheated 
liquid 

P^s 
P 

ps 

2a/R 

.Pj ~ 

|Supersatu rated 
nquTd 

(a) (0 
Supersaturation 

(b) 

Figure 11.4 (a) Superheated liquid, (b) Supersaturated liquid, (c) Influence of 
capillary and Kelvin effects on phase pressures 
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In capillary trapping, the condition for nucleation is directly obtained by applying equation 
(11.4) with the radius of curvature evaluated as the conical pit mouth radius, see Drelich 
etal. {1996). 

It is now well established that homogeneous nucleation requires a very high supersaturation 
ratio AP/Pgs and Wilt (1986) gave the example of 1100 to 1700 for CO2 solutions near 
room conditions. Consequently, gas phase formation with low supersaturation, as very 
often observed, can only be explained by heterogeneous nucleation or capillary trapping. 

11.2.2 Rate of bubble nucleation 

The appearance of bubbles is a random process characterized by the rate of nucleation J, 
number of bubbles per unit time and unit volume of liquid. When the liquid is kept at a 
constant supersaturation AP , J is time-independent and may be expressed as follows: 

J = JQ=Z A" exp — — - ] =2n{ exp ^ , (11.6) 

"^K kT J \7rm^bJ "^ \3kT {APf J 

where n is the number of molecules per unit volume, m* the mass of a molecule, kT is the 
thermal energy, and & is a parameter close to 2/3. Equation (11.6) applies to both single 
and multicomponent liquids, provided the pressure inside the nucleus bubble is practically 
equal to Pgs, see Reiss (1968), Lothe (1969) and Abraham (1974). The number Â  of 
bubbles nucleated in the liquid until time t is given by 

N{t) = Vo [ J{t')dt', (11.7) 

and the corresponding total volume of gas is given by 

Vg{t)= f J{t')Vt{t,t')dt', (11.8) 
Jo 

where vt {t, t') is the volume at time ̂  of a bubble nucleated at time t' < t. These formulae 
with N = loTVg {t) corresponding to an observable given value are generally used to 
determine Jo experimentally. 

When nucleation takes place at a variable supersaturation, J is, in general, a complicated 
function of time, see Kashchiev and Firoozabadi (1993). However, for slow enough 
changes of the supersaturation, J can be approximated by the quasi-stationary nucleation 
rate corresponding to the instantaneous values of the supersaturation. For bubble nucle-
ation at time-dependent supersaturation A P (t) we therefore have J {t) — Jo (AP {t)). 
According to Kashchiev and Firoozabadi (1993), this formula is valid when the rate of 
supersaturation d (AP) /dt C 10^ Pa/s, a requirement which is usually met in practice. 

In principle, equation (11.6), where AG* is replaced by cpAC and A* by a specific 
prefactor A, taking into account the effects of the solid surface on the nucleation process, 
can also be used to determine the heterogeneous nucleation rate. However, contrary to 
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the homogeneous case, until now very few experimental results are available to confirm 
the validity of this modelling. Nowadays the most popular approach to predict the 
vapour formation rate in heterogeneous nucleation is generally based on the capillary 
trapping nucleation, i.e., the existence of surface heterogeneities or potential nucleation 
sites (natural or machine-formed pits, scratches, gouges, grooves, etc.) that contain pre-
existing or trapped gas, see Cole (1979). Provided that certain requirements on the conical 
and contact angles are met then these nucleation sites, randomly distributed at the surface, 
are activated (i.e., can grow to become bubbles) when the local supersaturation is exceeded 
as specified by equation (11.4), see Bankoff (1959), Marto et ai (1968), Ward and Forest 
(1976), Winterton (1977) and Tong et ai (1990). 

In the foregoing situation, which corresponds to numerous practical situations, the issue 
of rate of nuclei formation is non-existent because the solid surface decreases the stability 
of supersaturated liquid. As a result, the energy needed to create clusters is many orders 
of magnitude less in the presence of crevices, cavities, etc. For instance, it is simple to 
show that in a site of conical geometry with an angle /3, the interface between liquid and 
gas is flat when the contact angle is equal to 7r/2 — l3/2. As there is no curvature of the 
interface, therefore there is no capillary pressure to collapse the bubble. 

For the purpose of calculations, in capillary trapping, the condition for nucleation is 
obtained by directly applying equation (11.4) with the radius of curvature taken as the 
conical pit mouth radius R = D, see Figure 11.5, whereas the number of bubbles formed 
per unit time on unit surface is determined from microphotography and statistical analysis 
of crevices and cavities of the solid surface. In particular, Yang and Kim (1988) have shown 
that the active nucleation site density can be derived from the knowledge of the density 
probability functions of the cavities' mouth radius and conical angles. The resulting 
expression may be written as follows: 

N = Fexp(-^Y (11.9) 

Solid 

Figure 11.5 Condition for nucleation in capillary trapping 
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and it is formally analogous to equation (11.6). In equation (11.9), N is the active 
nucleation site density, A P the supersaturation and F and X are constants for a given 
liquid-solid interface. 

Numerous studies, mainly in nucleate boiling, have been performed within the frame of 
this approach, see Bankoff (1958), Griffith and Wallis (1960), Comwell (1977), Crum 
(1982) and Yang and Kim (1988), and a relatively good agreement was generally found 
between the modelling and the experimental data. 

11.2.3 Bubble growth 

After a nucleus has surpassed the critical size i?*, it can grow irreversibly with a certain 
growth rate dR/dt. It is generally accepted, see Scriven (1959), Florschuetz and Chao 
(1965), Szekely and Fang (1973), Jones and Zober (1978), Hong (1985), Miyatake et al. 
(1994) and Lee and Merte (1996), that the growth rate dR/dt of an isolated supernucleus is 
controlled by the mass, momentum, and/or heat transfer across the bubble liquid interface. 
Mass transfer occurs via evaporation and condensation at the interface and/or diffusion 
in the liquid (when multicomponent). Momentum transfer is governed by hydrodynamic 
forces and depends on the bubble capillary pressure and the liquid inertia and viscosity. 
When present, heat transfer takes place from the liquid towards the bubble. 

Although the governing equations are well known, see Scriven (1959), exact solutions 
cannot be obtained in general because of the motion of the gas-liquid interface and the 
resulting convective transport in the fluid. An exception is the special case of growth 
from zero initial size in nucleate boiling of pure liquids and binary mixtures treated by 
Scriven (1959). In this case the growth rate is determined, under some hypothesis, by the 
difference between the pressure within the bubble and the ambient pressure liquid, inertia 
and viscosity, surface tension and transport of heat and volatile material through the liquid 
to the bubble surface. 

Since this first study, a number of methods, see Hong (1985), have been developed 
to deal with the gas bubble growth. According to the relative importance of inertial, 
viscous, surface tension and diffusion effects, different regimes of growth can exist, see 
Plesset and Zwick (1954). These different regimes result in different dependencies of 
i^ as a function of time and these are, in general, rather complicated. However, when 
the effects of the bubble liquid interface curvature on chemical potential are neglected, 
i.e., Pg ^ Pgs, exact or approximate power law behaviours are generally obtained, i.e., 
i? a P , a finding that is also supported by available experimental data. For example, 
the bubble growth in isothermal supersaturated binary liquid solutions can be shown to 
depend on the following dimensionless groups: Jacob number, Ja — 'RTHe AP/Pg (He 
is the solubility constant in the supposed Henry-type proportionality, i.e., AC — He AP), 
pressure parameter, G — R'^AP/piD'^ (D is the molecular diffusivity), surface tension 
parameter $ = 2a/R AP , Schmidt number So — rj/D (rj is the dynamic viscosity), 
driving parameter, AP/Pgs, and finally, B = Ja/G which occurs in the momentum and 
mass transfer equations, see Szekely and Martins (1971) and Szekely and Fang (1973), 
whereas asymptotic behaviours of R (t) (when R{t = 0) > R* ^ 0) can be expressed as 
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follows: 

(11.10) 

(11.11) 

Equation (11.10) is the asymptotic solution corresponding to the inertial regime, the rate 
of bubble growth is only controlled by the inertia of the liquid, and equation (11.11) is 
the asymptotic solution corresponding to the mass transfer regime, i.e., when growth is 
diffusion controlled. These equations are valid as long as the supersaturation A P remains 
time-independent. 

When A P (i) = mt, with m = constant, the problem of the bubble growth can only be 
solved numerically. However, an approximate solution was proposed by Jones and Zober 
(1978) as follows: 

R{t) Pgs {t = 0) 
R{t = 0) \Pgs{t = 0)-mt 

1/3 

\l + V^(jaT'/' + ^MT'/A (11.12) 

where 
Dt 

T = 
P2 {t = 0) 

and M = 
/ mP^ jt ^ 0) 

Equation (11.12) shows two asymptotic evolutions for R, when r -> 0, i.e., Roc Ja r^/^, 
and r -> 00, i.e., R ex MT^^^. The same evolutions were confirmed by Dominguez 
(1997) for the growth of a 2D bubble in a Hele-Shaw cell. 

Although theoretical expressions (11.10)-(11.12) agree with the experimental results, 
these expressions are derived from simplified equations where capillary and viscous effects 
are neglected. Epstein (1994) has shown that these approximations are largely justified in 
bulk liquids. Clearly, such is not the case in porous media where capillary mechanisms 
are often dominant owing to the small dimensions of the pores. 

In view of these uncertainties, and the lack of data concerning the liquid-gas phase change 
in porous media, some studies have been performed on the subject during the last ten years. 
In what follows we review some of them concerning the isothermal gas phase formation 
due to a pressure reduction in binary mixtures, concentrating on the studies developed at 
the scale of a pore or a network of pores. 

11.3 ISOTHERMAL GAS PHASE FORMATION IN POROUS MEDIA 

As in the case of homogeneous liquids, modelling of gas phase formation in supersaturated 
liquids in porous media is described by the consecutive processes of nucleation and bubble 
growth. However, contrary to nucleation and bubble growth in bulk liquids, where the 
body of literature is immense, knowledge concerning the same mechanisms in porous 
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media is much less developed. In fact few studies have been conducted to quantify these 
processes in fluid saturated porous media and, in particular, to analyse the influence of 
geometry and topology of the microstructure on the gas phase formation. Hence many 
questions are still unresolved concerning this specific two-phase flow in which the liquid 
is pushed out by its own dissolved gas or vapor when the pressure is reduced. Moreover, 
among the studies devoted to this problem, most of them have been inconclusive until now, 
e.g.. Hunt, Jr and Berry (1956), Moulu (1989) and Kashchiev and Firoozabadi (1993). 

As summarised in Li and Yortsos (1995a), the origin of the difficulties encountered in 
analysing the previous investigations has been identified. They mainly result from 

(i) the use of the macroscopic approach based on the identification of the porous 
medium with a continuum, and 

(ii) the utilisation of models valid only in the bulk liquid phase to describe the nucleation 
and phase growth in porous media. 

As discussed below, it is in fact crucial to take into account explicitly the presence of the 
solid microstructure that bounds the flow domain and the geometrical complexity of the 
pore space that constrains the growth of the gas phase. 

In order to address porous media effects, certain aspects of nucleation and bubble growth 
have been recently studied experimentally, numerically and theoretically in simplified 2D 
porous structures, e.g., El-Yousfy (1992), Li and Yortsos (1995a, 1995b), Satik et al. 
(1995), Dominguez (1997) and Dominguez et al. (2000). These studies are based on 
visualisations of the liberation of CO2 gas from various supersaturated carbonate liquids 
(via solute diffusion) in transparent micromodels, on pore network simulations and on 
scaling arguments. In particular, the scaling of a single bubble growth in a porous medium 
has been studied by Satik et al. (1995) under the condition of low supersaturation where 
diffusion predominates. Their study indicates that the following regimes develop in 
succession: a short duration early-time regime, where the growth is compact and classical 
scaling is applicable (see below), an invasion percolation regime, a transition to a viscous 
fingering regime and a diffusion-limited aggregation (DLA) regime where growth occurs 
at multiple sites at the same time and is controlled by viscous forces. In the present 
chapter, we are essentially concerned with the first two regimes. For the fractal regimes, 
i.e., invasion percolation and DLA, Satik et al. (1995) also derived scaling laws for the 
growth rate depending on the fractal dimension of the gas cluster, see equation (11.13) for 
the 2D version. Li and Yortsos (1995b) studied the growth of multiple bubbles evolving 
from different nucleation centres. These authors identified two growth regimes: 

(i) a global percolation regime in which invasion percolation rules apply at the liquid-
gas interface as a whole, and 

(ii) a local percolation regime in which invasion percolation rules apply at the boundary 
of each cluster. 

These findings were exploited by Du and Yortsos (1999) for studying the critical gas 
saturation in a porous medium. 
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In the present chapter, we are mainly interested in the growth of a single cluster and 
therefore we do not consider further the issue of the growth of multiple bubbles. The 
remainder of the chapter is devoted to the presentation of the main results obtained in 
the studies developed in our Institute on the subject. As mentioned before, these studies 
are based on a series of experiments performed in transparent pore network models 
saturated with different C02-liquid solutions aimed to understanding nucleation and gas 
cluster growth by pressure decline. Results derived from pressure measurements and 
from the analysis of images deduced from direct optical visualisations could be related to 
mechanisms of nucleation and bubble growth. A part of these results was used to build a 
network automaton intended to simulate the process numerically under various conditions. 
This automaton is briefly described and verified through direct numerical simulation of 
the experiments. Prior to this description, and to the discussion of simulations, we focus 
on the experimental study and the physical analysis of the underlying phenomena. 

11.4 EXPERIMENTS 

11.4.1 Experimental set-up 

In order to get an insight into the micromechanics of the process and to test the theoretical 
predictions, a series of experiments were carried out. These experiments were performed 
on transparent pore network models, mostly resin micromodels and for some comple-
mentary results a glass micromodel, made using a standard procedure, see Bonnet and 
Lenormand (1977), initially saturated with solutions of CO2 in various liquids in equilib-
rium at a pressure PQ = 3 bar. The resin micromodel with a plan form of 15 x 14 cm^ 
consisted in a regular square lattice pattern of 42 000 rectangular ducts of 700 //m uniform 
thickness, and variable width. The lattice spacing is 1 mm and the widths of the ducts, 
varying in the range from 200 fim to 800 /xm, obey a prescribed log-normal distribution 
law which corresponds to a typical pore size distribution function of a real porous medium. 
Details regarding the glass micromodel can be found in El-Yousfy (1992). A gas tank and 
a flow controller were used to impose the pressure decline rate. A video microcamera 
connected to an image processing apparatus was used to obtain quantitative data from 
the observation of the bubbles and clusters inside the micromodel. The schematic of the 
experimental set-up is shown in Figure 11.6. 

The experimental procedure was as follows. CO2 was first injected into the micromodel to 
displace the air. Pure liquid (water, n-octane, n-decane, water-glycol solutions, as listed 
in Table 11.1) was then injected to dissolve CO2 and to pressurize the model typically 
at Pgs = Po = 3 bar. Finally, the pure liquid was displaced by the CO2 solution. Once 
the liquid-C02 solution was in place inside the micromodel, the micromodel and the 
connected tanks were maintained at P = 3.5 bar for many hours in order that the solution 
homogenises. The experiments were then performed by reducing, either suddenly or with 
various constant rates (m = —dP/dt), the initial liquid pressure from PQ = 3 bar to 
PQ — AP , by means of a microelectronic valve, denoted by m.e. in Figure 11.6. During 
the experiments, the pressure and volume of the solution flowing out of the micromodel 
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Figure 11.6 Schematic diagram of the experimental set-up 

Table 11.1 Fluid physical properties 

[He] 

molem~^N~^ N m - i 
[D] 

Poiseuille kgm-

(A) 
(B) 
(C) 
(D) 

Octane 5 x 10"^ 21.80 x 10"^ 4.97 x IQ-^ 0.510 x 10" ! 0.70 x 10^ 
Decane 4 x 10"^ 23.43 x 10-^ 3.90 x 10"^ 0.850 x 10" ! 0.75 x 10^ 
Xglycol = 0.5 3 . 2 1 x 1 0 " ^ 5 3 . 0 2 x 1 0 " ^ 0 . 6 0 x 1 0 " ^ 7.00 x 10"^ 1.10x10^ 
Xglycol = 0.2 2.63 x lO""^ 58.06 x lO"^ 1.00 x 10"^ 3.00 x 1 0 " ! 1.01 x 10^ 

to the separator of phases through the two outlets situated in the middle of the two lateral 
sides, were measured as a function of time, and the processes of nucleation and growth 
were videotaped by means of a camera connected to a VCR and a PC. Experiments were 
stopped shortly after the gas started to come out from the micromodel. 

The video recording was used to obtain the time for the first bubble to be observed, the 
number of bubbles produced, the final number and growth of various bubbles. Typical 
sequence of bubble growth at the pore level and inside the micromodel are shown in Figures 
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11.7 and 11.8. These images were also digitised and an image processing software, Visilog 
4, was used to analyse the phase distribution. 

Figure 11.7 Growth of a bubble within a pore of micromodel 

if D O , *C' 

Figure 11.8 Growth of a gas cluster within the micromodel 
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11.4.2 Results 

Appearance of bubbles 

From the visualisations of nucleation, events at the pore level and quantitative measure-
ments, the studies of El-Yousfy (1992) and Dominguez (1997) with fixed liquid super-
saturation (AC = He AP with C = CO2 concentration, He = solubility constant and 
AP — pressure decline) have shown that the nucleation process in the micromodels is due 
to the pre-existence of stabilized microbubbles in cavities, irregularities and impurities at 
the surface of pores. This hypothesis, first derived from numerical evaluations based on 
theoretical results concerning the formation of active nucleation sites as a function of su-
persaturation, wettability, number density and shapes of the cavities on the solid surfaces, 
see Tong et al (1990) and Wang and Dhir (1993), was confirmed by a set of experimental 
observations which are in complete contradiction with the classical homogeneous or het-
erogeneous nucleation theories. These observations by El-Yousfy (1992) and Dominguez 
et al (2000) include: 

(a) The formation of bubbles on pore walls. 

(b) The existence of two successive steps. A first step of progressive appearance of 
bubbles followed by second step where no new bubble is created, see Figure 11.9. 
The existence of the plateau is clearly in contradiction with the heterogeneous 
nucleation model that predicts a constant rate of bubble nucleation, at least if the 
supersaturation remains constant. In heterogeneous nucleation, the plateau will be 
reached when all the CO2 of the solution is produced. This is not the case in the 
experiments. 

(c) The spatial reproducibility of nucleation sites. The bubbles always appear in the 
same pores, even for different values of the pressure drop. 

(d) The existence of a threshold for bubble appearance. The absence of production when 
supersaturation is below a given value cannot be interpreted by existing models. For 
heterogeneous nucleation, extrapolation of measured times above threshold using 
equation (11.6) predicts a time r of about 100 seconds for 0.2 bar. Experimentally, 
there were no creations after more than one week. 

(e) The inverse of the time of appearance of the first bubble, 1/r, is proportional to the 
dimensionless supersaturation AP/PQ, as shown in Figure 11.10, while equation 
(11.6) implies a linear relationship between log (1/r) and (AP) for heterogeneous 
nucleation. As shown in Figure 11.11, this linear relationship is not verified. 

(f) The total number N of bubbles produced is in agreement with the Yang's law derived 
for the bubbles nucleation cavities on solid surfaces given by equation (11.9), see 
Yang and Kim (1988), as illustrated in Figure 11.12. 

(g) The experiments carried out with the same micromodel and for the same pressure 
lowering but for different liquids (the characteristics of which are given in Table 
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11.1), clearly demonstrate the decisive influence of the wetting angle 9 on the 
creation of bubbles. The visualisations depicted in Figure 11.13 and the results 
summarised in Table 11.2 show that more than 500 bubbles are formed for the 
less-wetting solutions (water-C02 solutions), while we only observe none or one 
bubble for the perfectly wetting hydrocarbons solutions. Given the physicochemical 
properties of the liquids used, these results are in agreement with those that can be 
deduced from the work of Wang and Dhir (1993), showing the deactivation of 
nucleation sites as the wettability increases. Consequently, for the supersaturation 
conditions used, this result also confirms the decisive role of the capillary trapping 
mechanism on the appearance of bubbles, i.e., the pre-existence of microbubbles 
trapped in cavities, or stabilized by the presence of impurities at the liquid interface 
of the bubbles. 

Contrary to the classical nucleation theories that predict the emergence of bubbles as a 
spatially random process characterized by a continuous rate of nucleation as a function 
of supersaturation, bubbles arise here from various sites at the pore walls where the gas 
is trapped by capillarity. The gas is released when the supersaturation is such that the 
increase of the gas pressure induced by the mass transfer leads to a local capillary pressure 
that exceeds the threshold value of the site. Although well known in the field of boiling on 
rough surfaces, this result was largely controversial up to now in the petroleum engineering 
literature, see Betata (1998). However, the thermodynamical history and the liquid setting 
within the pore space can be a priori significantly different in a petroleum reservoir from 
those concerning the laboratory experiments presented here. 

Bubble growth 

The observations led to the following main results: 

(a) Subsequent to nucleation, bubbles begin to grow within the pore space. As observed 
on a video recording and shown in Figure 11.7, the bubbles grow by diffusion 

Figure 11.13 Distributions of initial gas clusters in a micromodel for various 
wettability. The number of growth sites decreases with the wettability. The results 
were obtained for AP/APse,t = 0.63 and (a) 0 = 0.00 rad., (b) 6 = 0.66 rad., 
and(c)e = 0.S2idid. 
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Table 11.2 Number of nucleation sites as a function ofAP/APs^t and 9. Each 
number in the brackets corresponds to an experiment 

AP/Po 
A 

n-octane 
^ = 0.00rad. 

B 
n-decane 

9 = 0.01 rad. 
glycol-water mixture 

glycol mole fraction = 0.5 
6 = 0.66 rad. 

D 
glycol-water mixture 

glycol mole fraction = 0.5 
^ = 0.82 rad. 

0.46 
0.56 
0.66 

(0,0) 
(0,0) 

(1,1,1,1,0) (0) 

(1) 
(3,3,3) 
(9,7,6) 

(23,21) 
(33,36) 
(50,46) 

(509) 
(> 509) 
(> 509) 

and are spherical until the bubble radius reaches the pore size. As can be seen 
from Figure 11.14, the growth law during this stage is well approximated by the 
analytical solution proposed by Hong (1985) which leads to equation (11.11). This 
corresponds to the first regime described by Satik et al (1995). 

(b) If the supersaturation is too large, invasion of surrounding pores by vapor will 
ensue until an appropriate stabilizing pore geometry is encountered, as shown in 
Figure 11.8. One can refer to Yortsos and Parlar (1989) for the study of possible 

Figure 11.14 Bubble growth inside a pore. The line is calculated by a simple 
3D diffusion model and by using standard values of the parameters 
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equilibrium states. Contrary to the growth in the bulk or in an effective porous 
medium, such as a Hele-Shaw cell where the gas patterns are compact, for instance 
disk-shaped in the absence of gravity in a Hele-Shaw cell, visualisations show that in 
micromodel (which mimics real porous media) the shape of the formed gas clusters 
is clearly disordered and non-symmetric, see Figure 11.15. This complicated, but 
nevertheless reproducible, pattern is the result of the influence of the microstructure 
on the invasion process of the pore space. The menisci along the cluster perimeter are 
stationary or moving according to whether the capillary pressure is lower or greater 
than the capillary pressure threshold of the adjacent pore throat, i.e., Pg — Pi = 
2a cos 9/r, where r is the equivalent radius of the throat connecting the gas cluster 
to an adjacent liquid-occupied pore and Pi = Po - AP. This regime corresponds 
to the second regime identified by Satik et al. (1995), i.e., the invasion percolation 
regime as discussed further below. 

(c) The growth process is diffusion controlled. According to Szekely and Martins 
(1971), the growth of a vapor bubble in porous media is controlled by forces similar 
to those in bulk phase change, namely inertia, viscous, surface and pressure forces. 
In terms of dimensionless groups, this phenomenon can be characterised by the 
Jakob number, J a oc AP/PQ, the pressure parameter, G = o^AP/piD'^, where 
a is the lattice spacing, the surface tension parameter, ^ = 2alaAP, the Schmidt 
number, Sc = rj/D, and finally the parameter B = Ja^/y/G which occurs in the 
momentum and mass transfer equations. This last number is a useful indicator 
of the mechanisms involved in the cluster growth. When J5 <^ 1 the process is 
diffusion-controlled, whereas for 5 > 1 the process is inertia-controlled. As it is 
well known, inertia control prevails only under severe conditions. 

For the growth of a vapor cluster in porous media, a modified capillary number, 
Ca = piuD/aa cos 9, which measures the relative importance of the viscous and 

Figure 11.15 (a) Typical shape of a bubble observed in a Hele-Shaw cell, and 
(b) in a micromodel (gas phase in black, liquid phase in white). With the Hele-
Shaw cell, one expects a circular bubble. Small aperture variations may explain 
the non-perfectly circular shape depicted in (a) 
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capillary forces, and the Bond number. Bo — pio^g sin (/)/cr cos 9, which measures 
the relative importance of gravitation and capillarity, as well as the pore size function 
distribution of the microstructure must be taken into consideration. Concerning the 
pressure decline rate, which controls the evolution of supersaturation as a function 
of time, the corresponding dimensionless number is given by M = ma^/PoD. 

For the experiments reported in the present chapter, i.e., with the different CO2 
solutions, the values of the dimensionless numbers are in the following ranges: 
10 > J a > 0.6, G > 10l^ ^ « 10-2, Ca ^ 1 0 - ^ Bo ^ 5 x 10"^ and 
10^ < Sc < 10^. Therefore the growth process is diffusion controlled. This 
result, which concerns the initial stages (as has been indicated above) as well as the 
advanced stages of the growth, was also confirmed experimentally in Hele-Shaw 
cell as reported in Dominguez et al. (2000). 

(d) The confirmation of a non-trivial scaling for the growth rate of a gas cluster in the 
invasion percolation regime. For a diffusion-controlled regime, the growth rate of 
a single gas cluster can be readily estimated from a scale analysis of the diffusion 
equation. When the supersaturation Ja can be assumed constant in the far field, 
it is easy to show that the area (equivalent to the volume in micromodels) of a 
single gas cluster is given by E oc Ja^rJ, where 3" = T'^/ATTT, is called the shape 
factor, and F and E are the perimeter of the cluster (proportional to the area of 
the gas-liquid interface) and the area of the cluster (proportional to the volume), 
respectively. While 9̂  = 1 in the bulk or in an effective 2D porous medium, i.e., 
for a circular gas bubble growing in a Hele-Shaw cell the result is different in 2D 
real porous media. As can be seen from Figure 11.16, after the transition stage 
corresponding to the typical growth of the bubble in a single pore, the radius of 
the bubble varies as ^/i, see Figure 11.14, and this coefficient tends to increase as 
a function of time. Consequently, for the same values of Ja, the same boundaries 
conditions and Bo = 0, the volume of a single gas cluster tends to grow faster 
in a real porous medium than in a Hele-Shaw cell or an effective porous media. 
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Figure 11.16 Evolution of shape factor 3' in a micromodel and in a Hele-Shaw 
cell under identical thermodynamic conditions. These results have been obtained 
with fluid C and for rapid depressurizing 
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Similar conclusions were derived by Satik et al. (1995). They concluded that the 
pattern exhibits a fractal structure and proposed an explicit scaling law to describe 
the gas cluster growth in the percolation domain. This law was derived under the 
assumption of quasistatic concentration fields and is expressed by 

14-Aln 
Re\ 
R) 

= 27rkXT, (11.13) 

where here R is the cluster radius of gyration, see for example Stauffer and Aharony 
(1992), Re the outer boundary radius, A is the fractal dimension of the gas cluster 
(equal to 1.82 in 2D) and k = 31T/He Ms, where Ms is the solute molecular weight. 
As shown in Figure 11.17, this law is in rather good agreement with our experimental 
results. This is in fact quite surprising since in our case the concentration fields are 
far from quasistatic (see below) and the size of the considered cluster is a priori too 
small for equation (11.13) to hold, see Satik et al. (1995). It is also worth mentioning 
that the relationship E oc Ja^rJ, with J = r^/47rE, is derived under the condition 
that the geometrical perimeter F can be assimilated to the effective perimeter for 
the mass transfer. In the case of fractal interfaces, it is well known that the effective 
(accessible) external perimeter is in fact smaller than the geometrical perimeter due 
to the screening of less advanced points of the interface by the most advanced ones, 
cf. Stauffer and Aharony (1992) and Sapoval (1994). The evolution of 7 for the 
micromodel experiment reported in Figure 11.16 is qualitatively consistent with a 
developing fractal interface. Although the concept of shape factor as defined above 
permits us to illustrate the striking difference between the growth of a bubble in 
a porous medium and in a Hele-Shaw cell, it is clearly of limited interest in the 
case of a fractal cluster owing to the screening effect. It may be observed that the 
screening is presumably less effective for transient diffusion regimes, as is the case 
in our experiments, than for quasistatic concentration fields. However, this specific 
aspect is still to be investigated. 
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Figure 11.17 Comparison of experimental gas cluster growth (x,0) with the 
theoretical scaling law, equation (11.13) (straight line) 
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Concerning the influence of the different parameters Ja, M, 6, and Bo on the growth 
of the gas cluster, the systematic experimental investigation carried out has led to the 
following main results: 

(a) In agreement with the scale analysis, the volume of the gas formed is proportional 
to Jo?, as shown in Figure 11.18, NSB a Ja^r^ {NSB = number of invaded 
bonds). 

(b) The value of a depends on the pressure lowering law, as in the case of homogeneous 
fluids. For a rapid depressurization we have 1.3 < a < 2.3, with an average close to 
1.5, see Figure 11.19, and for a linear decay 3.5 < a < 4.7, with an average close to 
a = A, see Dominguez (1997). Ranges of variation of a corresponding to these two 

Figure 11.18 Effects of micro-structure on bubble growth. Comparison of 
bubble growth in a Hele-Shaw cell with bubble growth in a micromodel as a 
Junction ofJa^, NSB is the number of invaded pores 

Figure 11.19 Influence of Jacob number, J a, on the growth law. The results 
of three experiments are reported for each Jacob number NSB oc r^^^ for 
Ja = 1.35, NSB oc r^-^i for Ja = 0.88 and NSB oc r^^^ for Ja = 0.59. 
Each series of points with the same symbol corresponds to an experiment 
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experimental conditions (M -> oo and M = constant) arise from the different sizes 
of the gas clusters studied. As the size of the cluster decreases, a tends to 1 through 
a transition zone which is relatively large compared to the scale of the micromodel. 
Thus, in spite of difficulties encountered in the analysis of the asymptotic growth 
rate of a single gas cluster under constant far field conditions (only gas clusters 
of small sizes were studied in order to avoid the influence of interactions between 
clusters), these results clearly show the strong influence of the microstructure on 
the growth of the gas phase in porous media. We have to remember that a = 1 for a 
rapid depressurization and a = 3 for a linear decay of the pressure in homogeneous 
systems (see equations (11.11) and (11.12)). They also lead to the same qualitative 
conclusions as for the bubble growth in homogeneous fluids, i.e., that a is greater 
for a linear decay of the pressure than for a rapid depressurization, see Wang and 
Bankoff(1991). 

(c) Experimental investigations on the influence of the wettability 9 shows that this 
parameter does not influence significantly the growth rate of the gas clusters, see 
Dominguez et al. (2000). For a rapid depressurization we obtained a = 1.63 
for 9 = 0.66 rad. and a = 1.66 for 9 = 0.01 rad. The increase in wettability is 
associated with the increase of the interfacial area at the pore scale between the 
gas and the liquid through the development of the liquid film along the pore walls. 
As discussed earlier, the effective area for the mass transfer is different from the 
geometrical interfacial area. In the diffusion regime considered here, the rate is 
controlled mostly by the large scale structures of the interface (tips) and not by the 
small ones. This may explain why the exponent of the growth law is practically not 
affected by the wettability. However, we note that the wetting fluid remaining in 
the corner of the cross section of pores and in the small cavities in the walls plays 
the role of a source term and tends to increase systematically the values of NSB 
(NSB = number of invaded bonds). 

(d) Concerning the influence of the Bond number, i.e., of gravity, we observe that this 
parameter has a strong influence on the growth rate, a taking the values 1.65,1.98 
and 2.33 when the Bond number is 0,1.31 x 10"^ and 2.61 x 10~^, respectively, 
see Figure 11.20. This is directly due to the fact that the gas cluster shape becomes 
more and more anisotropic as the Bond number increases, see Figure 11.21. The 
cluster shapes depicted in Figure 11.21 are consistent with invasion percolation 
patterns in the presence of a destabilizing gravity field, cf. Meakin et al. (1992) and 
Laurindo and Prat (1996). 

11.5 SIMULATIONS 

11.5.1 Pore network model 

As mentioned before, earlier attempts to model bubble growth during pressure depletion 
in porous media were based on the identification of the porous medium with a continuum. 
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Figure 11.20 Effect of gravity on the growth law for liquid C and J a — 1.09. 
NSB (X T^^^ for Bo = 2.61 x 10"^ NSB oc r^'^^^ for Bo - 1.31 x 10"^ 
and NSB oc r^-^^ for Bo = 0. Each series of points with the same symbol 
corresponds to an experiment 

Figure 11.21 Effect of gravity on the phase distribution for the same number 
of invaded pores (NSB ^ 320j. (a) Bo = 0, (b) Bo x 10^ = 1.31, and (c) 
Bo X 10^ = 2.61. Gravity vector is parallel to the right and left sides of the 
micromodel (gas phase in black, liquid phase in white) 

When the porous medium is treated as an equivalent bulk system, the growth of an isolated 
2D single bubble obeys the classical similarity scaling R^ oc r. In addition to the fact 
that this law does not agree with the results obtained in real porous media, previous 
visualisations showed the basic differences between growth in the bulk and in porous 
media and elucidated the reasons for this disagreement. These differences are exemplified 
by the disorder and the non-symmetry of gas clusters, resulting from the influence of 
the geometry and topology of the microstructure on the growth of the gas phase. Under 
these circumstances, as shown for others classes of two-phase flows in porous media by 
Lenormand et ai (1988), it is interesting to rely on the discrete approach (as opposed 
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to continuum models), i.e., on a pore network model which is based on the modeling of 
mechanisms at pore scale. 

In fact, pore network models have been used for studying a great variety of transport 
phenomena in porous media, including liquid-vapor phase change phenomena, see Prat 
(1993) and Laurindo and Prat (1996). Regarding the growth process studied in the present 
chapter, a pore network model was developed by Li and Yortsos (1995a, 1995b). The main 
differences between the network model of Li and Yortsos and the simulator presented in 
the present paper lie in the diffusive transport modelling (see below) and the fact that 
our model accounts additionally for the presence of liquid films along the walls of the 
invaded bonds. Also we would like to underline the fact that the effect of gravity is 
taken into account in our simulator and our version allows the simulation of correlated 
microstructures, see Dominguez et al (2000). The porous medium is represented by a 
network of pores joined by bonds (throats), see Figure 11.22, and the pore and bond sizes 
are distributed randomly according to given distribution laws. The model is directly based 
on the observations of the cluster growth as explained below. 

Observations from the transparent micromodel show that, after the initial gas bubble 
nucleates on the pore surface, it quickly detaches and migrates to the center of the pore. 
Then the bubble grows until it fills the entire pore body. At this stage, additional mass 
diffusion increases the gas pressure and the interface invades another pore. From these 
observations two main stages can be distinguished in the cluster growth: 

(i) a slow pressurisation stage, during which the pressure in the cluster increases and 
the gas-liquid menisci move slightly to adjust their curvature to accommodate the 
pore geometry, and 

(ii) a fast penetration stage immediately after a capillary barrier at a perimeter throat is 
exceeded. 

Following this stage, that corresponds to an evolution at almost constant mass, the volume 
of the cluster increases and the gas pressure quickly reduces to the adjacent liquid pressure 
as the invaded pore is occupied. After completely occupying a pore, the meniscus can 
invade a neighbouring bond if the corresponding capillary barrier is exceeded. Moreover, 

(a) 

.2/?. 

-̂ ^EEEEEis : :> 

Figure 11.22 Structure, sites and bonds of the numerical network 
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for perfectly wetting liquids, it is also observed that a film of liquid remains in the corners 
of the pores and bonds invaded by the gas. Consistently with these observations we have 
developed a pore network automaton where both occupancy of pore and concentration 
fields are computed. The main features of the pore network automaton are listed as 
follows: 

(a) The porous medium is modeled by a two-dimensional square lattice of pores and 
bonds. The pores provide the volumetric storage and the bonds control the capillary 
characteristics. Log-normal distributions are used to randomly assign bond and 
pore size on the numerical network. As in the micromodel, the lateral boundaries 
of the network are inaccessible to flow, with the exception of two producing sites at 
opposite ends. This network has the same characteristics as the micromodel, i.e., 
the same porosity e — 0.58, the same length of bond (corresponding to the length of 
ducts Id = 0.1 cm), the same thickness h = 700 /im, and the same pores and ducts 
sizes distributions. The geometry of pores and ducts is approximated by cylindrical 
sites and rectangular bonds, see Figure 11.22. 

(b) As in the experiments, the network is initially occupied by a supersaturated liquid 
and the system has a uniformly distributed initial pressure PQ and initial concen-
tration of CO2. The fluid physical properties are those of the fluids used in the 
experiments. The simulation starts by reducing the liquid pressure either by a sharp 
step A P or at a specified rate m = -dP/dt. In the simulations, we assume that we 
are after the nucleation of one bubble and that the pore that contains the nucleation 
site is fully occupied by the gas at pressure Pg, which is the same as the pressure of 
the liquid Pi = p^ - A P (neglecting the capillarity of the pore body). At the same 
time, the bubble is surrounded by four liquid saturated bonds and the concentration 
C of the dissolved gas at the gas-liquid interface is given by C == He Pi, where Pi 
is the system pressure. As in Li and Yortsos (1995a, 1995b), the hypotheses that 
sustain these approximations are that thermodynamical equilibrium applies at the 
gas-liquid interface at all times (note that the Kelvin effect is neglected) and that 
the relation between the liquid pressure and the concentration is linear. 

(c) The transient diffusive mass transfer of CO2 in the liquid that drives the gas cluster 
growth, and the invasion of the network is computed by using explicit analytical 
mass transfer laws adapted from classic solutions of transient diffusion processes, 
cf. Crank (1957). One such law is sufficient for the less wetting liquids, since in this 
case the gas-liquid interface is restricted to the cross section of bonds. Two laws are 
considered in the case of the more wetting liquids because of the presence of liquid 
films along the bond walls. These laws, see Dominguez et al (2000), allow one to 
compute the mass flux between the liquid and the gas in each interfacial bonds. A 
more traditional way for computing a concentration field governed by a diffusion 
equation in the network approach is to use a finite difference or finite volume 
discretization, see for example Prat (1993) or Li and Yortsos (1995a, 1995b). This 
requires the repeated solution of a linear system of equations, which is CPU time 
consuming. The method outlined in this chapter avoids this problem. However, this 
is clearly an approximation whose validity deserves to be explored in some detail 
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(for instance through comparisons with the discretization approach). In this chapter 
we have simply proceeded by comparison with the experimental results. 

(d) Invasion percolation rules are used to take into account the effect of capillarity. By 
expressing the mass flux balance at each gaseous node as a function of time, one 
obtains the evolution of the mass of the gas phase, and of the pressure in the gas 
cluster as a function of time, namely 

Anr - E^An {ij)^ + E^An {ij)j,, (11.14) 

^^-^wI^At) ' PAt-^M) = ^P.^PAt), (11.15) 

where E^An {i,j)^, and E^An {i,j)p are the CO2 mass flux from the bonds 
B and the liquid films F belonging to the interface between the gas cluster and 
the surrounding liquid phase. Vg = Vg {t) is the volume of the gas cluster at 
time t. If the pressurisation Pg {t -h At) is greater than Pi (j) -I- Pc {hj)^ where 
Pc {i,j) is the capillary pressure of an arbitrary bond {i, j), the interface advances 
and occupies the site j (note that bonds belonging to isolated trapped liquid clusters 
cannot be invaded as in standard invasion percolation with trapping). The volume 
of the gas cluster at time t + At is next calculated using the mass balance derived 
from the state equation: An = 1/JlT {{VgPg) {t -h At) - (VgPg) (t)}. Based on 
the difference At = An — ATIT, additional iterations are taken on the assumed gas 
volume until a convergence tolerance defined by At < 10~^^ is reached. In this 
mode of interface advance, the time required for the bond invasion is determined 
from the previous mass diffusion equations and the gas cluster grows according to 
the invasion percolation rules, i.e., the perimeter bonds are invaded one at a time 
in such a way that the largest perimeter bond (in the absence of gravity) is always 
invaded first. 

(e) Gravity effects are taken into account using an appropriate bond invasion potential 
(as first proposed by Wilkinson, 1984 and subsequently used by several authors, see 
Laurindo and Prat, 1996 among others), which depends not only on the width of the 
throat (as in the no-gravity case) but also on the relative position of the throat in the 
gravity field. 

Additional details concerning the topological rules governing the pore occupancy as well 
as the computational algorithm can be found in the thesis of Dominguez (1997). 

11.5.2 Experiments versus numerical simulations 

In this section, we present the results obtained by means of two-dimensional numerical 
simulations and the comparisons of these results with the experimental data. 

Experimental and simulated results of pore volume-time curves NSB (r), which rep-
resents the overall system behaviour, as well as of growth patterns, which provide local 
details, are compared in Figure 11.23 for an abrupt pressure decrease. As can be seen, a 
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Figure 11.23 Number of invaded bonds (NSB) as a function of time in a single 
cluster. Comparison between numerical results (solid line) and experimental 
data (*,-h,0) (Ja = 0.89j. Ca = 4.81 x lO"" ,̂ 9 = OM, fluid C. Rapid 
depressurizing 

rather good agreement is found between the experimental data and the simulations regard-
ing the evolution of the volume of the gas phase as a function of time. A good agreement 
was also obtained for a constant pressure decline rate, see Dominguez et al (2000). 

Figure 11.24 shows the comparison between the experimental and numerical patterns for 
one of the experiments. The two patterns share many topological characteristics (irregular 
and ramified shapes, including disconnected liquid clusters) but are not identical. These 
differences in the microscale result from the differences between the spatial localization 
of pores and ducts on the experimental and numerical networks (only the pore and bond 
size distributions are identical in both networks). As emphasized in Li and Yortsos 
(1995a, 1995b), these differences in localization produce different occupancy sequences 
and therefore preclude the automaton from accurately matching the microscopic details of 
the bubble growth. Therefore, we conclude that the dominant mechanisms are correctly 
simulated in the range of parameters studied and that the automaton is able to match the 
most important aspects of phase growth. Consequently, it will be used to explore the 
sensitivity of the phenomenon to different parameters in the following. 

11.5.3 Sensitivity study 

This section concerns the investigation of the influence of the Jakob number, surface 
tension, wettability, Bond number, pressure decline rate and the microstructure on the 
growth of a single gas cluster. 



304 NUCLEATION AND BUBBLE GROWTH 

Figure 11.24 Typical evolution of a gas cluster. Top: numerical results for (a) 
NSB = 16, (b) NSB = 146, (c) NSB = 201. Bottom: experimental results 
for(d) NSB = 16, (e) NSB = 146, and(f) NSB ^ 204. APb/Ps^t = 0.41, 
M « 5 X 10-^, fluid B, Ca = 5.81 x 10"^ 

Influence of Jakob number 

The results concerning the influence of Jakob number on the gas saturation (5 a 
NSB/NT, where NT is the total number of sites and bonds in the micromodel) are 
presented in Figure 11.25. 

As can be seen, many aspects of these results are not only qualitatively but also quantita-
tively in agreement with the experimental data. In accordance with the experiments, the 
growth law takes the form 

iV55oc J a V " , (11.16) 

with a independent of J a. The simulations also show the existence of a transition zone 
corresponding to the evolution of a from 1 to 2.13, which corresponds to the investigated 
range of variation of the gas cluster size NSB investigated. This last result is in agreement 
with the values obtained experimentally with the micromodel. It is worth noting that the 
transition zone time scales deduced from the simulations (0 < Inr < 3.5) are also in 
agreement with the experimental data. 
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Figure 11.25 Pore network simulation. Influence of the Jacob number on the 
growth law from numerical results (6 — 0.63J. 5 oc r^^^ 

Influence of surface tension 

As the capillarity directly controls all entrances of the interface bonds, the greater the 
surface tension, the higher is the pressure difference required to penetrate the bonds. 
As this difference is itself controlled by mass transfer, i.e., by the number of the CO2 
molecules contained in the gas phase, the effect of this parameter is then to modify the 
growth rate of the gas cluster, i.e., the values of the exponent a in equation (11.16) as 
illustrated in Figure 11.26. 

Ja = 0.88, 9 = 1.04 rad. / / / 

X 16x10-^1 
64x10-^ 
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0 16x l0 -T 
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Figure 11.26 Pore network simulation. Influence of capillary number For a 
given value ofr, the value ofS increases with the capillary number 
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Influence of wettability 

The influence of the wettability, which leads to the spreading of the liquid along the 
corners and surfaces of the pores occupied by the gas phase, is illustrated in Figure 11.27. 
As can be seen, this parameter does not modify the growth of the gas phase as a function 
of time; a remains constant and approximately equal to 2.1 irrespective of the value of 6. 
In fact the effect of the wettability is exclusively restricted to the monotonic increase of 
NSB. This result is in complete agreement with the experimental data. As a local (pore 
level) examination of mass transfer shows, this effect can be considered as a source effect 
owing to the liquid remaining in the extreme corners of the cross section of pores and 
micro-cavities of the walls. 

Influence of pressure decline rate M 

The results concerning the influence of the pressure decline rate M on the evolution of 
the volume of gas in the absence of gravity effect are presented in Figure 11.28. Again, in 
agreement with the experimental data, we note that the larger is the pressure decline rate, 
the faster is the bubble growth, which remains consistent with the results in the bulk. 

Influence of Bond number 

Figure 11.29 shows the influence of the Bond number on the growth phenomenon in 
the absence of bond/pore size correlations. As in the experiments, this parameter has 
a significant influence on the evolution of the volume of gas formed after the pressure 
lowering, the exponent a varying from 2 to 2.2 while the Bond number varies from 0 
to 5.1 X 10~^. The simulated patterns of gas clusters shown in Figure 11.30, and the 
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Figure 11.27 Pore network simulation. Influence of the wetting properties at 
constant Ca and J a. Best fits give S oc r^-^^ for 9 = 7r/3 rad., S a r^'^^ for 
0 r= 7r/5 rad. and S car^ for 6 = w/lO rad. For a given value ofr, the value of 
S increases with 6 
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Figure 11.28 Fore network simulation. Influence of pressure decline rate M 
on the growth law. Best fits give S oc r^-^^, S oc r^-^^ and S oc r̂ *̂ ^ 

InS 

Inx 

Figure 11.29 Pore network simulation. Effect of gravity on the cluster growth 
law. Results are shown for (a) Bo x 10^ = 5.15, (b) Bo x 10^ = 2.61, (c) 
Bo X 10^ =: 1.31, and (d) Bo = 0. Best fits give S oc r^-^s far (a), S a r'^-'^'^ 
for(b), S (X r'^-^'^for(c), and S oc r^-^^for(d) 
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Figure 11.30 Pore network simulation. Influence of Bond number on phase 
distribution. Results are shown for N SB — 100 with (a) Bo = 0, (b) Box 10^ — 
2.61, and(c) Bo x 10^ = 5.15. (Gas phase in black, liquid phase in white) 

local analysis of mass transfer along the gas-liquid interface, assist us to understand this 
influence. The main factors are: 

(i) the elongation of the cluster in the direction of the gravity when the Bond number 
increases, i.e., the increase of the effective accessible perimeter with the anisotropy 
of the cluster, and 

(ii) the movement of the interface towards the region where the supersaturation is less 
affected by the mass transfer. 

As confirmed numerically in Dominguez (1997), the latter effect indeed leads to greater 
local mass transfers through the liquid bonds adjacent to the region of the cluster that is 
the most advanced towards the upper edge of the network. 

Influence of bond/pore size correlation 

Preliminary results regarding the influence of bond/pore size correlations on the growth 
rate of gas clusters of small size: (from NSB = 1 to NSB = 200) were also obtained as 
a function of time using the procedure defined in Javier Cruz et al. (1989), see Dominguez 
et al. (2000). The results indicate that the growth rate is sensitive to the existence of 
correlations. This issue would deserve to be explored further, both experimentally and 
numerically, through a thorough statistical study. 

11.6 CLOSURE OF MASS BALANCE EQUATIONS 

As recalled in the introduction, the system of equations (11.1) is not closed and a gas 
generation law is necessary to express the source term Fj. For the initial stage of the 
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process, corresponding to ours experiments (i.e., before the onset of bulk gas flow) the 
mass balance equation for the gas phase reduces to 

d_ 
dt 

{ePgSg)=Tg With T g = -TI , Pg ~ Pi = PQ {S g) . (11.17) 

Two ways can be used to determine Ti. Either we assume the instantaneous thermodynamic 
equilibrium or we take into account the two consecutive processes of nucleation and growth 
that control the evolution of the gas phase formation during depletion. 

In the first case the prediction of Ti is immediate if we know the state laws for the different 
phases and the complementary equations governing the equilibrium conditions between 
these phases. For the liquid-to-gas transition studied here, if we assume that the CO2 is 
a perfect gas and the liquid mixture an ideal solution, then Ti is easily derived from the 
state equation of the gas phase 

V, = isS,) = ' ^ , (11.18) 

Pg-Pl=Pc{Sg), (11.19) 

AC=^HeAP, (11.20) 

l{ep^S,) = r,^M~, (11.21) 

where n and Pg are the mole content and the gas pressure derived from the equilibrium 
conditions (11.19) and (11.20). 

The second way is derived from the approach used for the closure of the two-phase flow 
equations. It consists in finding the closed form solution of an elementary problem, 
defined by the local balance equations to express the local interfacial mass flux jump, then 
to resort to a topological law to express the averaged mass flux and the saturation on the 
Representative Elementary Volume (REV). In our study this information can be extracted 
from the observations and measurements previously presented. 

Assuming that the liquid-to-gas transition in porous media is described by the two con-
secutive processes of nucleation and bubble growth then the local volume of the gas phase 
will be given by 

I {sPgSg) =Tg = {sSl) ̂ ~ ^Pg ^^ N {t') Vg (t, t') d̂ Ĵ (11.22) 

where Vg is the volume at time t of bubbles nucleated at time f. It is given by equation 
(11.16) with a equal to the average experimental value, i.e., a = 1.5, and N {t') is the 
active nucleation site density given by the Yang's law, i.e., equation (11.9). 

Equations (11.21) and (11.22) have been tested through a comparison between the the-
oretical results derived from these equations and the experimental results related to the 
pressure-saturation correlation. As the experimental results (active nucleation sites, gas 
saturation) concern the micromodels as a whole the global mass balance describing the 
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phenomenon at this scale must be previously established. This has been done by using the 
general transport theorem properties. In our case the application of this theorem consists 
of integrating the mass balance equations (11.1) with the associated boundary conditions 
over the volume of the micromodels. Assuming negligible concentration and velocity 
gradients, the result of this integration leads to the following differential equations which 
describe the mass balances for solute and total mass: 

i[C{V,-V,)]-^U,=C^, (11.23) 

d g ^ d_ 
dt ~ dt -^^-A^P'Vg)' (11-24) 

In these equations, 11^ = /^ Tg dfi, where Tg is the source term defined by equation 
(11.21) or (11.22), depending on whether the thermodynamical equilibrium is considered 
or not, Q, is the volume of the micromodel, Vp is the total pore volume of the micromodel, 
Vg is the volume of the gas phase which develops because the pressure reduction, and Q 
is the volume of liquid displaced by the gas phase formation. 

Equations (11.23), (11.24), and (11.18), (11.20), with (11.21) or (11.22) as closure equa-
tions for r^, have been used in order to simulate numerically the pressure saturation 
experimental runs. In the simulation we assumed that depletion occurs in steps and that 
during each step the pressure decline, bubble formation, and growing of bubbles occur 
consecutively rather than simultaneously. Corresponding results and their comparison 
with the experimental data are shown in Figures 11.31 and 11.32. 

Several conclusions can be drawn from these results: 

• The satisfactory description of heterogeneous nucleation by Yang's law. 

• The qualitative agreement between the experimental results and numerical sim-
ulations of the pressure-saturation relationship based on the use of Tg given by 
equation (11.22). Such is not the case when we assume that the thermodynamic 
equilibrium between the gas formed and the liquid is instantaneous and the source 
term described by equation (11.21). As expected, and experimentally observed, all 
curves are bounded above by the solution corresponding to quasi-static growth. 

Regarding the discrepancy between the experimental data and the numerical simulations 
based on equation (11.22), different causes can be identified. In particular, the role of 
capillarity and coalescence, which were not taken into account, modifies the values of the 
CO2 concentration in the liquid phase and the growing law of the gas phase volume as a 
function of time. 

11.7 CONCLUSIONS 

The works performed at the pore scale and the pore-network scale during the last ten 
years have led to significant improvements in the understanding of nucleation and bubble 
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growth in porous media, at least for low supersaturations, where diffusion predominates. 
The most noticeable results include: 

(i) The decisive role of the capillary trapping mechanism on the formation of bubbles, 
i.e., the pre-existence of microbubbles trapped in cavities or roughness on the solid 
surface. 

(ii) The effect of the microstructure that leads to fractal patterns and a growth rate 
scaling which is different from the classical scaling, i.e., scaling for an effective 
medium and scaling in the bulk. In particular, the volume of a single gas cluster 
tends to grow faster in porous media than in the bulk. 

The mechanisms of growth described in the present chapter are typical of invasion per-
colation (IP) in the absence of gravity forces and invasion percolation in a destabilizing 
gradient (IPDG) when gravity effects are present, see Xu et aL (1998). It is interesting to 
note that concepts of invasion percolation and invasion percolation in a gradient have been 
also extremely useful for studying other situations of liquid-gas phase change phenomena 
in porous media where capillary effects dominate, notably the slow drying of a porous 
medium, see Prat and Bouleux (1999) and references therein, and the vaporisation process 
occurring in the wick of a capillary evaporator, e.g., Figus et aL (1999). Regarding the 
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particular process considered in the present chapter, gradient percolation ideas could be 
used to explore further the growth rate scaling in the presence of gravity forces, as well as 
to study the influence of viscous forces when the cluster becomes large. 

The results for the growth reported in the present work are valid for spatially uncorrelated 
pore throats. Spatial correlations are expected to affect the development of the gas clusters 
and their influence would therefore deserve to be studied. 

Although we have concentrated on isothermal nucleation driven by diffusion in a super-
saturated liquid, the results presented and the conclusions reached are clearly of interest to 
boiling nucleation in a porous media at low superheat. However, there are specific aspects 
in boiling, such as the influence of the solid phase in the heat transfer, that would also 
deserve to be studied. 

Finally, it is interesting to point out that the findings obtained with the pore network studies 
have been exploited to gain insight into an important practical macroscopic problem, such 
as the one of the critical gas saturation, e.g., Du and Yortsos (1999). Further results on 
this problem can be expected within the framework of invasion percolation and invasion 
percolation in a gradient concepts, e.g., influence of gravity or viscous forces. Naturally, 
percolation approaches are limited to situations where capillarity controls the invasion 
phenomenon locally, i.e., at small and moderate pressure decline rates. As emphasized 
by Du and Yortsos (1999), complex phenomena, such as snap-off of gas bubbles, bubble 
division in pore throats and ganglia motion and coalescence, will occur at larger pressure 
decline rates. These phenomena have not been considered in this chapter. 
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Abstract 

The topic of this chapter is that of the effects of an external constraint of rotation on convection, 
driven mainly by compositional buoyancy, in a porous layer adjacent to the solid-liquid interface 
during directional solidification of a binary alloy. In the solidification literature such a porous 
layer is referred to as a mushy layer. The analyses carried out by several studies in the past on the 
subject of this chapter and the subsequent results are reviewed first, the latest results unpublished 
elsewhere are presented briefly, and then in the second-half of the chapter the investigation of 
effects of rotation on convection in a horizontal porous layer of melt and dendrite solids is 
carried out subject to a simple model. The results based on this simple model indicate that 
the Coriolis force can have stabilizing effects on both the stationary and oscillatory mode of 
convection, while the oscillatory mode of convection experiences an additional destabilization 
due to the Coriolis force effect. 

Keywords: convection, rotating convection, porous medium, alloy solidification, 
Coriolis effects, natural convection, porous layer, rotating fluid 

12.1 INTRODUCTION 

Convection effects during alloy solidification are known to be important, see for example 
Davis (1990). The convective flow affects the solid-liquid content within a porous layer, 
which exists adjacent to the solid-liquid interface, and influences the flow pattern and the 
critical conditions for the generation of flow instabilities in the solidification system. It 
is important to reduce the undesirable effects of convection as much as possible for the 
solidified system and also find ways to prevent the formation of localized chimneys within 
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the porous layer for such systems, since it is known that chimney convection can lead 
to defects and imperfections in the final produced crystals, see for example Sample and 
Hellawell(1984). 

Effect of an external constraint of rotation acting on convective flow in either an ordinary 
medium, see Chandrasekhar (1961), Hunter and Riahi (1975), Riahi (1977) and Busse 
(1978), or in a porous medium, see Riahi (1994b) and Vadasz (1998, 2000), is known to 
be generally non-trivial and significant for a sizeable range of values of the rotation rate. 

The rotational effects on the convective flow instabilities during alloy solidification have 
been of interest to the crystal growers for a number of years. In industrial crystal growth 
processes it has been desirable to impose certain external constraints, such as rotation, 
in an optimized manner, upon the solidified system in order to reduce the effects of flow 
instabilities or oscillations which can lead to a microdefect density in the crystal and thus 
reduce the quality of the produced solidified material. Theoretical results on the effects 
of rotation about a vertical axis on the flow of melt during alloy solidification and in the 
normal gravity environment, see Riahi (1993, 1994a), indicated conditions under which 
rotation may stabilize the convective flow. Computational studies on the effects of rotation 
about a vertical axis of a horizontal layer on the flow of a melt during alloy solidification, 
see Neilson and Incropera (1993) indicated stabilization of vertical plumes and their lack 
of meandering due to such a rotational constraint. Sample and Hellawell (1982, 1984) 
performed an NH4CI alloy experiment in a cylindrical mold with a chilled bottom surface 
where solidification was induced. They applied a rotation and tilting technique to change 
the orientation of the force of gravity relative to the bottom surface of the cylinder. They 
observed that for slow and steady rotation of the mold about the vertical axis, which 
coincided with the axis of the cylinder, the chimney formation and development was about 
the same as in the case without rotation. However, for slow and steady rotation of a 
tilted mold about a vertical axis, the number of chimneys was reduced substantially and, 
under some conditions, they were completely eliminated. The fast rotation case is not 
considered beneficial to the crystal growers, as, for example, experimental results due to 
Kou et al (1978) indicated that if the rate of rotation became too large then segregates were 
formed along a ring between the axis and the outer edge of the ingot in their experimental 
apparatus. 

The experimental results referred to in the previous paragraph and the indication for the 
possible usefulness of inclined rotational constraint applied on the solidified system, where 
the axis of rotation is inclined with respect to the direction of the gravity force, led to 
further research studies. As described in some detail in the next section, some recent 
studies at the onset of convection in a layer of melt rotating about an axis, which was 
inclined with respect to the effective gravity vector, see Sayre and Riahi (1996,1997) and 
Okhuysen and Riahi (2001), aimed at understanding centrifugal or Coriolis force effects 
and investigated, in particular, flow instabilities, due to either stationary or oscillatory 
mode of disturbances of the porous layer adjacent to the solidification front during alloy 
solidification. Results of the numerical computations of these studies indicated preference 
of particular modes of convection, and a rotational constraint was found to be effective 
only if the rotation axis was inclined with respect to the effective gravity vector. Here, by 
the effective gravity vector it is meant the resultant normal gravity vector and an average 
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component vector of the centrifugal force in the direction perpendicular to the rotation 
axis. Another interesting result of these studies was that the spatial locations in the porous 
layer, which had a tendency to form chimneys, changes as the rate of rotation was changed. 
This result suggested a possible industrial operational procedure for the elimination of 
chimney's formation tendency to be the application of an external constraint of rotation 
with a variable rate of rotation acting on the solidified system. 

A different type of study, based on a scaling analyses and asymptotic methods in the limit 
of sufficiently large solutal Rayleigh number, for the natural convection in the porous layer 
adjacent to the liquid-solid interface, were found to be an appropriate procedure in a high 
gravity environment, see Kegel and Wilcox (1997), where the porous-Rayleigh number 
can become sufficiently large for sufficiently high rotation rate of a centrifuge system 
which can carry the solidified layer. Such studies, which are described in some detail in 
a later section of this chapter, were carried out by Riahi (1997,1998,1999) and provided 
qualitative results about the effects of centrifugal and Coriolis forces on the compositional 
convection in the porous layer during alloy solidification. A particular and notable result 
of these studies, which indicated that Coriolis' force effect can have different types of 
influence on the flow stability, depending on the rotation sense of the centrifuge, were 
found to agree with some recent experimental and computation studies on the subject by 
Ma et ai (1994) and Tao et ai (1994). 

12.2 DOUBLE-LAYER MODEL 

The investigation carried out by Sayre and Riahi (1996, 1997), and the corresponding 
results, are described briefly in this section and this is followed by some ongoing research 
investigations and preliminary results due to Okhuysen and Riahi (2001). A layer of a 
binary alloy melt of some composition Co and temperature Too is considered which is 
solidified at a rate Vo» with the eutectic temperature Tg at the position z = 0 held fixed in a 
frame moving with the solidification speed in the z-direction, where the z-axis is assumed 
to be anti-parallel with the high gravity vector, see Figure 12.1. 

The investigated double-layer model, which consists of a non-porous layer, referred to 
as the liquid layer, and a porous layer, referred to as the mushy layer, at normal gravity 
condition is based on the assumptions of the type considered by Worster (1992), and the 
extension under a high gravity condition is based on the assumptions of the type considered 
by Arnold et al. (1992) for the solidification system in a centrifuge. The porous layer 
adjacent to the solidifying surface is of thickness h (x, y, t), where t is the time variable 
and the x- and y-axes are in a plane {z = 0) which is perpendicular to the z-axis. The 
solidifying system is placed in a centrifuge basket rotating at some angular velocity Q. 
about the centrifuge axis which makes an angle 7 with respect to the z-axis. The centrifuge 
axis is anti-parallel to the earth gravity vector, see Figure 12.2. 

Next, the equations for momentum, continuity, heat and solute are considered for both 
the non-porous layer {z > h) and the porous layer (0 < z < /i) in the moving frame 
Oxyz whose origin 0 is centered on the solid-mush interface {z — 0). The governing 
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z = h y 

z = 0 

Vo 

Figure 12.1 A schematic diagram representing the directional solidification of 
an alloy at a speed VQ. A porous layer exists between a solid region, where 
T < Te, and a liquid region. The profiles for the dimensional temperature and 
the local liquidus temperature TL are also shown. L, M and S denote the liquid, 
mush (porous) and solid regions, respectively 

basket 

Figure 12.2 Solidification system in a centrifuge, where G denotes the center 
of gravity of the centrifuge basket 
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system of these equations for the solidifying system rotating with the centrifuge basket, 
see Arnold et al. (1992), and translating with the solidification front at speed Vo is non-
dimensionalized by using VQ, K,/VO, K./VQ, PACpogf^/Vo, AC and AT as scales for the 
velocity, length, time, pressure, solute and temperature, respectively. Here K is the thermal 
diffusivity, po is a reference density, /? = / ? * - Ta*, where a* and /?* are the expansion 
coefficients for the heat and solute, respectively, and F is the slope of the liquidus curve, 
AC - Co - Ce^Ce is the eutectic concentration of the alloy, AT = TL (CO) - Te and 
TL is the local liquidus temperature. Due to the variation of the density with respect 
to both the solute concentration and temperature, the centrifugal acceleration terms in 
the momentum equation cannot be converted into passive gradient terms and become 
important at significant rotation rates. The centrifugal acceleration term in the momentum 
equation is split into an average term, which is superimposed on the normal gravity term 
and a so-called gradient acceleration term, see Arnold et al. (1992). For the porous layer, 
Darcy's law is adopted in the governing equations. 

The non-dimensional form of the equations for the momentum, continuity, temperature 
and solute concentration in the liquid layer (z > h) are given by 

(^- — +U'V\u = V'^u-HR (VP -h Cfc) -h ^ r u X e -f HACR, l_ 
Fr \dt dz 

(12.1) 

V • ti = 0, (12.2) 

| - ^ + , . v ) . . V Y (12.3) 

l-l+u.v)c = EV^C, (12.4) 

while the corresponding non-dimensional equations in the porous layer (0 < z < h) are 
given by 

-'^=R(VP -h Ck) -F - ^ exu + ACR, 
11 1—0 

(12.5) 

Vu = 0, (12.6) 

( ^ - ^ ) [(1 - ^) (Cr -C)]^u-VC^EV- [(1 - (/)) VC] . (12.8) 

In the momentum equations (12.1) and (12.5), e is a unit vector along the rotation axis 
defined by 

e = cos7fc H-sin7i, (12.9) 

and i? is a radial position vector from the rotation axis defined by 

R= (2: sin 7 — XCOS7) (00372 — sin 7 A;) — yj. (12.10) 



e = -i, U'k = o 

[e] = [n . V^] = [P] = 0 

§^ {6 - C) = u - {n-u)n = [n 'u]-

0 ^Ooo, C ^ 0, u -> 0 

on 2 — 0, 

on z — h, 

= 0 on z — h, 

as z —> 00. 

(12.11) 

(12.12) 

(12.13) 

(12.14) 
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Here i, j and fe are unit vectors along the positive directions of the x-, y- and z-axes, 
respectively. 

The non-dimensional form of the governing equations (12.1) - (12.8) are subjected to the 
appropriate boundary conditions of the type given in Worster (1992). For completing the 
system, these boundary conditions are given as follows: 

9-C = 

Here the boundary conditions (12.11) and (12.12) are applied for the porous layer, while the 
boundary conditions (12.13) and (12.14) are applied for the non-porous layer, see Worster 
(1992). Simplifying assumptions of negligible temperature contribution in the buoyancy 
force, 13^/3* and Â  ;» D are already considered for the governing system, where D is 
the solute diffusivity. The non-dimensional system contains a number of variables and 
parameters which are defined as follows. The vector u is the volume flux of fluid per 
unit area, which is related to the actual fluid velocity u* by u — ipu*, where il) is the 
local liquid fraction, see Worster (1992), P is the pressure, C is the solute concentration, 
6 is the temperature, Pr — v/KJ is the Prandtl number, n is a unit vector normal to 
the interface between the porous and non-porous layers, v is the kinematic viscosity, 

R = ^ACNgK^/ {V^uH) is the solutal Rayleigh number, Â ^ == {g^ + fi^i?^)^^^ is 
the acceleration due to high gravity, Ng — g corresponds to the normal gravity case 
while Ng > g indicates the level of high gravity, g is the magnitude of the acceleration 
due to normal gravity, RQ is the perpendicular distance from the center of gravity G 
of the centrifuge basket to the rotation axis, RQ is a function of 7 and RQ = 0 where 
7 = 0°, ff = /^^/ (VQ^IIO) is a non-dimensional parameter representing the ratio of an 
effective Rayleigh number in the liquid zone inside the chimneys, or above the porous 
layer to that in the porous layer outside chimneys. Ho is a constant reference value of 
the permeability 11 (0) of the porous medium, (f) is the solid fraction of the porous zone 
{(f) = 1 - ip),T = 20.^?I (VQUH) is the Coriolis parameter, which is the square root of 
a Taylor number, A — / J A C H ^ K ^ / (V^VH) is the gradient acceleration parameter due 
to the centrifugal force, 0̂0 — Too/AT, E = D/K is the inverse of the Lewis number, 
5^ = L/ ((7AT) is the Stefan number, C is the specific heat per unit volume, L is the 
latent heat of solidification per unit volume, Cr = [Cs — Co) / A C is a concentration 
ratio, and Cs is the composition of the solid phase forming the dendrites in the porous 
layer. Due to the liquidus relationship, which holds to a good approximation in the porous 
layer, ^ == C in the porous zone outside the chimneys. 

The flow solution examined by Sayre and Riahi (1996, 1997) was in the limit of small 
rotation rate and for zero Coriolis effect. The solution, as the sum of base flow solutions, 
which was at most a function of z, see Worster (1992), and a normal mode type solution for 
disturbances whose dependence in the plane perpendicular to the z-axis was of the form 
exp (5) , where B — i {wt -h aix -h a2y)- Here i is the pure imaginary number ( \ / ^ ) , 
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uj is the frequency of the disturbances and a = (0:1,0:2) is the wave number vector of 
the disturbances. After the pressure gradient terms in the momentum equations have been 
eliminated, by taking the curl of these equations, it was assumed that the solution of the 
governing linear system of equations (12.1) - (12.8) and the boundary conditions (12.11) 
- (12.14) was of the following form: 

{e\ 
c 
u 

fOo{z)\ 
Co{z) 

0 + 

{Oi{z)\ 
Ci (z) 
Ul {z) 

\<i>i {z)j 

exp {B), (12.15) 

Here quantities with subscript '0' denote base flow quantities, and the disturbance quanti-
ties with subscript ' 1 ' are assumed to be small in comparison with the base flow quantities. 
The solution of the form (12.15) is then used in the resulting governing system, and each 
equation and boundary condition for the base flow quantity is subtracted from the cor-
responding equation and boundary condition for the total (base flow plus disturbance) 
quantity. Hence the linear system for the disturbance quantities is considered in the limit 
of sufficiently small amplitude of disturbances. Each equation and boundary condition 
is then multiplied by exp {-B) and then the average of the resulting system is obtained, 
with respect to the x and y variables in both layers. The solution of the resulting system 
for 9i,Ci,ui and 0i were then determined numerically for both stationary, see Sayre and 
Riahi (1996), and oscillatory, see Sayre and Riahi (1997), disturbances. 

Due to the complexity of the resulting disturbance system for 9i, Ci, Ui and 0i , a 
numerical code, of the type applied by Worster (1992), was developed by Sayre and Riahi 
(1996), to solve the eigenvalue problem and determine the eigenfunctions and eigenvalues 
of the linear system in the neutral stability limit. Here the numerical approach is described 
briefly. A new independent variable r = 9oo - OQ, for 0 ^ r ^ Te, is defined, where 
^0 is the base flow solution for 9, Te = 1 + 600 and r = 0 and r = TQ correspond to 
2: — 00 and z = 0, respectively. Using this new variable, the governing system becomes 
a system of ordinary differential equations for the disturbance variables as functions of 
the independent variable r. The new form of the stability system is conveniently over a 
finite domain in r but it has a regular singular point at r = 0. To take into account this 
feature of the system, any disturbance variable is assumed to be a product of r ^ and a 
function of r in the liquid region, 0 < r < r^, where r̂  = 9oo/ 0- — E) corresponds to 
the value of z = /IQ and m is a root of the indicial equation. Here ho is the constant value 
of h in the absence of disturbances. Using this numerical procedure in the liquid region, 
four linearly independent solutions for the dependent variables were found which satisfy 
the boundary conditions at r = 0 and with the corresponding values m^ (i = 1,2,3,4) of 
m. When m = rrii, the corresponding boundary values of the scaled dependent variables 
at r = 0 are found from the governing system for these variables. In addition, for each 
value of m =: mi, a Taylor series expansion of the governing equations for these variables 
about T = 0 was applied to determine the first three derivatives of these variables at 
T = 0. These results allowed the numerical evaluation of the governing equations for the 
scaled variables in the liquid region to be started from the asymptotic expressions for the 
scaled dependent variables near r = 0. Sayre and Riahi (1996,1997) applied an efficient 
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fourth-order Runge-Kutta scheme for this purpose. For each value of m^, the governing 
equations were integrated from r = Oior = Ti. Next, the interface boundary conditions 
between the liquid and mushy regions were used to relate the dependent variables in 
the porous layer at r :== r̂  to the dependent variables in the non-porous layer. These 
values were used to start the numerical integration of the equations for the dependent 
variables in the porous layer at r = r^, which continued until r = TQ. However, it was 
found that the resulting solution does not, in general, satisfy all the boundary conditions. 
Thus the remaining boundary conditions were used to compute the so-called residuals rij 
{i,j = 1,2,3,4) corresponding to the index mj, see Worster (1992). The determinant, 
det, of the matrix [rij] is then computed and R is varied until det = 0. The corresponding 
solutions are eigenfunctions of the stability system which represent the marginally stable 
states of the system. 

To determine the results for the stationary disturbances, Sayre and Riahi (1996) set 7 = 
30°, 5t =: Cr = ôo = l.-P^ = 10 unless otherwise stated and n ( 0 ) = 1. The eigenvalue 
relation det = 0 then provided a marginal stability curve R{a),a= ( a f + a i ) ' / ^ f o r 
each choice of the parameters E, H and A. The parameter E is the inverse of the Lewis 
number and is typically very small. The parameter H isa. representative of the square of 
the ratio of the thermal length scale, on which the depth h of the porous layer depends, 
to the average spacing between the dendrites within the porous layer, see Worster (1992). 
This parameter is typically very large. The gradient acceleration parameter A was assigned 
the values 0, 0.1, 0.3 and 0.6 and the values chosen for St, Cr, Ooo, Pr, E and H are 
similar to those values chosen by Worster (1992). The results for the neutral stability 
curve, R versus a, were found as a function of A and for values of E — 0.025 and 
H = 10^. The system is unstable in the region above the neutral curve and stable below 
the curve. Just as in the case of zero rotation, see Worster (1992), the marginal curve for 
each value of A has two minima, corresponding to two distinct modes of convection. The 
first mode, corresponding to the smaller a value, was called the long wavelength mode 
since its wavelength was comparable to h and causes the flow throughout the porous layer, 
while the second mode, corresponding to the larger a value, is called the short wavelength 
mode since its wavelength is comparable to the depth of the compositional boundary-layer 
ahead of the mushy-liquid interface and leaves the fluid within the interstices of the porous 
medium essentially stagnant, see Worster (1992). These properties were confirmed by the 
observation of the streamlines to be discussed below. It was found that R increases as A 
increases for a given a and the wave numbers of the two modes increase with increasing 
A. Hence, rotation has the familiar effect of increasing the critical values of R and a, 
see Chandrasekhar (1961). Streamlines for the two convection modes, corresponding to 
the local minima of the neutral stability curves, were determined as functions of A. It 
was found from these results that, for iht A = 0 case, fluid flows deeply in the two 
layers for the long wavelength mode, while the flow is restricted to a thin region about 
the interface between the porous and non-porous zones for the short wavelength mode. 
For the ^ 7̂  0 cases, fluid flows in both layers and it is stronger in the porous layer for 
the long wavelength mode. As the rotation increases, the flow is stabilized more strongly 
in the non-porous layer. For the short wavelength mode, the flow is restricted to the 
porous layer only, but such flow is stronger close to the interface between the porous 
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and non-porous zones for the larger rotation rate. Vertical and horizontal velocity data 
were also determined in both layers for both of the convection modes. It was found that 
the flow speed in the non-porous layer is generally larger than the corresponding one in 
the porous layer, for the zero rotation case, while the opposite is generally true for the 
nonzero rotation cases. Also for each case, the flow speed for the long wavelength mode 
is generally larger than the corresponding one for the short wavelength mode. The density 
data of the solid fraction in the porous layer for both convective modes and for different 
values of A were also determined. It was found that the short wavelength mode causes 
less perturbation to the solid fraction than the long wavelength mode. Thus, the long 
wavelength mode was mosdy associated with the solid fraction perturbations. For this 
mode, there was a substantial decrease in the solid fraction in the interior of the porous 
layer in regions of up flow and this indicates a tendency to form chimneys. The information 
provided by these data as a function of A indicated that the spatial locations in the porous 
regions which have a tendency to form chimneys, i.e., regions corresponding to a negative 
perturbation to the solid fraction that represent the local melting of the dendrites, changed 
as the rotation rate changed. This interesting result suggested an important operational 
procedure for the possible elimination of chimneys formation tendency to be a variable 
rotational rate constraint applied on the solidifying system. The relative stability of the 
two convection modes were found to vary considerably with the values of H and E. A 
particular interpretation of iif is as a measure of the relative mobility of the fluid in the 
melt region to that in the porous layer. Thus, increasing H causes the melt region to 
be more unstable relative to the porous layer. The results from the marginal stability 
curves, for various values ofH with E = 0.025 held fixed, confirmed such interpretation 
of H. It appeared that the long wavelength mode was the most critical (unstable) one 
for sufficiently strong rotation, or for sufficiently small H, while the short wavelength 
mode was the most unstable one for weak rotation, provided H was sufficiently large. In 
regard to the variation of E, it should be stated that the main effect of such a variation is 
to change the thickness of the compositional boundary-layer ahead of the mushy-liquid 
interface relative to the depth of the porous layer, and the thickness of the compositional 
boundary-layer decreased with decreasing E. The results for the marginal stability curves, 
for various values of £" and A with H = 10^, indicated that the convection modes become 
more stabilized as E decreased. The wavelength of the short wavelength mode decreased 
with decreasing E and rotational effects were seen to be minimized for some intermediate 
values of E. The results described so far were for the cases of aqueous solutions where 
Pr = 10 is representative. However, metallic alloys, which are of commercial interest, 
have a representative value of 0.02 for Pr. Marginal stability curves for the two cases 
of Pr = 10 and Pr = 0.02 indicated that the system is more stable at lower Pr and 
that the wavelength of the long wavelength mode for the lower Pr is smaller than the 
corresponding one for the higher Pr. Since the inverse Prandtl number (l/Pr) measures 
the strength of the advection or the diffusion of the vorticity generated by buoyancy, due 
to the growth rate velocity VQ of the solidification and thus, the smaller the value of Pr, 
the larger is the advection of such vorticity towards the solid boundary, which acts as a 
sink of vorticity due to the no-slip condition. Thus the system tends to be more stable for 
smaller Pr. 
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To determine the results for the oscillatory disturbances, Sayre and Riahi (1995, 1997) 
set 7 = 30°, 5^ = Cr == 6>oo = 1 and 11 (0) = 1. The eigenvalue relation det = 0 
then provided a marginal stability curve R (a) or R {u) for each choice of the values 
of the other parameters. The results for the neutral stability curves, R versus a, in the 
absence of rotation indicated that the most critical modes are non-oscillatory for Pr = 10. 
However, for Pr = 0.02, the marginal stability curve was found to have a minimum which 
corresponded to an oscillatory mode of convection. This oscillatory mode was found to 
be preferred over the stationary modes and corresponded to a; = 1.6 or a; = —1.6, since 
the stability system was found numerically to be insensitive with respect to the sign of uj 
as long as the rotational effects were absent. The system for Pr = 0.02 was found to be 
more unstable than the one for Pr = 10 in a certain range of a of the convection modes. 
For a nonzero rotation rate it was found that there are two preferred oscillatory modes 
of convection, with distinct different wavelengths and periods. It was found that rotation 
was destabilizing for the oscillatory modes and that R values for the marginal curve were 
no longer symmetric with respect to the a; = 0 axis. The preferred oscillatory mode had 
a small wavelength and a increases with A. The case with Pr = 0.02 corresponded to 
smaller R without rotation, while the case with Pr — 10 corresponded to smaller R with 
rotation. The rotational effect made the convection cells slightly inclined with respect 
to the z-axis. The preferred oscillatory modes tended to be more concentrated close to 
the solid-mushy interface. The fluid was found to flow in both layers for the preferred 
oscillatory mode with longer wavelength, while flow was restricted to the porous zone for 
the preferred oscillatory mode with a shorter wavelength. The flow speed was found to 
be more significant in the porous zone, unless the wavelength of the preferred oscillatory 
mode was sufficiently long. The rotational constraint, low Pr value, and short wavelength 
modes all led to some decrease in the amount of negative perturbations to the solid fraction, 
which meant less tendency for the chimney formation in the porous zone. The spatial 
location in the porous layer, which tended to form chimneys, changed as the rotation rate 
changed. The rotational constraint reduced the destabilizing effect of H, and the preferred 
oscillatory modes of convection became more stabilized as E decreased. 

Okhuysen and Riahi (2001) have developed a more sophisticated numerical code to 
determine the eigenvalue and eigenfunction of the neutral stability system with higher 
accuracy and they included the effects of the Coriolis force. Their preliminary investigation 
for the stationary disturbances considered the case A = 0,7 = 30°, P r = 10, £̂  = 0.025, 
H ~ W^, St - Cr - Ooo - I and 11 ((/>) = 1. They found, in particular, that the rotation 
resulted in a higher critical value R^ a local increase in the solid fraction near the liquid-
mushy interface was reduced from the normal gravity case, and regions of reduced solid 
fraction that were surrounded by regions of increased solid fraction in the porous zone 
were 'opened up' under rotation. 

12.3 CHIMNEY MODEL 

The investigations carried out by Riahi (1997, 1998, 1999, 2001a) and the corresponding 
analysis and the results are described briefly in this section. The same type of double-
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layer model as described in the previous section is considered. However, here we are 
concerned mainly with the convection in any cylindrical chimney, whose axis is assumed 
to be parallel to the z-axis, within the porous layer. Thus the governing equations are, 
considered in a cylindrical coordinate system whose axial direction is along the z-axis. 
Riahi (1997) considered weakly non-axisymmetric convection in a cylindrical chimney, 
whose axis coincided with the z-axis, see Figure 12.3, and in the porous layer in the 
asymptotic limit of the strong compositional buoyancy force, negligible thermal buoyancy 
and sufficiently large Pr and E~^. 

The governing equations for the flow of the melt in the chimneys are equations (12.1) -
(12.4), while the governing equations for the flow in the porous layer outside the chimneys 
are equations (12.5) - (12.8). The boundary conditions are those given by (12.11) -
(12.13). However, the expressions for e and H, which are expressed in cylindrical 
coordinate system and, hence, are different from those given by (12.9) and (12.10), are 
given by 

e = cos 7 fc -f sin 7 (cos ^ r — sin ^ ^ ) , (12.16) 

chimney 

Figure 12.3 A schematic sketch of a cylindrical chimney in the porous layer, 
the coordinate system, whose z-axis coincides with the axis of the chimney, the 
cylindrical coordinates (r, ^, z) of a point P of the chimney, unit vectors (r, ^, 2;) 
and the two locations of the chimney where the azimuthal angle ^ equals 0° and 
90° 
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R=^ [r cos^ ^ cos^ 7 H- r sin^ ^ — 2; sin 7 cos 7 cos ^) r 

+ (zsin7cos7sin^ + rs in^cos^ - r sin^cos^cos^ 7) ^ (12.17) 

-f [z sin^ 7 — r sin 7 cos7 cos ̂ ) fe, 

where r is the radial variable, r is a unit vector in the radial r-direction, ^ is the azimuthal 
variable, and ^ is a unit vector in the azimuthal ^-direction. Asymptotic and scaling 
analyses were applied to chimney convection to determine the results qualitatively about 
the effects of both the Coriolis and centrifugal forces on the convective motion within 
chimneys in the porous layer. 

The analysis begins by assuming that the radius a (^, z) of the chimney is small (a <C 1) 
and that the orders of magnitude of r, ^ and z are a, 1 and 1, respectively. Under the 
assumption that the magnitude of u is of order one in the mushy zone, it is found from 
equation (12.5) that to the leading term in the pressure field in the porous zone is unaffected 
by the flow velocity and ^ — C is independent of r and ^ in this zone. The steady-state 
form of equations (12.7) and (12.8) for the r- and ^-independent variables ^0 i^)^ 0o i^) 
and û o (^) ^ UQ - k then imply 

- ^ ( a - ^ o ) + ^ K - l ) = 0. (12.19) 

It is also assumed that Cr > ^ in the porous zone, see Worster (1991). 

Examining the non-axial terms in equation (12.2) or equation (12.6), it is found that a 
weak non-axisymmetric flow case is based on the conditions that 

v^o{u), ^ « i ^ , (12.20) 

where u = u • r,v = u - ^ and F can be any dependent variable. Using the conditions 
(12.20) in equation (12.2) implies that, to the leading terms, a stream function S (r, ^, z) 
for the flow in the chimney can be introduced, so that 

, , / 1 9 5 ldS\ , , , ^ , , 

Considering the flow in the chimney described by equations (12.1) - (12.4), and assuming 
that C ~ 1 and 1/; > 1 hold in the chimney, see Worster (1991), equation (12.1) then 
implies that 

w - HRa'^, u - HRa\ S - HRa\ (12.22) 

Further analysis, based on the scaling (12.22) and the condition 

\<^HR<^\, (12.23) 
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led to the results about important flow quantities in the chimney in the limit of sufficiently 
large R̂. It was found, for some moderate values of the rotation rate and 7 7̂  0, that axial 
convection in the chimneys decrease rapidly with increasing A above some azimuthally 
dependent axial level. The axial convection was also found to decrease with increasing Tin 
a certain range which depended on 7, T and R. The Coriolis force effect was destabilizing 
for T outside this range of values. The work carried out in Riahi (1997) was based on 
the assumption that the flow of the melt was under certain derived parameter regimes 
and the radius a of any chimney was an independent parameter with a prescribed value. 
Riahi (1999) investigated theoretically, using asymptotic and scaling analyses, the effects 
of centrifugal and Coriolis forces, due to an arbitrary inclined rotational constraint, on a 
non-axisymmetric chimney convection at finite values of Pr and presented the qualitative 
results for the case where the derived parameter regime implied that the chimney's radius a 
was a function of the other parameters. Here the second condition in (12.20) was extended 
to 

^ ^ 0 ( F ) . (12.24) 

Denoting an azimuthal average of any quantity F by 

(F) = i-|Vd^, (12.25) 

assuming that any dependent variable and its derivatives are repeated in a 27r interval 
in ^, and taking the azimuthal average of equations (12.1) and (12.5), it was found, see 
Riahi (1999), that the average form of these equations behave qualitatively similar to 
those studied earlier by Riahi (1997) under more restricted conditions. Hence, the stream 
function formulation, scaling, analysis and most of the results presented in Riahi (1997) are 
found to be also valid qualitatively for the azimuthal averages of the respective quantities 
in the high Pr limit of the results presented in Riahi (1999). The analysis presented in 
the first part of the paper by Riahi (1999) was for the case where the inertia terms in 
equation (12.1) can be, at most, as significant as the viscous terms in equation (12.1). 
This assumption, together with the scaling of the form (12.22) for (w), (u) and (5), then 
implied that the following range for Pr should be satisfied: 

Pr^o[HRa^). (12.26) 

This range is classified as the high Pr range since the main results were found to become 
independent of Pr in this range as well as in the limiting case of P r = cx), which can 
be seen from the governing system (12.1) - (12.8), (12.11) - (12.14), and (12.16) and 
(12.17) by setting Pr — 00. The asymptotic analysis for the range (12.26) and in the 
limit of sufficiently large R led Riahi (1999) to the following main results for the flow in 
the chimney. Rotational effects were found to be diminished significantly if the axis of 
rotation is along the high gravity vector. For inclined rotation (sin 7 7̂  0) and moderate 
axial flow, two possible ranges for strong and weak Coriolis force effects were detected. 
For weak Coriolis force effect, a sub-range in T is found where the radius of the chimney 
increases with T for 7 < 180°, while it decreases with increasing T for 7 > 180°. The 
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main results were found to depend also on a combined parameter Ac defined by 

Ar = l 
R zsm 7. 

329 

(12.27) 

For negative Ac and small |Ac|, it was found that a increases with A^ while a decreases 
with increasing Ac for positive Ac. The azimuthal average of the vertical volume flux in 
the chimney, defined by 

27r(5a) 
/ 

27rr{w) dr, (12.28) 

was found to vary with T in a way similar to that for a. For strong Coriolis force effect, 
the dependence on 7 was found to be insignificant, and the results for the flow velocity, 
volume flux and the chimney's radius were found to remain qualitatively similar to the 
corresponding ones in the case 7 < 180° for weak Coriolis force effect as far as variations 
with respect to T are concerned, see Figure 12.4. The volume flux and the chimney's 
radius were found to increase with Ac for very small Ac. For inclined rotation and large 
axial flow, again two possible ranges for strong and weak Coriolis force effects were found. 
For weak Coriolis force effect, a was found to decrease with increasing Ac for negative 
Ac and small \Ac\, while a was found to increase with Ac for positive Ac. A sub-range 
in T was found where the volume flux increases with T for 7 < 180° and decreases with 
increasing T for 7 > 180°, see Figure 12.5. 

Possibility for z-dependence of the chimney's radius was studied by Riahi (1999) by 
applying the following procedure which was first used by Worster (1991). Using the 

Figure 12.4 Case of moderate axial velocity and strong Coriolis force for 
R = 10^, H = 10^ and Ac = 10^ (1.001). Orders of magnitude of chimney's 
radius ai (a), scaled volume flux Si (10005a) ^f^d non-azimuthal flow speed 
Vi {Va = y/u'^ -\-w'^),forj = 150° (i == 1), as a function of T 
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Si 

Vi 

V2 

Figure 12.5 Case of large axial velocity and weak Coriolis force for i? = 10^ 
and Ac — 0.04. Orders of magnitude of scaled chimney's radius ai{100a), scaled 
volume flux Si (10005a) and scaled non-azimuthal flow speed Vi (0.001 Va), for 
7 = 150° (i = 1) and 7 = 210° (i = 2), as a function ofT 

definition of the wall of the chimney given by 

(t>{O'{z,0^^i^) = ^ on r = a{z,Oi 

and taking the derivative with respect to z of equation (12.29), it was found that 

19a 
a dz dz' 

(12.29) 

(12.30) 

Worster (1991) derived this result and concluded that the wall of the chimney can be in the 
axial direction to the leading order terms in the asymptotic limit of sufficiently large R, 
provided the right-hand side in the equation (12.30) is small. However, if the right-hand 
side in the equation (12.30) is not small then the wall of the chimney may not be in the 
axial direction. Riahi (1999) found that for T in a sub-range domain then the right-hand 
side in equation (12.30) was not small and, thus, the wall of the chimney may not be in 
the axial direction and a z-dependent a may follow. 

The flow velocity and the volume flux were found by Riahi (1999) to vary with respect 
to Ac and T similar to the way a varies with respect to these parameters, even though the 
variation of a with respect to T is very small and cannot be noticed from the results shown 
in the Figure 12.5. For strong Coriolis force effect, a increases with Ac (Ac > 0). A 
sub-range in T was detected where the volume flux was found to decrease with increasing 
r , see Figures 12.6 and 12.7. 
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5.0 5.5 6.0 6.5 ^ i 7.0 

r(xio^) 

Figure 12.6 Case of large axial velocity and strong Coriolis force for R = 10^, 
iJ = 10^ and Ac — 0.1. Orders of magnitude of scaled chimney's radius 
Gi (100a), scaled volume flux Si (105a) ^^d scaled non-azimuthal flow speed 
Vi (0.001 Va)Jorj = 150° (i = 1) andj = 210° (i = 2j, as a function ofT 

Figure 12.7 Case of large axial velocity and strong Coriolis force for R— 10^, 
ijT = 10^ and T = 5000. Orders of magnitude of scaled chimney's radius 
ai (100a), scaled volume flux Si (105a) ^^^ scaled non-azimuthal flow speed 
Vi (0.001 Va), for 7 = 150° (i = 1) and 7 = 210° (i = 2), as a function of Ac 
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The flow velocity and the volume flux vary with respect to Ac and T similar to the way a 
varies with respect to these parameters, even though variation of a with respect to Ac is 
very small as can be seen from the Figure 12.7. 

The results discussed above, which predicted certain ranges in the (T, A)-parameter space 
for the inclined rotation rate where chimney convection can weaken, with increasing either 
Coriolis or centrifugal forces, are in agreement with the experimental finding, see Sample 
and Hellawell (1982,1984), that inclined rotation with same range of values of the rotation 
rate can reduce the convection effect significantly. In addition, the above predicted results 
in some other ranges of the inclined rotation rate, where chimney convection increases 
with either T or A, are in agreement with the experimental finding, see Kou et al. (1978), 
that rotational effects can be destabilizing under certain conditions leading to chimney 
formation in the porous zone resulting segregates in the final produced crystals. 

An important aspect of the above presented results has been the roles played by the 
Coriolis and centrifugal forces in the solidification system. It appears that the Coriolis 
force of strong strength can make the radius of a chimney z-dependent, and suppression or 
enhancement of chimney convection can be accomplished by either the centrifugal force 
or the Coriolis force in particular ranges for A, T, H and R which are all non-trivial and 
their relevance can be tested for particular melt cases in applications. 

In the second part of work described in Riahi (1999), the analysis was carried out for the 
limit of low Pr melt cases which are of interest and relevant for the flow of liquid metals 
where Pr is small (Pr <C 1). Low Pr analysis follows generally in a way somewhat 
similar to that described before for moderate and large Pr cases, where the condition 
(12.26) is valid, and the results (12.18) - (12.21), and (12.24) and (12.25) follow again. 
However, for low Pr regime equation (12.1) implies the following Pr-dependent scalings: 

{w) - {HRPrf^'^ , {u) ^a{HRPr)'^^ , (5) - a^ {HRPrf^'^ , (12.31) 

which represent a balance between the inertia, buoyancy and pressure gradient terms in 
the momentum equation to the leading orders in the asymptotic limit of sufficiently large 
R. These scalings are valid, provided Pr lies in the range 

{HR)~^ <^Pr<^ HRa\ (12.32) 

The analysis for the range (12.32), and in the limit of sufficiently large R, led Riahi (1999) 
to the following main results for the flow in the chimney. Rotational effects were found 
again to be diminished significantly for sin 7 == 0. For inclined rotation (sin 7 ^ 0), Riahi 
(1999) found that there were values of Pr and rotation-dependent ranges where the wall of 
the chimneys may or may not be vertical. There were also 7, Pr and rotation dependent 
ranges, where convection in the chimneys increased or decreased with increasing the 
rotation rate. For moderate axial flow, two possible ranges for weak and strong Coriolis 
force effects were detected again. For weak Coriolis force effect, a sub-range in T was 
detected where the non-azimuthal flow speed Va and the chimney's radius increase with 
T for 7 > 180°, but they decrease with increasing T for 7 < 180°. For very small Ac 
{Ac > 0), a and Va decrease with increasing Ac. Also a was found to decrease with 
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increasing Pr. For strong Coriolis force effect, a increases with T and Va decreases with 
increasing T. The CorioHs force is now stabilizing in the sense that Sa decreases with 
increasing T. For very small Ac {Ac > 0), the radius of the chimney and the volume flux 
increase with A^ see Figure 12.8. The variation of Va with respect to Ac is very small 
and cannot be noticed from the result shown in the Figure 12.8. For large axial flow, two 
possible ranges for weak and strong Coriolis force effects were detected again here. For 
weak Coriolis force effect, a sub-range in T was found where a, Sa and Va all increase 
with Ac for small \Ac\ and Ac < 0, while they decrease with increasing Ac for Ac > 0. 
For 7 < 180°, a decreases with increasing T, while it increases with T for 7 > 180°, 
see Figure 12.9. Also a decreases with increasing Pr. Dependence of Sa and Va on Pr 
and T is similar to that for a on these parameters. For strong Coriolis force effect, Sa 
decreases with increasing T, a is independent of T, and Va decreases very slightly with 
T which is not noticeable from the results shown in Figure 12.10. The volume flux, a and 
Va decreases with increasing Ac for very small \Ac\ and Ac < 0, while they increase with 
Ac for Ac > 0, see Figure 12.11. The chimney's radius and Sa decrease with increasing 
Pr. 

Just as in the case of moderate and large Pr, the low Pr results are in general agreement 
with the experimental observations, see Kou et al. (1978) and Sample and Hellawell (1982, 
1984), that chimney convection can increase with either T or A in some range of values 
of the rotation rate, while inclined rotation with some range of values of the rotation 
rate can reduce the convection effect significantly. An interesting aspect of the results 
presented in Figure 12.9 and determined in Riahi (1999) was the way the inclined angle 

Vi 

1.00006 1.00008 
-6\ ^c(xlO-^) 

Figure 12.8 Case of moderate axial velocity and strong Coriolis force for 
R = 10^, H = 10'* and T = 800. Orders of magnitude of chimney's radius 
Gi {a), scaled volume flux Si (1005a) ^f^d non-azimuthal flow speed Vi (Va) for 
7 = 150° (i — \), as a function of Ac 
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Figure 12.9 Case of large axial velocity and weak Coriolis force for R ~ 10^, 
H ~ 10^ and Ac — -0.025. Orders of magnitude of scaled chimney's radius 
ai (100a), scaled volume flux Si (1005a) and scaled non-azimuthal flow speed 
Vi (0.001 Va), for 7 == 150^ (i = I) and 7 = 210° {i = 2), as a function ofT 

V\ 

Figure 12.10 Case of large axial velocity and strong Coriolis force for R = 10^, 
H = lO'* and Ac = 0.001. Orders of magnitude of scaled chimney's radius 
ai (100a), scaled volume flux si (lOOOSa) and scaled non-azimuthal flow speed 
Vi (0.001 Va),/or7 = 150° (i = 1), as a function ofT 
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Figure 12.11 Case of large axial velocity and strong Coriolis force for R= 10^, 
H — 10^ and T = 20000. Orders of magnitude of scaled chimney's radius 
ai (100a), scaled volume flux Si (100005a) and scaled non-azimuthal flow speed 
Vi (0.001 Va),forj - 150° (i - Ij, as a function of Ac 

7 affected the chimney convection. Within a certain range, which is controlled by the 
axial component of the Coriolis force in the (Pr, T, A)-parameter space for small Pr , the 
melt convection in the chimneys decreased with increasing T if 7 < 180°, while chimney 
convection increased with T if 7 > 180°, keeping all the other parameter values the same 
as in the 7 < 180° case. These results agreed with some earlier experimental studies for 
small FT, see Ma et al. (1994), under centrifugation, where the Coriolis effect was found 
to have such different types of influence on the flow stability, depending on the rotation 
sense of the centrifuge. These results were also in agreement with some computational 
studies for Pr = 0.02, see Tao et al. (1994), under centrifugation, where the enhancement 
of the convection was found if centrifuge rotated counter-clockwise (sin 7 < 0), while 
convection was reduced if the centrifuge rotated clockwise (sin 7 > 0). 

Riahi (2001a) extended his asymptotic and scaling analyses presented above to the case 
of weakly unsteady mode of non-axisymmetric chimney convection in a high gravity 
environment and determined new analytical results for the leading order magnitudes of 
the azimuthal averages for the radial velocity, axial velocity and the volume flux of the 
vertical flow in the chimney as functions ofR, Pr, T, A and 7, and for given small values 
of a. 
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12.4 SINGLE-LAYER MODEL 

The oscillatory instability, detected by Anderson and Worster (1996) in a porous layer 
during alloy solidification and in the absence of any external constraint, was based on 
a simple one-layer model developed earlier by Amberg and Homsy (1993) in which the 
dynamics of the porous layer were decoupled from the dynamics of the overlying liquid 
layer. Here, we extend the model treated by Anderson and Worster (1996) by imposing 
an external constraint of rotation on the solidification system and study the effects of the 
Coriolis force on the linear convective instability which is present once R exceeds its 
critical value i?c-

It should be noted that the single-layer model described in this section, which takes into 
account the rotational effects through the presence of the Coriolis force only, is relevant 
both in the geophysical applications, where the centrifugal force is insignificant, and in the 
engineering applications, where understanding the Coriolis effects alone can be of primary 
interest before the combined Coriolis and centrifugal force effects can be understood. 

We consider a binary alloy melt that is cooled from below and it is solidified at a constant 
speed VQ. The solidifying system is assumed to be rotating at a constant speed il in the 
vertical direction which is anti-parallel to the normal gravity vector. Following Amberg 
and Homsy (1993) and Anderson and Worster (1996), we consider a porous layer of 
thickness h adjacent and above the solidification front to be physically isolated from the 
overlying liquid and underlying solid zones. Thus, it is assumed that the horizontal porous 
layer is bounded from above and below by rigid and isothermal boundaries. We consider 
the governing system in a moving frame translating at the speed VQ with the solidification 
front and rotating with the speed Q. along the vertical axis. 

The non-dimensional form of the governing equations are equations (12.5) - (12.8) with 
A = 0, and the boundary conditions are (12.11) and 

e = U'k = (t> = 0 on z = S, (12.33) 

where S = hVo/K is the dimensionless depth of the porous layer. 

The non-dimensional form of the governing system (12.5) - (12.8), (12.11) and (12.33) 
contains the non-dimensional parameters R, T, St and Cr and, in addition, the present 
model contains the non-dimensional thickness S of the porous layer as a parameter which 
is assumed to be small, see Amberg and Homsy (1993). 

Following Anderson and Worster (1996) in reducing the model asymptotically, we follow 
their formulation, rescale R, the dependent and independent variables, based onS{S <^1), 
in the following form: 

Pf, 
R'^=SR, {x,y,z)=6{x,yj), t =: SH, u=-—, P = RP, (12.34) 

0 

and assume that SCr = C and 6St = S are order one quantities as 5 ^ 0. As discussed 
in Anderson and Worster (1996), the assumption of a thin porous layer (S <C 1) is 
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associated with large non-dimensional far-field temperature ^oo ^ 1̂  which can occur 
when the initial concentration is close to Ce • The assumption of an order one quantity 
C corresponds to the near-eutectic approximation, see Fowler (1985), which allows us to 
describe the porous layer of constant permeability to the leading order. The assumption 
of an order one quantity 5 allowed Anderson and Worster (1996) to detect an oscillatory 
instability from their analytical porous-layer model. 

The above rescalings were used in the governing system (12.5) - (12.8), (12.11) and 
(12.33). This system admits a motionless steady basic state of the form given as follows: 

00 = (^ - 1) + y (z - z ') + O {5^), (12.35) 

cj>o = -i{z-l) + 0{6^), (12.36) 

P. = P- + fl(.-i).M,= ('_£)+0OT. (12.37) 

where P* is a constant, A = S/C -h 1, and as can be seen from expressions (12.35) -
(12.37), the basic state variables are designated by the subscript '0' quantities. The basic 
state solutions (12.35) - (12.37) contain the parameters S, C, R and A. Since the basic 
state solid fraction is found to be small, an expansion for IT (0) /U {(f)) in powers of 0 
is assumed, see Amberg and Homsy (1993), where 0 is 00 plus the solid fraction of the 
infinitesimal disturbances superimposed on the motionless basic state. The system for 
such disturbances admits a normal mode type solution is of the form 

(u,P-Po,e-eo,(f>-(t>o) = 
r . ^ . . ^ ^ (12.38) 
\u{z) ,P{z) ,6{z) ,^{z)\ exp [at -\- iwi-\- iaix -f ia2y) , 

where a is the real growth rate of the disturbances. Applying such a normal mode form in 
the disturbance system yields a system of ordinary differential equations in the variable z 
for the z-dependence coefficients of the disturbance's dependent variables. This system 
contains the parameters R, T, 6, cj, a, A and C. The presence of the small parameter 5 
in the system suggests an expansion of the dependent variables, uj and R in powers of S. 
The systems, up to order S, are then solved to determine the results for the neutral stability 
system and its critical conditions. 

The results for the single-layer model are given as follows. The solution UJ = 0 always 
satisfies the eigenvalue relation, so that the stationary (non-oscillatory) disturbances can 
always be admitted by the single-layer model. The neutral stability system implies that 
the case Ur ^ 0 can always be possible for particular nonzero values of T, regardless 
of the value that a parameter combination AQ = (A — 1) /(CA^) may take. Here Ur is 
the real frequency and it turns out that AQ enters the eigenvalue relation as a parameter 
which combines both C and A. Hence, in this sense the presence of a rotational constraint 
enhances the existence of an oscillatory mode, since Anderson and Worster (1996) showed 
that LOr ^ 0 cannot exist for AQ < 0.4 in their non-rotating system. The critical value 
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Re of R and the value a = QC, at which R = R^ are found to increase with T for both 
the stationary and oscillatory modes. The eigenvalue relation also indicates that both ujr 
and -uJr can be the solutions, and, thus, an oscillatory mode for particular values of T 
can be in the form of a left travelling wave, a right travelling wave, a combination of 
left and right travelling waves, which remains a travelling wave, or a standing wave. At 
present a nonlinear stability analysis is being carried out by the author, see Riahi (2001b), 
to determine which of these and what type of horizontal flow pattern are selected by the 
flow system according to the single-layer model. 

12.5 CONCLUDING REMARKS 

In this chapter the effects of rotation on the convection in a porous layer during alloy 
solidification has been considered. The work that has been performed on this subject 
area over the last few years has been reviewed and the new results of the very recent 
investigations on this subject have been reported. Different models and methods of 
approach have been used to determine the effects of the centrifugal force alone, Coriolis 
force alone, or a combination of these two forces on the convective flow within the porous 
type layer adjacent to the solidification front. It appears that both the centrifugal and 
Coriolis force have non-trivial stabilizing and destabilizing effects on the fluid motion 
within the porous layer. 

From a practical point of view, chimney convection is undersirable since it produces 
freckles in the final form of the solidified material. Freckles are imperfections that 
reduce the quality of the solidified materials. The results based on the studies of the 
types described in this chapter indicate that the suppression or enhancement of chimney 
convections can be accomplished by either the centrifugal force, or the Coriolis force, in 
particular ranges in the parameter spaces which are all non-trivial and can be explored by 
the investigations of the type described in this chapter. 

As experimental evidence presented in this chapter indicate, the double-layer and the 
chimney models under a high gravity environment are useful models to determine ways to 
control the convective flow in the porous layer during alloy solidification. It should also 
be noted that such inclined porous layer under a high gravity condition is equivalent to the 
case of a horizontal porous layer subjected to an inclined rotational constraint. It is known, 
see Chandrasekhar (1961), for such a system that two-dimensional rolls parallel to the 
horizontal component of the rotation vector are the preferred flow pattern for an extensive 
range of values of R above Re. Hence, in the case of the double-layer model described 
in this chapter, it can be expected that two-dimensional rolls, parallel to the component 
of the rotation vector in the plane perpendicular to the z-axis, can be the preferred flow 
pattern over an extensive range of values for R> Re-

Finally, in regard to possible future work of the topic of the present chapter, it should 
be noted that the theoretical and computational extension of the double-layer model, 
to include the Coriolis force, see Okhuysen and Riahi (2001), the chimney model, to 
include the magnetohydrodynamic effects, see Riahi (2001c), and the single-layer model. 
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to include the nonlinear effects, see Riahi (2001b), have already begun to determine the 
qualitative features of the flow of melt in porous layers during alloy solidification and in 
the presence of rotational effects. More work should also be directed in the experimental 
and fully computational studies of the flow of melt in more active and deformable porous 
media of potential importance in engineering and other applications. It is hoped that 
the main qualitative results presented and discussed in this chapter could stimulate such 
future experimental and computational efforts and could aid in the selecting of a particular 
domain in the parameter space for such studies where fruitful results can be achieved. 

REFERENCES 

Amberg, G. and Homsy, G. M. (1993). Nonlinear analysis of buoyant convection in binary solidifi-
cation with application to channel formation. / Fluid Mech. 252, 79-98. 

Anderson, D. M. and Worster, M. G. (1996). A new oscillatory instability in a mushy layer during 
the solidification of binary alloys. / Fluid Mech. 307, 245-267. 

Amold, W. A., Wilcox, W. R., Carlson, R, Chait, A., and Regel, L. L. (1992). Transport modes 
during crystal growth in a centrifuge. J. Crystal Growth 119, 24^0 . 

Busse, R H. (1978). Nonlinear properties of thermal convection. Rep. Progress Phys. 41, 1929-
1967. 

Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford University Press. 

Davis, S. H. (1990). Hydrodynamic interactions in directional solidification. J. Fluid Mech. 
212, 241-262. 

Fowler, A. C. (1985). The formation of freckles in binary alloys. IMA J. Appl. Math. 35, 159-174. 

Hunter, C. and Riahi, D. N. (1975). Nonlinear convection in a rotating fluid. / Fluid Mech. 
78, 433-454. 

Kou, S., Poirier, D. R., and Flemings, M. C. (1978). Macro segregation in rotated remelted ingots. 
Metall. Trans. 5 9,711-719. 

Ma, W. J., Tao, R, Zheng, Y, Xue, M. L., Zhou, B. J., and Lin, L. Y. (1994). Response of temperature 
oscillation in a tin melt to centrifugal eff'ects. In Materials Processing in High Gravity (eds L. L. 
Regel and W. R. Wilcox), pp. 61-66. Plenum Press, New York. 

Neilson, D. G. and Incropera, F. P. (1993). Effect of rotation on fluid motion and channel formation 
during unidirectional solidification of a binary alloy. Int. J. Heat Mass Transfer 36, 489-505. 

Okhuysen, B. S. and Riahi, D. N. (2001). A three-dimensional linear stability analysis of solidifying 
alloys in high gravity. Presented at Fourth International Workshop on Materials Processing in High 
Gravity, Potsdam, NY, May-June 2000. In preparation. 

Regel, L. L. and Wilcox, W. R. (1997). Materials Processing at High Gravity. Plenum Press, New 
York. 

Riahi, D. N. (1977). Upper-bound problem for a rotating system. J. Fluid Mech. 81, 523-528. 

Riahi, D. N. (1993). Effect of rotation on the stability of the melt during the solidification of a 
binary alloy. Acta Mechanica 99, 95-101. 



340 ROTATION IN A POROUS LAYER DURING ALLOY SOLIDIFICATION 

Riahi, D. N. (1994a). Effect of Coriolis and centrifugal forces on the melt during directional 
solidification of a binary alloy. In Materials Processing in High Gravity (eds L. L. Kegel and W. R. 
Wilcox), pp. 133-137. Plenum Press, New York. 

Riahi, D. N. (1994b). The effect of Coriolis force on nonlinear convection in a porous medium. J. 
Math, and Math. Sci. 17, 515-536. 

Riahi, D. N. (1997). Effects of centrifugal and Coriolis forces on chimney convection during alloy 
solidification. J. Crystal Growth 179, 287-296. 

Riahi, D. N. (1998). High gravity convection in a mushy layer during alloy solidification. In 
Nonlinear Instability, Chaos and Turbulence (eds L. Debnath and D. N. Riahi), Vol. I, pp. 301-336. 
WIT Press. 

Riahi, D. N. (1999). Effects of rotation on a non-axisynmietric chimney convection during alloy 
solidification. J. Crystal Growth 204, 382-394. 

Riahi, D. N. (2001a). Non-axisymmetric chimney convection in a mushy layer under a high gravity 
environment. In Materials Processing in High Gravity (eds L. L. Regel and W. R. Wilcox). Plenum 
Press, New York. In press. 

Riahi, D. N. (2001b). Effects of Coriolis force on nonlinear convection in a mushy layer. In 
preparation. 

Riahi, D. N. (2001c). Effects of centrifugal and Coriolis forces on a hydromagnetic chimney 
convection in a mushy layer. J. Crystal Growth. In press. 

Sample, A. K. and Hellawell, A. (1982). The effect of mold procession on channel and macro-
segregation in ammonium chloride-water analog castings. Metall. Trans. B 13, 495-501. 

Sample, A. K. and Hellawell, A. (1984). The mechanisms of formation and prevention of channel 
segregation during alloy solidification. Metall. Trans. A 15, 2163-2173. 

Sayre, T. L. and Riahi, D. N. (1995). Oscillatory instability of the liquid and mushy layers during 
alloy solidification under rotational constraint. TAM Report No. 808, UILU-ENG-95-6013, 18 
pages. 

Sayre, T. L. and Riahi, D. N. (1996). Effect of rotation on flow instabilities during solidification of 
a binary alloy. Int. J. Eng. Sci. 34, 1631-1645. 

Sayre, T. L. and Riahi, D. N. (1997). Oscillatory instabilities of the liquid and mushy layers during 
solidification of alloys under rotational constraint. Acta Mechanica 121, 143-152. 

Tao, P., Zheng, Y, Ma, W. J., and Xue, M. L. (1994). Unsteady thermal convection of melt in a 
2-D horizontal boat in a centrifugal field with consideration of the Coriolis effect. In Materials 
Processing in High Gravity (eds L. L. Regel and W. R. Wilcox), pp. 67-79. Plenum Press, New 
York. 

Vadasz, P. (1998). Free convection in rotating porous media. In Transport Phenomena in Porous 
Media (eds D. B. Ingham and I. Pop), pp. 285-312. Pergamon, Oxford. 

Vadasz, P. (2000). Flow and thermal convection in rotating porous media. In Handbook of Porous 
Media (ed. K. Vafai), pp. 395-439. Marcel Dekker, New York. 

Worster, M. G. (1991). Natural convection in a mushy layer. J. Fluid Mech. 224, 335-359. 

Worster, M. G. (1992). Instabilities of the liquid and mushy regions during solidification of alloys. 
J. Fluid Mech. 237, 649-669. 



1 3 CHEMICALLY DRIVEN 
CONVECTION IN POROUS 
MEDIA 

I. P O P * , J. H. MERKIN+ and D . B . INGHAM+ 

*Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253, Romania 

email: pop iQmath .ubbc lu j . r o 

^Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK 

email: a i n t j hmQams ta . l e eds . ac .uk and a m t 6 d b i @ a m s t a . l e e d s . a c . u k 

Abstract 

This chapter is concerned with the analysis of free convection boundary-layer flows on cylin-
drical bodies embedded in fluid-saturated porous media where the flow results from the heat 
released by an exothermic catalytic reaction on the surface converting a reactive component 
within the convective fluid to an inert product. The reaction is modelled by first-order kinetics 
with an Arrhenius temperature dependence. A simple model for homogeneous-heterogeneous 
reactions in which the homogeneous (bulk) reaction is given by isothermal cubic autocatalytic 
kinetics and the heterogeneous (surface) reaction by first-order kinetics is also considered. As 
an application, the steady-state boundary-layer flows near the stagnation point on these catalytic 
surfaces are analysed in detail- Multiple solution branches and critical points arising from a hys-
teresis bifurcation are identified by analytical and numerical solutions. It is shown that the form 
that these solution branches take depends on whether or not the effects of reactant consumption 
are included. A short description of the heat transfer and reaction characteristics of a chemically 
reactive forced convection flow near the plane stagnation point of a catalytic porous bed with 
finite thickness is also presented in this chapter. This analysis predicts conditions for the onset 
of convective flow driven by catalytic surface reactions and the solutions demonstrate that the 
models considered give reliable results which can be used with great confidence in different 
practical situations in which convective flows in porous media are driven by chemically reactive 
systems. 

Keywords: surface reaction, porous media, convective Darcy boundary-layer flow, 

first-order Arrhenius kinetics, homogeneous reaction, cubic autocatalysis 
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13.1 INTRODUCTION 

Convective flows in fluid-saturated porous media are important in many technological 
applications such as in geothermal energy, cooling of nuclear reactors and underground 
disposal of nuclear wastes, petroleum reservoir operations, building insulation, irrigation 
systems, the cooling of electronic components, to name just a few applications of this 
area in contemporary technology. The large number of recently published papers and 
review articles on fluid flow through porous media demonstrates clearly that this area of 
fluid mechanics is studied extensively. Recent books by Ingham and Pop (1998), Nield 
and Bejan (1999), Vafai (2000), Pop and Ingham (2001) and the review papers by Hadim 
and Vafai (1999) and Vafai and Hadim (1999) present a comprehensive account of the 
information presently available on these flows and, in particular, stress the importance of 
the many extensions to Darcy's law which are required in various practical applications. 

Transformation processes, such as phase changes and chemical reactions, can occur either 
through the whole volume or just at interfaces in the system under investigation. When 
fluids are involved in these processes then some of the fluid properties, such as the 
fluid density or viscosity, can be affected by the transformation. By analysing just the 
effects of changes in the fluid density, a whole new spectrum of phenomena can arise 
within the general framework of chemical engineering research. Changes in the density 
gradients in fluid-saturated porous media have been reported in many physical situations, 
in particular, when a fluid is unstably stratified and when both thermal and concentration 
effects are present, see Trevisan and Bejan (1990) and Mojtabi and Charrier-Mojtabi 
(2000). As changes in fluid density gradients induce natural convection, chemical reactions 
can provide a distributed driving force for the onset of secondary flows. When a non-
isothermal chemical reaction takes place in the system, the heat generated (consumed) 
by the exothermic (endothermic) reaction, as well as the difference in molecular weight 
between the products and reactants, will determine density gradients. 

As mentioned above, a large amount of information has been published regarding the 
onset of convection in non-reactive porous media. However, it is well known that chemical 
reactions can greatly affect buoyancy driven flows, and, as a result, the interactions between 
reaction and convection play a decisive role in the development of the concentration and 
temperature fields. When studying the progress of a chemical reaction under conditions 
of natural convection, two phenomena are manifested. First, the introduction of natural 
convection due to the existence of a chemical reaction, e.g., the transition from conduction-
reaction regimes to conduction-convection-reaction regimes in reactive fluid media, and 
secondly, the influence of natural convection on the development of the chemical reaction, 
e.g., the existence of non-uniformities in deposited films by chemical vapour deposition. 
Examples of the interaction of chemical reaction and free convection occur in tubular 
laboratory reactors, chemical vapour deposition systems, oxidation of solid materials 
in large containers, synthesis of ceramic materials by a self-propagation reaction. Many 
chemically reacting systems involve both homogeneous and heterogeneous reactions, with 
examples occurring in combustion, catalysis and biochemical systems. The interaction 
between the homogeneous reactions in the bulk of the fluid and the heterogeneous reactions 
occurring on some catalytic surface is generally very complex, involving the production 
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and consumption of reactant species at different rates, both within the fluid and on the 
catalytic surface, as well as the feedback on these reaction rates through temperature 
variations within the reacting fluid which in turn modifies the fluid motion. 

Chemically reactive flows in both viscous (non-porous) fluids and fluid-saturated porous 
media have received far less attention than those of non-reactive systems. Chemical 
reactions greatly affect the buoyancy driven flows and, as a result, the interactions between 
reaction and convection plays a decisive role in the development of the concentration and 
temperature fields. These processes are important in chemical engineering, as well as 
in many other branches of engineering and science. Examples are combustion in situ in 
underground reservoirs for enhanced oil recovery, see Gottfried (1968), ceramic radiant 
porous burners used by industrial firms as an efficient heat transfer device, see Sathe 
et al. (1991), and the reduction of hazardous combustion products using catalytic porous 
beds. It is well known that exhaust gases from internal combustion engines contain 
carbon monoxide, residual hydrocarbons and nitrogen oxides that are hazardous to living 
organisms, so their formation must be reduced to an acceptable level. A review by 
McDermott (1971) indicated that catalytic converters are the only available technology in 
the automobile industry to meet the most stringent emission control standards. A catalytic 
converter is essentially a porous bed which converts the residual hydrocarbons and carbon 
monoxide to carbon dioxide and water vapour at relatively low temperatures. 

There are many chemical reactions with important practical applications which proceed 
only very slowly, or not at all, except in the presence of a catalyst. A common configuration 
for such reactions is for the reactants (usually, but not exclusively, in the gaseous phase) 
to be made to flow over the solid catalyst, with the reaction taking place on the surface of 
the catalyst. The reaction is maintained by a fresh supply of reactants being brought to 
the catalyst surface by the flow. The detailed modelling of these, often complex, reaction 
systems usually also includes the effect of the reaction in the bulk (homogeneous reaction). 
This effect can, in some cases, play a significant role in the overall combustion process 
but there are many operating conditions for which it plays only a minor role, with the 
response of the combustion system being dominated by the surface (or heterogeneous) 
reactions. Even in cases where the homogeneous reaction cannot be ignored, a catalytic 
surface reaction is required for bulk reaction to be sustained. An excellent review of the 
chemical aspects of surface or heterogeneous reactions has been given by Gray and Scott 
(1990) and Scott (1991). Also, a full discussion of catalysis and a description of many 
of its practical applications may be found in Bond (1987). Examples of catalytic surface 
reactions, which are of importance in the chemical industry, are provided by the work, both 
experimental and theoretical, on methane/ammonia and propane oxidation over platinum 
by Song ^^«/. (1991a, 1991b) and Williams r̂ a/. (1991a, 1991b). 

Chemically reactive flows in porous media have received increasing interest over the last 
few years. Steinberg and Brand (1983) investigated the instability of a binary mixture 
with fast chemical reactions when heated from below or from above. It was found that 
oscillatory modes can develop at the first bifurcation points, depending on the sign and 
the magnitude of the heat of reaction. Gatica et al. (1987, 1989) studied the stability 
of chemical reaction and free convection in a two-dimensional planar channel filled with 
a porous medium. Hsu et al. (1991) analyzed the problem of premixed combustion 
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in a porous medium using detailed chemical kinetics, and the effects of porous material, 
combustor geometry and kinetic parameters were discussed. Chao et al. (1994) studied the 
non-premixed burning of a condensed fuel in a porous medium with a natural convection 
oxidizer flow adjacent to the wall and obtained a solution for the flame temperature, 
standoff distance and mass consumption rate. Other studies on chemical reacting flows 
in porous media at low temperatures are those by Kordylewski and Krajewski (1984), 
Viljonen and Hlavacek (1987), Malashetty et al (1994) and Chao et al (1996). 

In order to gain some insight into the process of heat transfer in a porous medium, which 
is driven by heating from a surface on which there is a catalytic reaction, we review 
some of the existing work and up-to-date references on the subject. We consider a planar, 
or axisymmetric, body of arbitrary shape which is embedded in a fluid-saturated porous 
medium which contains a reactive species A that reacts to form some inert product B 
when in contact with the body surface. In particular, we study the following two types of 
reactions: 

I There is an exothermic catalytic reaction on the body surface whereby reactant A 
is converted to an inert product B via the single first-order Arrhenius kinetics as 
described by Toong (1983), i.e., 

A^B, rate = fcoaexp f - — j , (13.1) 

where a and T are the concentration of the reactant A and the temperature on the 
body surface, respectively, fco is a rate constant (pre-exponential factor), E is the 
activation energy and R is the universal gas constant. 

II There is an isothermal cubic autocatalytic reaction within the porous medium which 
is given schematically by 

A + 2B-^W, Y2iie = kiaP, (13.2) 

where b is the concentration of the reactant B and ki is a constant. We will assume 
in both cases that there is no autocatalyst B in any external flow and that the reactant 
A has a constant concentration aoo-

These schemes guarantee, in a natural way, that the reaction rate will be zero in the 
external flows and thus zero at the outer edge of the boundary-layer. The reaction scheme 
(13.1), sometimes referred to as the FONI scheme, has been used extensively in modelling 
a wide variety of combustion processes, see, for example, Aris (1975), Gray and Scott 
(1990), Chaudhary and Merkin (1994,1996), Merkin and Chaudhary (1994), Chaudhary 
et al (1995) and Ingham et al (1999) for a viscous (non-porous) medium and Mahmood 
and Merkin (1998), Merkin and Mahmood (1998) and Minto et al (1998) for a porous 
medium. On the other hand, reaction scheme (13.2) has been used only by Chaudhary 
and Merkin (1995a, 1995b) in this context, although it is used extensively in modelling 
the chemical kinetics for a range of purely reaction-diffusion processes, as reviewed by 
Gray and Scott (1990) and Scott (1991). It is worth pointing out to this end that porous 
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media combustion arises in many practical applications and in some of these situations the 
combusting material can be regarded as being homogeneous. However, there are practical 
applications where this is not so, for example, the localized wetting of a cellulosic material 
can lead to regions within the material where local reaction sites arise, see Gray and Wake 
(1990). This situation can be modelled as an exothermic surface reaction within an 
otherwise unreacting porous material. The important role that natural convection can 
play in porous material combustion is recognized in the so-called 'stacking problem', see 
Balakotaiah and Pourtalet (1990). Here blocks of porous material are stacked on top of 
each other and the heat released sets up a convective flow which can significantly alter the 
combustion characteristics of the material in the blocks. 

We now present some flow models which are driven by heating from a chemical reaction 
on the surface of a body which is embedded in a fluid-saturated porous medium using 
the reaction schemes (13.1) and (13.2). However, we consider a much simplified model 
of this complex problem, isolating the free or forced convection aspects and the catalytic 
surface reaction. In particular, we assume that the flow takes place in the boundary-layer 
near the stagnation point of a cylindrical body, since this enables the governing equations 
to be substantially simplified. It is also assumed that the reaction takes place only on 
the catalytic surface. The simplicity of this model enables us to determine many of the 
important features analytically and also to identify clearly the basic mechanisms involved. 

13.2 FREE CONVECTION NEAR A STAGNATION POINT OF A 
CYLINDRICAL BODY IN A POROUS MEDIUM DRIVEN BY THE 
CATALYTIC REACTION SCHEME I 

We consider the two-dimensional steady free convection flow near the lower stagnation 
point of a cylindrical body which is embedded in a fluid-saturated porous medium of 
ambient temperature Too- If we assume that the porous medium is isotropic and homoge-
neous and that the Darcy-Boussinesq approximation is valid, then the equations governing 
the free convection boundary-layer flow in a fluid-saturated porous medium are, for the 
present model, given by 

du dv ^ 
^ + ̂  - 0, (13.3) 

ox oy 

u = i^iT-T^)'j, (13.4) 

dT dT d'^T ^^^^^ 
ox oy oy^ 

_da _da ^ d'^a ..^ x̂ 
u^z^v-^^Dm-K:::^, (13.6) 

ox oy oy^ 
see Merkin and Mahmood (1998). Here u and v are the velocity components, as given 
by Darcy's law, in the x and y directions, respectively, with x and y being coordinates 
measuring distance along and normal to the body surface, g is the magnitude of the 
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acceleration due to gravity, K is the permeability of the porous medium, /? is the coefficient 
of thermal expansion, v is the kinematic viscosity, a ^ and Dm are the equivalent thermal 
diffusivity and diffusion coefficients of the porous medium and / is some length scale 
for the impermeable surface. It should be noted that the present model assumes that the 
buoyancy forces arise only from differences in temperature. Buoyancy forces can also 
arise from differences in the reactant concentration. This additional effect requires a term, 
which is proportional to pc (^ - Ooo), to be included in equation (13.4), where /?c is the 
coefficient of concentration expansion. However, here it is assumed that \Pc\ <^ |/S|. 

Heat is released by the first-order surface reaction 

A-^B, rate = fcoaexp f - — j , (13.7) 

with a heat of reaction Q > 0, which is taken from the body surface into the surrounding 
fluid-porous medium by conduction. The boundary conditions for equations (13.3) -
(13.6) are then given by 

i; = 0 

^rn% ^ -koQaexp {-^) 

U —> 0 , T —)• T o o , 0' —>• Ooo. a s 5 - > 0 0 , X ^ 0 , 

} on y = 0, x ^ O , 

where km is the thermal conductivity of the porous medium. 

We introduce the stream function ^ , defined so that u — d'il^ldy and v = ~dijj/dx, and 
introduce the non-dimensional variables 

x = f, „ = «„..(!), . = . « - ( £ ) , e-'^. * = £, 
(13.9) 

where Ra is the modified Rayleigh number for the porous medium which is defined as 

amJ^E 

It is worth mentioning that the non-dimensional form for the temperature, given in expres-
sion (13.9), uses the standard Frank-Kamenskii (1969) variable since there is no imposed 
temperature difference scale in the present problem. Substituting expressions (13.9) into 
equations (13.4) - (13.6), we obtain 

^=x9, (13.11) 
dy 

d±de__d^dl^&^ (13 12) 
dy dx dx dy dy'^ ' 
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dy dx dx dy Le dy'^ ' 

where Le — ami Dm is the Lewis number for the fluid-saturated porous medium. The 
boundary conditions (13.8) now become 

f - - ( 5 0 e x p ( ^ ) ^ on 2 / - 0 , x ^ 0, 

g-A^0exp(^) 
(13.14) 

dip 0, ^ -> 0, 0 -> 1 as y ->> 00, x ^ 0, 

where A and 8 are consumption parameters and e is the activation energy parameter which 
are defined as follows: 

kmRT^ \Uc J ' DmQEaoo' E 

where Uc — gKl3RT^/i/E is a velocity scale. 

The system of equations (13.11)-(13.13) can be reduced to a set of ordinary differential 
equations by the transformation 

rP^xfiy), 6 = e{y), ct>^4>iy)- (13.16) 

This reduces equation (13.11) to the relationship 6 = f and equations (13.12) and (13.13) 
become 

f'^ff'^O^ (13.17) 

(/>" + L e / 0 ' = 0, (13.18) 

along with the boundary conditions (13.14) which reduce to 

/ ( 0 ) = 0 , 

r ( 0 ) ^ - A ( / > ^ e x p ( ^ ) , 

(/>'(0) = A5( />^exp(^ j^J , 

/ ' -> 0, 0 -> 1 as y -> oo, 

where 6^ — 6 {G),(j)y^ — (j) (0) and primes denote differentiation with respect to y. 

Following Merkin and Mahmood (1998), the boundary-value problem defined by equa-
tions (13.17) - (13.19) can be reduced to the solution of a standard free convection problem. 
To do so, we take 

f = e]I^F{Y), 0 = 1 - { 1 - 0 ^ ) # ( F ) , Y = e]i^y, (13.20) 
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SO that equations (13.17) and (13.18) become 

F'" -\-FF" = 0, (13.21) 

^" + LeF^' = 0, (13.22) 

along with the boundary conditions 

F ( 0 ) - 0 , F ' (0) = 1, $ ( 0 ) - l , 

F ' -> 0, ^ -^ 0 as y -> 00, 
(13.23) 

where primes now denote differentiation with respect to Y. Solving equations (13.21) 
- (13.23) numerically, Merkin and Mahmood (1998) have found that - F " (0) = Co = 
0.62756 and F (oo) ^ do =^ 1.14277. Equation (13.22) can be solved in terms of F (F) 
and from this solution Ci (Le) = —^' (0) can be calculated as follows: 

Ci (Le) = / '""'{-^'lo F ( 5 ) d s ) d y 

- 1 

(13.24) 

From equation (13.24), Ci ~ y^2/7rLe^/^ as Le -^ oo and Ci ^ doLe as Le -> 0. 

To determine the constants ^u; and ^^i;, we use the boundary conditions (13.19) which can 
be written as follows: 

CoC^' = M^ exp ( j : ^ ) > (13.25) 

C7i (1 - 4>^) e]^^ = \54>y, exp ( Y : ^ ) • (13-26) 

Combining these relations we obtain 

l - < ^ „ = 7 ( L e ) ^ „ , (13.27) 

where 7 (Le) = SCo/Ci. On using expressions (13.25) and (13.27), we obtain 

^ ^ C o ^ e x p M / d + e M ^ ^ . < i . (13.28) 

If we assume that the reactant consumption can be neglected, which can be thought of 
as putting S = 0, then 7 == 0 and therefore (1)^ = 1 or (f) {y) = I. In this case equation 
(13.28) becomes 

X^Coe'J'expf--^]. (13.29) 

This expression shows that A = 0 when 9^ "= 0 and A ̂  CoOj exp {-1/s) as ^̂ i; -> 00 
and £ ^ 0, whilst A = Co^^ exp(-^^^) for e — 0. To gain some insight into the 
nature of the model when there is no reactant consumption (6 — 0), bifurcation diagrams. 
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i.e., plots of the wall temperature Oyj against A as given by equation (13.29), are shown 
in Figure 13.1. There are two important features to note about these diagrams. First, 
multiple solutions appear for values of e in the range 0 ^ e ^ 1/6. Second, there are 
turning points (critical points) on these graphs which are determined from the condition 

givmg 

dA 
= 0, 

(12) ^ 1 - 3£ ± y i - 6£ 
3£2 

(13.30) 

(13.31) 

(b) 

(c) 

70 

' 60H 

50 

40 

30 

20 

10 

0 

(d) 

Figure 13.1 Bifurcation diagrams, plots of 9^, as a function of A, obtained 
from equation (13.28) for the case without reactant consumption (7 = O),for (a) 
e = 0, (b)e — 0.1, (c) e = 1/6 (hysteresis point) and(d) e — 0.2 
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This expression shows, for e in the range 0 < ^ < 1/6, that there are two critical points 

at Ai = A f ^L ) and A2 = A (Ow ) • Then, for e = 1/6 there is a hysteresis bifurcation, 

where the slope becomes vertical, at ^u;,hyst — 6 and Ahyst — 
Co6^/^e-^ = 0.4592. For 

6 > 1/6 the 6w as a function of A curve is monotonic increasing. 
Figure 13.1 shows the progression of the wall temperature, O^j, from the exponential curve 
(fore = 0, Figure 13. la) with one critical point at (9̂  = 3/2andA = Co (3/2)^/^6-^/2 =:= 
0.2572 to the typical 5-shaped bifurcation diagram for 0 < £ < 1/6 as shown in Fig-
ure 13.1(b). Figure 13.1(c) shows the hysteresis bifurcation for e — 1/6 with the curve 
becoming vertical at A = Ahyst = 0.4592. Fore > 1/6 the curve increases monotonically, 
see Figure 13.1(d). Finally, equation (13.31) gives, for e < 1, 

^ i } ^ - ^ ( l + 3e + . . . ) , e^^^^^{l-3e^...), (13.32) 

with e^w^ -> 3/2 and 6^^^ -> 00 as e ^ 0. 

For the case when reactant consumption is included (5 7̂  0 or 7 7̂  0) we start by 
considering the exponential approximation (e = 0). In this case equation (13.28) becomes 

X=^'f-l , ^ . < 7 - ^ (13.33) 

The bifurcation diagram (i.e., plots of î̂ ; against A), have two critical points, and hence a 
range of multiple solutions, where equation (13.30) holds, gives 

2 7 ^ ^ - ( 2 + 7 ) ^ . + 3 = 0, g ^ = ^ + ^ ^ ^ ^ 207 + 7^ ^j3 34^ 

This holds provided 7 < 7hyst = 10 - 4^/6 = 0.20204. There is a hysteresis point, i.e., 
equal roots in equation (13.34), at 7 = 7hyst (̂ i/;,hyst = 2.7247 and Ahyst — 0.4117). 
It should be noted that any solution of equation (13.34) has to satisfy dw < 1/7- For 
7 > 7hyst the curve is monotonic increasing. This is illustrated in Figure 13.2 where we 
plot 9u; as a function of A for 7 = 0.1 and 7hyst = 0.3. An important feature to note 
about these bifurcation diagrams, compared to those shown in Figure 13.1, is that there is 
an upper bound on ^^ of I / 7 for large values of A. Previously, 9^ increased indefinitely 
as A increased and in dimensional terms this corresponds to a maximum possible surface 
temperature Tmax of 

r„,ax = Too + ^^^^i^^^ ( -^^^^^ ] . (13.35) 
DmQO'OO f Co 

km \Ci{Le) 

The general case (e ^ 0) has been treated by Merkin and Mahmood (1998). Differentiating 
equation (13.28) with respect to 6^ gives the equation 

je^el + (27£ - 3e^ - 27) ^^ + (7 + 2 - 6^) ^^ - 3 - 0 (13.36) 
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Figure 13.2 Bifurcation diagrams, plots of 0^ as a function of A, obtained 
from equation (13.33) for exponential approximation (e = 0) with reactant 
consumption (^ / O),for(a)j = 0.1, (b)j — 0.20204 (hysteresis point) and (c) 
7 = 0.3 

for determining the critical points. The hysteresis bifurcation curve in (5,7) parameter 
space, which separates regions where there is, and there is not, possible multiple solutions 
is determined by solving equation (13.36) simultaneously with the equation 

Sje'^el + 2 (276 - 35^ - 27) <9̂  -h 7 + 2 - 66 = 0. (13.37) 

Equations (13.36) and (13.37) were solved numerically by Merkin and Mahmood (1998) 
and the result is shown in Figure 13.3. This figure gives the hysteresis bifurcation curves 
which divides the (e, 7) plane into a region where multiple solutions are possible (below 
the curve) and where the bifurcation diagrams are monotonic (above the curve). The plots 
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0.15 0.20 

Figure 13.3 Tlie hysteresis bifurcation curve in the {e,j) plane. The region 
where multiple solutions are possible is indicated 

ofOyj against A for e / 0 are very similar to those shown in Figure 13.2, see also Merkin 
and Mahmood (1998). 

13.3 FORCED CONVECTION FLOW NEAR A STAGNATION POINT OF A 
CYLINDRICAL BODY IN A POROUS MEDIUM DRIVEN BY THE 
CATALYTIC REACTION SCHEME II 

Here we consider the steady homogeneous-heterogeneous reaction near a stagnation point 
of a cylindrical body which is embedded in a fluid-saturated porous medium. Within the 
porous medium we have the isothermal cubic autocatalytic reaction (13.2), while on the 
catalytic surface we have the isothermal, first-order reaction 

A-^ B, rate — kga, (13.38) 

where kg is a constant. 

The equations for a and 6, the concentrations of the reactants A and B, are, with the 
reaction scheme (13.2), see Chaudhary and Merkin (1995a, 1995b), given by 

_da _da 

dx dy 
u-^ -f- v-^ = ^A-^z^ - kial? 

ox oy ^'dy^ 

(13.39) 

(13.40) 
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where DA and DB are the respective diffusion coefficients. The boundary conditions to 
be applied are 

dy 

DB^ = -ksd J ^ > ^ > (\^AV) 
Ql , _ ^ on 1/ = 0, a: ^ 0, 

a -^ Ooo, 6 - ^ 0 as y->-00, x ^ 0. 

The model, equations (13.39) - (13.41), assumes a large Rayleigh number, allowing the 
usual boundary-layer approximations to be made. 

We consider an outer stagnation point flow Uoo (x//), where / is a measure of the body 
size, and then introduce the dimensionless variables 

a{y) = — , biy) = — . 

The velocity field is given simply byip = xy (forced convection flow). Near the stagnation 
point a = a{y) and h — h{y) so that equations (13.39) and (13.40) become 

a" ^ya' -Kah^ ^^, (13.43) 

ah" ^yh' + Kab^ ^^, (13.44) 

while the boundary conditions (13.41) become 

a'{{))^^saw, 6'(0) =-A^a^; , (13 45) 
a -)" 1, 6 -> 0 as y -> oo, 

where ayj — a (0). The parameter A gives a measure of the strength of the homogeneous 
reaction. As measures the strength of the heterogeneous surface reaction and a is the ratio 
of the diffusion coefficients and they are defined as follows: 

kial^l'^ ksl DB /la/l^^ 
amRcL DARCL^' DA 

The Rayleigh number Ra is now defined by 

R a ^ ^ . (13.47) 
DA 

Following Chaudhary and Merkin (1995a), we deal with the case which is encountered in 
many practical applications, namely the diffusion coefficients DA and DB of the chemical 
species A and B are of comparable size. This suggests we set DA — DB, giving a — I 
and then from equations (13.43) - (13.45) we have 

a{y)^h{y)^l. (13.48) 
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Equations (13.43) and (13.44) reduce to the single equation 

a" -^ya' - Ka{l-af = 0 , 

which has to be solved subject to the boundary conditions 

a' (0) — AgCii;, a ^ \ as y -^ oo. 

(13.49) 

(13.50) 

We start by considering the two limiting cases, namely A = 0 and As 
equations (13.49) and (13.50) have the solution 

a(y) = 
1 

1-fA, 
1 + A. i>-""'^ din 

1 + As 

00. With A = 0, 

(13.51) 

Equation (13.51) shows that, in this limit, a^j is monotonic decreasing in A^ and approaches 
zero as As -> 00. 

For the limit As -^ oo, equations (13.49) and (13.50) have to be solved subject to the 
boundary condition a (0) = 0. This has to be obtained numerically and the results are 
shown in Figure 13.4, with a plot of a' (0) as a function of A. The figure shows that the 
curve is monotonic decreasing in A, starting with a' (0) = \/7rj2 at A = 0 obtained from 
expression (13.51) by letting As —>• oo, and decreasing to zero as A increases. 

Both these limiting forms do not have multiple solutions. This is not the case in general, 
as can be seen in Figure 13.5(a), where we plot a^^ as a function of A for As = 0.05. This 
case has a range of values of A over which there are three solutions. These arise at the two 
critical points, or saddle-node bifurcations, at A = 8.817, â ;̂ = 0.890 and A = 4.493, 
ttu; = 0.403 in this case. These saddle-node points can be followed in the (A, As) plane by 

a'(0) 

Figure 13.4 Variation of the concentration flux a' (0) of the reactant A as a 
function of A, obtained from the numerical solution to equations (13.49) and 
(13.50) for the limiting case As —>" oo 
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Figure 13.5 Variation of the wall concentration a^ of the reactant A as a 
function of A, obtained from the numerical solution to equations (13.49) and 
(13.50) for (a) As = 0.05 and(b) Ag = 0.172 (hysteresis point) 

noting that they are determined by considering a perturbation ai to the equations (13.49) 
and (13.50). Thus we have to solve equations (13.49) and (13.50) for ao (say) together 
with the linear perturbed equation 

a'/ + ya[ - A (1 - ao) (1 - 3ao) ^i = 0, 

a[ (0) = AgOi (0), ai -> 0 as y ^ oo 
(13.52) 

having a non-trivial solution. Graphs of the critical points obtained in this way are shown 
in Figure 13.6. This figure shows that there is a hysteresis point at AH ~ 4.094 and 
^s,H = 0.172. Multiple solutions are possible for A^ < As,// with ranges of A over 
which there are three solutions, see Figure 13.5(a), given by the critical points shown in 
Figure 13.6. The hysteresis point is shown in Figure 13.5(b), where we plot a^ against A 
for As = 0.172. For As > As,//the bifurcation diagrams are monotonic (as in Figure 13.4, 
for example). 

13.4 CHEMICALLY REACTIVE FLOW NEAR THE STAGNATION POINT OF 
A CATALYTIC POROUS BED 

We consider the steady two-dimensional laminar, premixed chemically reactive stagnation 
point flow in a catalytic porous bed of finite thickness h, with the origin of the Cartesian 
coordinate system placed at the stagnation point as shown in Figure 13.7. The flow is 
bounded by an impermeable surface at the other side of the catalytic bed. It is assumed 
that the flow can be divided into two regions: a homogeneous gas phase region before the 
flow enters the porous bed and a two phase, solid-gas region within the bed. It is also 
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A. 

Figure 13.6 Critical points in the (A, A^) parameter plane. The region where 
multiple solutions are possible is indicated 

Premixed combustible gas 

y///////////////^^^^^ 

Figure 13.7 Physical model and coordinate system 

assumed that the reaction rate follows a single-reactant, first-order, one-step Arrhenius 
kinetics. We notice that this flow model has been developed first by Chao et al (1996). 

Since the two regions described are controlled by different transport characteristics, the 
conservation equations need to be formulated separately. In the gas phase region bounded 
by h < y < oo, there is a potential flow so that the velocity field is given by 

ex. V == -cy, (13.53) 

where the constant c is the parameter describing the flow strain rate. Due to the high 
activation energy and low flow temperature in this region, chemical reaction is negligible 
so that under the assumption of constant physical quantities, the energy and species 
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(concentration) equations are given by 

r r ^ + ^ 2 / - r r - = 0 , (13.54) 
pcp dy^ dy 

Dg-—^-\-cy-^^=0, (13.55) 
d^C+ __dC+ 
dy2 d^ 

subject to the far boundary conditions 

T+->Too, C+-^Coo as ^ ^ 0 0 , (13.56) 

where Dg and kg are the diffusivity and thermal conductivity of the gas phase, respectively. 
Too and Coo are prescribed quantities and -h denotes quantities in the gas phase region. 

In the porous bed, 0 < y < h, Darcy's law is applicable, so that the forced convection 
flow is again a potential flow and the velocity components are given by 

Ku = ex, Kv = —cy, (13.57) 

where K is the permeability of the porous medium. The energy and concentration (species) 
equations can now be written as 

+ cy-jzr- = C exp - I , (13.58) 
pCp dy^ dy pCp \ RT 

where the superscript — denotes the quantities in the porous region. We assume that the 
impermeable wall {y — 0) is isothermal and that there is no net species concentration flux. 

It is also assumed that at the interface between these two regions, y — h, the temperature 
and the species concentration must be continuous. Thus, the wall and interface conditions 
for equations (13.54), (13.55), (13.58) and (13.59) are 

r--r^, ^ = 0 on ^-0, 

O - O , Ug ^. - Um ^^ 
on y — h. 

The following non-dimensional quantities are defined: 

- I kg \ T — IQQ G CpioO 
\cpcpj QCoo/Cp Goo vGoo 

QCoo/Cp kg Dg Dm pc 

(13.61) 
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where Da is the Damkohler number representing the chemical reactivity. Substituting 
expressions (13.61) into equations (13.54), (13.55), (13.58) and (13.59), we obtain 

d^e+ d^+ ^ , , , , , , 
-—-\-y-—=0, (13.62) 
dt/ dy 

" ' ' * % » # i = 0 . (13^63, 

^ - = ^ - . ^ = 0 

^ ^ "> dy dy j 

(9+ -> 0, 0 + ^ 1 

on 

> on 

as 

y - 0 , 

y = h, 

y -^ oo, 

Le d?/̂  dy 

The boundary conditions (13.56) and (13.60) for equations (13.62) - (13.65) become 

(13.66) 

where h — h [kglcpCp) ̂ '^. 

Chao et al. (1996) have solved equations (13.62) - (13.65), subject to the boundary 
conditions (13.66), analytically and numerically assuming the cases of a thin bed and a 
thick bed. We shall present further some results only for the case of a thin bed, while the 
results for a thick bed can be found in the paper by Chao et al (1996). It was assumed that 
the reactants are supplied at 300 K and the adiabatic flame temperature is 2180 K so that 
ôo = 0.1376. Also, the wall temperature was assumed to be Tyj — TOOK and we have 

Byj — 0.3211. Other values used for the computation are D = 1, Le = 1, Da == 1, A == 1 
and k — 20. The analytical (full lines) solutions for large k and the numerical (dashed 
lines) for the temperature Q {y) and mass fraction (j) {y) are shown, for some selected 
values of h, in Figure 13.8. It is seen that the perturbation and numerical solutions for 
(j) {y) agree well with each other, whilst the results for 9 {y) are different. However, the 
agreement between these two approaches for 6 {y) is satisfactory when the porous bed is 
thin, h = 2 (say). By increasing the bed thickness, the agreement becomes poorer, which 
means that the perturbation (analytical) analysis cannot properly describe the heat transfer 
process when the porous bed is thick. This is due to high flow velocities in the gaseous 
region and in most of the porous bed except near the wall. Figure 13.8 shows that in the 
porous bed, the temperature 6 (y) remains a constant to the second-order approximation 
because of the large value of k. The heat generated through the reaction is completely 
transferred to the gas phase to preheat the gaseous flow and to the impermeable surface. 
The gas temperature then increases when approaching the interface. As expected, (j) (y) 
decreases with increasing y in the porous bed due to the catalytic reaction. The value 
of (j){y) starts decreasing from unity before the flow enters the porous bed due to mass 
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Figure 13.8 Temperature 6 and concentration </> profiles as afiinction of y for 
different values of the bed thickness h, where Le — 1, Da = 1, A = 1 and 
k = 20. analytical solution, numerical solution 

diffusion. It is also noticed from Figure 13.8 that for a thicker bed (larger value of h), the 
reactant concentration 0 [y) is lower. This is because for a thicker bed then the residence 
time is larger and thus the conservation from reactants to products is higher. 

The effect of Lewis number, Le, on 9 {y) and (f) {y) is illustrated in Figure 13.9. The values 
of Le considered are in the range 0.5 to 1.5 because, for a gaseous flow, Le is close to 
unity. Since Le is the ratio of gaseous thermal diffusivity to mass diffusivity, a lower value 
of Le means a higher mass diffusion rate when the thermal diffusion rate is held fixed. 
Thus, for small values of Le, the reactant concentration is lower in the region relatively 
far away from the wall because the reactant is diffused into the porous bed at a higher rate. 
However, because of the high effective thermal conductivity, the temperature remains the 
same. Although more reactants are converted to products, all the extra reactants cannot be 
consumed. The remaining product is accumulated in the region near the wall which results 
in a higher concentration. In the region extremely far away from the surface, the reactant 
concentration is not affected by Le because the mass transport is convection controlled. 

It should be mentioned that Chao et al. (1996) have treated numerically the transient 
temperature and reactant concentration (species) and obtained the time required to reach 
steady state. 
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Figure 13.9 Temperature 6 and concentration (p profiles as a function of y for 
a thin bed (h — 2), where Da = 1, A = 1 and k = 20 

13.5 CONCLUSION 

In this chapter, we have discussed some models of catalytic surface reactions in porous 
media in which there are no external flows with heat generated by the homogeneous 
exothermic reactions setting up purely free convection boundary-layer flows on a cylin-
drical surface. In particular, the steady-state flow near the lower stagnation point of this 
surface is analysed in detail. The reaction has been modelled as a single first-order reaction 
with an Arrhenius temperature dependence or it is given by an isothermal cubic autocata-
lator kinetics. The situations considered for these models are combustion energies and 
these are highly exothermic. Critical points of the systems where the behaviour undergoes 
a change from a slow reactive state (low temperatures) to a highly reactive state (higher 
temperatures) over a relatively short distance have been identified. However, there are 
several features of the described models that need some comments. 

• We have imposed the Boussinesq approximation. This has the advantage of giving 
a simplified model and is applicable when temperature differences are relatively 
small, so it could well be used to give a reliable indication of the critical points 
although it will be less applicable at the larger temperatures generated downstream. 

• We have assumed that buoyancy forces arise only from differences in temperature. 
However, these forces can also arise from differences in reactant concentration and 
this additional effect requires a term proportional to chemical differences to be 
included into the Darcy equation. This aspect remains to be investigated further to 
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see if any qualitatively different features are observed when the temperature and 
concentration components of the buoyancy forces differ substantially. 

• We have ignored the effects of any imposed external flow. It would be interesting 
to analyse such flows which sometimes lead to boundary-layer separation. 

• Initial-value (unsteady) problems of these chemical reactive modes can be also 
considered and analysed on the line proposed by Chao et al. (1996), Chaudhary and 
Merkin (1996) and Merkin and Mahmood (1998). 

• The stability predictions of these chemically driven systems should also be inves-
tigated. Such an analysis proved to be useful to uncover many interesting features 
of the interaction between energy, concentration (species) and momentum transfer 
when the situation of reactive flow through porous media is considered. 

• The finite element method to model and predict the convective flows in porous 
cavities driven by catalytic reactions is also an open topic which is worthy of 
being considered. In this context it is worth pointing out that the finite element 
method has been recently used by Zhao et al. (2000) to model and predict the 
dissipative structures of chemical species for a non-equilibrium chemical reaction 
system in fluid saturated porous medium. In particular, these authors have explored 
the conditions under which dissipative structures of the species (concentrations) 
may exist in the Brusselator model for chemical reaction. In the literature, the 
Brusselator, which is a trimolecular model and involves a third-order chemical 
reaction, has been widely used to study dissipative structures of far-from-equilibrium 
chemical reactions, see Prigogine (1980). Zhao et al. (1993) have shown that the 
agreement between the proposed numerical and analytical solutions demonstrate 
that the proposed finite element method is robust enough for dealing with the 
chemical instability problems in a fluid-saturated porous medium. Recently, the 
analysis of thermal instability has been extended to investigate the formation of 
giant ore deposits in hydrothermal systems of the Earth's crust, see Zhao et al. 
(1997,1998). 

Finally, we would like to stress the fact that models, such as those outlined in this chapter, 
can be used with great confidence to elucidate unknown features of several complex 
systems in porous media. 
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Abstract 

This is a review of recent analytical and numerical work on the generation and flow of methane 
gas through a layer of porous medium impregnated with solid clathrate hydrates. The porous 
layer is depressurized suddenly on its lower plane and the phase-change front advances under the 
influence of heat conduction and convection. The first part of the chapter describes a simplified 
analytical solution based on a unidirectional phase-change model in which the conduction 
in the gas-filled region behind the front is neglected. The chapter continues with numerical 
results for the evolution of the unidirectional phase-change process. Both methods lead to 
the conclusion that the rate of gas flow through the depressurized (bottom) plane of the layer 
decreases approximately as t~^/^. Further numerical modeling shows that the presence of a 
vertical geothermal gradient has a significant effect on the rate of gas generation. Numerical 
results for phase change and gas generation in a porous sediment with non-uniform porosity 
and permeability are also reported. 

Keywords: porous media, methane, clathrate hydrates, convection, phase change, 
dissociation, geothermal gradient, energy sources, exergy, porosity, permeability 
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14.1 INTRODUCTION 

The objective of this chapter is to draw attention to an important new area of fundamental 
and applied research on convection in porous media: the extraction of methane gas from 
clathrate hydrates. Vast deposits of methane hydrates have been found all over the globe, 
under the oceanic floor, and under permafrost. Clathrate hydrates are solid crystals of water 
and methane, which form and exist at sufficiently high pressures and low temperatures, 
see Figure 14.1. 'Clathrate' comes from the Latin verb clathrate, which means to endow 
with a lattice. In chemistry, this terminology refers to a mixture in which the molecules of 
one substance, e.g., methane, are completely entrapped in the crystal lattice or cage-like 
structure of another substance, e.g., water. 

Figure 14.2 shows the geometric hydrate crystal unit structures. Different gases or gas 
mixtures form hydrates of three different structures that have repetitive crystal units 
composed of 'cages' (polyhedra) of hydrogen-bounded water molecules (polyhedron's 
vertices). Each cage (void) contains one guest molecule that is held in by Van der 
Waals forces. For example. Figure 14.2(a) shows the front face of structure I (si) cubic 
cell, where two 5^^6^ polyhedra, each with 12 pentagonal and 2 hexagonal faces, are 
connected to four 5^^ polyhedra, each with 12 pentagonal faces. The complete si contains 
eight polyhedra within the cube. Each of the six cube faces contain two halves of a 5^^6^ 
polyhedron formed by 12 pentagonal and 2 hexagonal faces, for a total of the six 5^^6^ 
polyhedra within the cell. Each of the eight vertices of the cube contains one-eighth of a 
5^^ polyhedron formed by 12 pentagonal faces, which, added to the 5^^ polyhedron in the 
center of the cube, gives a total of two 5^^ polyhedra per cell. The ideal unit cell formula 

TeAK] 

P, FMPa] 

Figure 14.1 The equilibrium pressure-temperature curve for clathrate hydrates 
of methane in water, see McKoy and Sinaglu (1963), Kamath and Holder (1987) 
and Lundgaard and Mollerup (1992) 
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Figure 14.2 Hydrate crystal unit structures: (a) si, (b) sll, and (c) sH, see 
Sloan (1990) 

for si is 6X • 2Y • 46H2O, where X represents the 5^^6^ polyhedron and Y represents 
the 5^^ polyhedron. Pure methane forms structure I and when methane is filling up all 
the available cages (voids) that compose the hydrate si, the formula that represents it is 
given by 8CH4 • 46H2O. Structure II (sll) and Structure H (sH) are also shown in Figures 
14.2(b) and (c), respectively. 

Today, there is a growing interest in understanding the formation and behavior of methane 
clathrates, because they represent a potentially huge source of gaseous fuel. Several 
methods are contemplated for capturing methane gas from hydrates: heating the hydrate, 
depressurizing the hydrate, mining the hydrate, and destabilizing the hydrate by using in 
situ combustion. The work reviewed in this chapter refers to the fundamentals of methane 
gas generation via depressurization, see Rocha et al. (2001). In addition, these phenomena 
are relevant to a wide spectrum of technologies, see Sloan (1990), as clathrate hydrate 
processes are involved in the plugging of pipe lines, see Behar (1994) and Lysne (1994), 
the sequestration of CO2 in the ocean, see Makogon (1981) and Fontana and Mussumeci 
(1994), the endangering of the stability of foundations for offshore oil wells, see Briaud 
and Chaouch (1997), and the low-temperature storage of energy via clathrate formation, 
see Holder ^̂  a/. (1994). 

The fundamentals of the gas generation process have been studied under two scenarios, the 
heating of the sediment filled with solid hydrate, see Cherskii and Bondarev (1972), Selim 
and Sloan (1989), Islam (1994) and Briaud and Chaouch (1997), and the depressurization 
of the sediment, see Yousif et ai (1990). Rocha et al (2001) considered the depres-
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surization technique shown in Figure 14.3. The porous layer, which is filled with solid 
hydrate, lies immediately above sediment containing free gas that has not formed hydrate 
because the sediment temperature at that depth is too high. In the upper layer the solid 
hydrate occupies the pore spaces of a permeable porous medium. Here the temperature is 
sufficiently low and the pressure high such that the solid hydrate is stable. In the lower 
layer the generated gas flows through the pores of the same or another porous medium. 
The interface between the two layers marks the level where the initial temperature Ti 
and pressure Pi correspond to equilibrium (dissociation, phase change, Teq and Peg, see 
Figure 14.3). 

The basic scales of the process characterize the rate at which the dissociated lens advances 
into the porous medium filled with solid hydrate, and the rate at which gas is being 
produced and captured in an unsteady, time-dependent fashion. There are two problems— 
two phenomena—that join hands during this process. One problem is the dissociation 
and advancement of the phase-change front into the hydrate-filled medium, see Figure 
14.4, left. This problem can be studied first as a one-dimensional, time-dependent heat 
and fluid flow phenomenon, and is the subject of this chapter. The generated gas is driven 
downward through the dissociated layer of thickness X {t) and the interface between the 
original two layers (x = 0) also serves as an interface between the two problems. The 
second problem is the nearly radial gas flow through the lower porous layer and into the 
well, see Figure 14.4, right. The gas enters vertically through the x = 0 interface, and 
flows radially towards the well. 

well 

upper layer: 
solid hydrate 
in porous inedium 

lower layer: 
gas and wator 
IB porous medium 

- dissociated 
hydrate 

T<T, 

Tm 

T>T: 

p<p. 

Figure 14.3 The production of gas from a hydrate layer via depressurization, 
see Rocha et al. (2001) 
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Problem 1 Problem 2 

\ I \ 
V 

I \ I 
^ 

\ J^ J 

Figure 14.4 The two heat and fluid flow fields separated by the interface 
between the two layers of Figure 14.3, see Rocha et al. (2001) 

14.2 PHASE CHANGE AND GAS FLOW 

The one-dimensional model of Figure 14.4 (left) is shown in greater detail in Figure 14.5. 
The dissociated sublayer—region 1—contains porous medium filled with a combination 
of gas and liquid water. Region 2 is the original porous medium in which the pores are 
filled completely or incompletely with a solid hydrate. In the beginning, ̂  == 0, region 1 is 
absent {X = 0) and region 2 is initially isothermal at the equilibrium temperature Ti {Pi) 
that characterizes the near-interface regions of Figure 14.3. 

The dissociation starts when the well begins flowing. In Rocha et al. (2001), this event is 
modeled as the sudden lowering of the pressure at the x = 0 interface: the new pressure PQ 
is considerably lower than Pi. Dissociation advances into region 2, on a front {x = X) of 

mgion (2): 
solid hydraie ill d 
porous mediiiin 

TTT 
porous medimti 

PoPe,Pi 

Figure 14.5 One-dimensional model for phase change, heat transfer and fluid 
flow through the upper layer of Figure 14.3, see Rocha et al. (2001) 
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pressure Peq and corresponding equilibrium Teq (< Ti). The excess pressure {Peq - Po) 
that forms across region 1 drives the generated gas through the x = 0 interface. For 
simplicity it was assumed that the only phase that flows through region 1 is the gas, in 
other words, the liquid water remains stationary inside the pores. It was also assumed 
that the gas flow through region 1 is sufficiently slow to conform to the Darcy regime, see 
Nield and Bejan (1999), 

v = -^- , (14.1) 
/i ox 

where Ki is the permeability of the porous medium filled partially with liquid water in 
region 1, and fi is the gas viscosity. Fluid motion was ruled out in region 2, on the assump-
tion that the solid hydrate is sufficiently plentiful to seal the pores. These simplifying 
assumptions have also been made in earlier studies of one-dimensional dissociations, see 
Cherskii and Bondarev (1972) and Selim and Sloan (1989), where it was assumed that 
the dissociation is driven by the heating applied to the underside of the x = 0 interface. 
In the present model, the dissociation is driven by the lower pressure imposed at x = 0. 
This problem is more closely related to the movement of the dissociation front studied by 
Yousif er a/. (1990), where the dissociation was driven by depressurization, and where the 
temperature field on both sides of the front was assumed isothermal. 

The local description of the gas flow through region 1 continues with the ideal gas model 
for the gas density, p, given by 

^ = z ^ ' '"'-^^ 
where T\ is the local temperature and P is the local pressure in region 1. Storativity 
and other compressibility effects are neglected because in the present application the 
pressure variations are small compared to the absolute pressure. The same is true about 
temperature variations. Temperature and pressure changes tend to offset each other's effect 
on the gas volume in this system. For the conditions at which methane hydrates exist, 
the compressibility factor Z is of the order of 0.8-0.9 for methane gas. In the following 
analysis Z is treated as a constant, and the numerical results are based on Z = 1. In the 
mass conservation equation for the gas, 

| + ^ ( H = 0, (14.3) 

it is assumed that the gas motion is quasi-stationary so that the dp/dt term is negligible, 
i.e., 

— [pv) = 0. (14.4) 

The energy absorbed at the dissociation front is being supplied by conduction from the 
solid region 2. The energy equation and the initial and boundary conditions for this 
phenomenon are given by 
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T2 = Ti at X ̂  X < oo, ^ := 0, (14.6) 

T2 -= Te^ at x = X, t> 0, (14.7) 

T2 = Ti as X -> 00, t > 0, (14.8) 

where a2 is the thermal diffusivity of the porous region filled with solid hydrate. It 
is necessary to invoke the adiabatic condition on the x = 0 plane in order to effect 
the separation of the phenomenon into the two problems of Figure 14.4. This adiabatic 
condition is an approximation that becomes better as the time increases, i.e., as the distance 
between the dissociation front (x = X) and the adiabatic plane (x = 0) increases. Thermal 
diffusion is expected to play a role in the immediate vicinity of the dissociation front. The 
temperature in region 1 is a record of the dissociation front, which sweeps upward with 
the temperature Teq {Peg), starting with Teq (PQ) at X = 0. Rocha et al (2001) began 
with the assumption that the temperature throughout 0 ^ x ^ X is nearly uniform and 
equal to the front temperature, namely 

T^{x,t)^Teq(t). (14.9) 

This assumption eliminates conduction through region 1; it is relaxed and tested numeri-
cally later in this chapter. Assumption (14.9) is most inaccurate at the start of dissociation, 
when the temperature gradient (Ti,6 — Teq) /XQ is the largest. 

The conservation of energy at the dissociation front is a balance between the rate of 
dissociation and the conduction heat flux supplied by region 2, namely 

cl,pHAH^ = -k2^ at x = X{t). (14.10) 
d^ ox 

In this equation 0, pn and AH are the volume fraction occupied by hydrate in region 2, 
the hydrate density, and the hydrate latent heat of dissociation. If hydrate fills 100% of the 
pore space, then 0 is also the porosity of the medium. This equation assumes no kinetic 
limitation on the rate of dissociation. On the right-hand side of the same equation, k2 is 
the thermal conductivity of the medium of region 2. The conservation of species, e.g., 
methane, at the dissociation front requires 

uj(j)pH-^-\- pv = 0 at x = X{t), (14.11) 
dt 

where u is the mass fraction of methane in the solid hydrate, e.g., u — 0.127 (Selim 
and Sloan, 1989). In equation (14.11), both v and dX/dt are measured relative to the x 
coordinate. This equation is based on the highly appropriate assumption that the amount of 
gas left in the space just swept by the front is negligible in comparison with the gas ejected 
as pv. Furthermore, the pv term in equation (14.11) has the same value throughout the 
dissociated sublayer, cf. equation (14.4), but this value may vary with time. The problem 
statement is completed by the relation between pressure and temperature at the dissociation 
front, see McKoy and Sinanglu (1963), Kamath and Holder (1987) and Lundgaard and 
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Mollerup (1992), namely 

Peg = cexp ( a - — ) at x = X {t), (14.12) 

where a, b and c are three constants listed in Table 14.1. Equation (14.12) is presented in 
Figure 14.1. 

14.3 SIMILARITY SOLUTION 

The solution to this problem was developed by Rocha et ai (2001) in closed form, by 
introducing the similarity variables 

V = 
(4a20 

1/2 
and ^ = 

X 

(4a20 
1/2' 

(14.13) 

such that 7/ = ^represents the position of the dissociation front. Integrating equation (14.4) 
once and combining it with equations(14.1)and(14.2),weobtain (MP/ZRTi) dP/dx = 
constant, or 

^ P d p , , , , , , 
-TTB^ r7?T- = constant. (14.14) 

The constant in equation (14.14) is supplied by equation (14.11): constant — pv ~ 
—uj(l)pHdX/dt, which also shows the origin of ^ in the subsequent equations, cf. the 

Table 14.1 Physical constants and properties used in the numerical work 
(Rocha et al., 2001) 

a = 49.3185 
b = 9459 K 
c = IPa 

Cp = 2162J/kg 
a == 2500J/kgK 
C2 =2500J /kgK 
A;i = 5 . 6 W / m K 
k2 = 2 . 7 W / m K 

Ki = 1.4 X 10-13 m2 
Lm&x = 500 m 
^min = 10 m 

M = 16kg/kmol 
Peq,ma.x = 5600.5 kPa 

Po = 5600 kPa 
i^ = 8314J/kmolK 

Ti = 300 K 

Teg {Peg = P o ) = 280K 
7^1,b,max = 300K 

T,i, = 277K 

Xo = 0.01 
Z = 1 

Qi - 2.9 X lO-^m^/s 
a2 = 7 X lO-^m^/s 

7max = 46 K/km 
AH = A.l X lO^J/kg 

^ = 10~^kg/sm 
pi = 1000 kg/m^ 
P2 = 1000 kg/m^ 

PH =913kg /m3 
0 = 0.3 
Lj = 0.127 kg methane/kg hydrate 
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second of equations (14.13). Integrating equation (14.14) from P — PQ (a.t rj = 0) to 
P [T]), and using equation (14.9), leads to 

Finally, P = Pgg at 7/ = ^ and the equilibrium condition (14.12) yields the following 
relation between Teq and ^: 

ĉ  exp ( a - —-
-̂  eq 

^^ 4^Teqa2UJ(t>pHlJ'ZR 
= ^ » + K . M • <»•">' 

A second relation is supplied by the solution to the transient conduction problem in 
region 2. By using the classical method of dimensionless unidirectional time-dependent 
conduction in similarity formulation, see Carslaw and Jaeger (1959) and Bejan (1995), it 
can be shown that the similarity solution to the problem stated in equations (14.5) - (14.8) 
is given by 

T2{x,t)-Ti ^ erfcr; 

Teq-Ti erfc^* 

Combining this expression with the energy conservation condition (14.10) and the ^ 
definition (14.13) yields a second relation between Teq and ^: 

exp {-e) _ TT^/Vpif A ^ a 2 
^ erfc ^ 

(Ti - Te,) -^^f:^t^ = " - ^ 7 — ^ (14.18) 

Equations (14.16) and (14.18) determine Teq and ^ uniquely, as functions of the imposed 
boundary pressure PQ, the initial temperature Tj, and the thermophysical properties of 
regions 1 and 2. Rocha et al. (2001) showed that these equations establish ^ and Teq/b as 
functions of five dimensionless parameters, namely 

a, ~, —, G2 and Gu (14.19) 
b c 

where Gi and G2 are dimensionless groups that emerge in-equations (14.16) and (14.18), 
respectively, namely 

G, = ̂ "^f;"/;^^, (14.20) 

G, = t E E ^ . (14.21) 
k2b 

The five parameters listed in equation (14.19) are pinpointed by using the representative 
values of the thermophysical properties listed in Table 14.1. Not every parameter is a 
constant: in equation (14.19), the parameters are listed sequentially starting with the 
parameter that is the least likely to vary (a), and ending with the ones that are the most 
likely. Specifically, in a field with methane hydrate sediments the group G2 may vary (or 
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may be difficult to be described by a single value) because of variations or uncertainties 
in 0. The group Gi may vary on account of changes in both Ki and (f). Changes in (f) 
can also affect a2 and k2 if they are large enough, but a2 ^nd k2 have been assumed to be 
constant here. 

Figures 14.6 and 14.7 document the sensitivity of the solution {^yTeq) obtained from 
equations (14.16) and (14.18), with respect to possible variations in four of the five 
parameters listed in equation (14.19). The changes in Gi and G2 are attributed to 
variations in permeability and hydrate saturation, while the remaining properties have the 
values listed in Table 14.1. Figure 14.6(a) shows that the equilibrium temperature at the 
interface is relatively insensitive to changes in permeability and hydrate saturation in the 
range 10~^^ < Ki < 10~^^ and 0.1 < 0 < 0.3. The hydrate saturation begins to show an 
effect in the limit of small Ki and small 0. The corresponding chart for the dimensionless 
thickness of the dissociated layer, in Figure 14.6(b), shows that ^ decreases as the hydrate 
saturation increases. The effect of the permeability on ^ is insignificant. 

The effect of variations in the initial temperature and the imposed low pressure is reported 
in Figure 14.7. The variation, or uncertainty, in the Ti value may be attributed to field 
conditions such as geographical position and geothermal gradient. The effect of the 
geothermal gradient is documented later in this chapter. Figure 14.7(a) shows that Teq is 
relatively insensitive to the value of Ti in the expected range. The effect of the imposed 
low pressure PQ is more noticeable: note that Teq increases by about 10 K while PQ 
increases by a factor of 10. Figure 14.7(b) shows that the thickness of the dissociated 
front decreases significantly as PQ increases, and as Ti decreases, because in both cases 

(a) 

266,8 -

266.6 * 

266.4 -

^0.1 = ^ 

Table 14.1 and 
PQ = 1 MPa 
r,. = 280K 

03 ",.„.,"";;;;.;;;, "TTT^Z] 

(b) 

10 

1 i 

0.1 

1 6= 0.1 

1 0.15 

1 -̂̂  

1 0.3 i 

1 Table 14.1 and 
PQ = 1 MPa 
r,. = 280K 

lo-' 10' 10'• 10" 10' 10' 10-̂  w 

Figure 14.6 The effect of changes in permeability and hydrate saturation on 
the position and temperature of the dissociation front, see Rocha et al. (2001) 
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Figure 14.7 The effect of changes in initial temperature and imposed (low) 
pressure on the position and temperature of the dissociation front, see Rocha et 
al. (2001) 

the temperature difference (T^ - Teq) that drives heat to the dissociation front becomes 
smaller. 

The rate of hydrate dissociation is obtained from equation (14.11) as follows: 

— ) ' (14.22) 

Since the group ^ is time-independent, see Figures 14.6 and 14.7, the flow rate in equation 
(14.22) decreases in time as ^~^/^. This flow rate has the same value at any value of x in 
the dissociated zone (region 1), cf. equation (14.4). Equation (14.22) may be rearranged 
in dimensionless terms as follows: 

i-v) 
PH (02 A) 

17̂  = *^^ (14.23) 

to show that the rate of gas formation increases not only with (f>, u and ^, but also with 
changes in the remaining parameters that lead to increases in ^, e.g., Figures 14.6 and 
14.7. 
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14.4 NUMERICAL SOLUTION FOR A PLANE-SHAPED DISSOCIATION 
FRONT 

The phase-change convection problem of Figure 14.5 was solved numerically by relaxing 
the simplifying assumption made in equation (14.9). Details are provided in Rocha 
et al. (2001). The one-dimensional domain was assumed finite, 0 ^ x ^ L, where 
L is considerably larger than the thickness X of the developing dissociated layer. The 
dissociated layer (region 1) is no longer isothermal. The heat transfer through this region 
is governed by the energy equation for unidirectional convection in the x direction, see 
Nield and Bejan (1999), namely 

^ + ^ ^^-^vTi = a i - ^ , (14.24) 
at ox Vpici / ox^ 

where a i , (pcp) and {p\Ci) are the thermal diffusivity of the saturated porous medium 
(region 1), the heat capacity of the gas phase alone, and the heat capacity of a volume 
sample of saturated medium from region 1, respectively. Because of the temperature 
gradient in region 1, the movement of the dissociation front is driven by conduction from 
both sides of the interface. This means that instead of equation (14.10) we use 

, 9T2 , dTi ^ . -.^dX /i^^r-x 

and the governing equations are equations (14.24) and (14.25) in combination with 
equations (14.1) - (14.8). This formulation was non-dimensionalized by using L as 
length scale, L^/a2 as time scale, and \Ti — Teq {Peg = Po)] as temperature scale, where 
Teq {Peq = PQ) and L are constants introduced solely for the purpose of setting up the 
numerical scheme in a finite domain. An important feature of the numerical solution is 
to show that L is sufficiendy large so that it has little effect on the dissociation-driven 
flow. To test this behavior, Rocha et al. (2001) repeated the numerical solution for several 
values of L in the range Z/min ^ ^ ^ -̂ max- The dimensionless version of equations 
(14.5), (14.24) and (14.25) are given by 

d92 dHi 
dr dx^ 

(14.26) 

^=d^+G^^ (14.27) 
dr dx'^ dr dx ' 

f = |?£f?^_S^|, 04.28, 
or pH(p '-

\dx dx J 
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where 

{x,X) = (x,X) t 
T = 

^1,2 — 
^1,2 - Teg {Peg = PQ) 

Ti — Teg [Peg — Po) 

Oil 

P = 
Pi-Po 

Po' 

'~k. 

-̂  ec/,max -^0 

Pi 
0^= , PH = — , Pi 

Ot2 P2 P2 

^ ^ U(PpHCp ^^^ ^ C2 [Tj - Teg {Peg = PQ)] 

Pici ' AH 

The non-dimensionalized pressure is based on the maximum difference 
where Peg,max was calculated by solving equations (14.1), (14.2), (14. 
(14.28). The dimensionless initial and boundary conditions for regions 1 
in Figure 14.8 and given by 

01=02^1 and X = XQ at r = 0, 

-TT̂ r = 0 at X = 0, 
ox 

01 = Oeg and 02 = 9eg at x = X ( r ) , 

(14.29) 

(14.30) 

(14.31) 

(14.32) 

i-* eg,max ~ -MDĴ  

11), (14.12) and 
and 2 are shown 

(14.33) 

(14.34) 

(14.35) 

1 -h 

0-^ 

X(T = 0) = Xo ©e. 

Region (I): incompressible 
fluid in porous .^ 
mediuTO 

d̂c 
P = 0 

Figure 14.8 The boundary conditions for the numerical simulation ofthe plane-
front phase-change phenomenon, see Rocha et al. (2001) 
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dx 
= 0 at X — \. (14.36) 

It was assumed that the initial thickness of the dissociated layer (XQ) is considerably 
smaller than the overall dimension of the computational domain (L), i.e., XQ < 1. 
In addition, the dimension L is sufficiently large, or the dimensionless time domain r 
sufficiently short, so that the heat transfer effect of the dissociation process is not felt at 
the far boundary of the domain {x = 1). In this plane the temperature remains close to the 
initial temperature (̂ 2 - 1), even though the invoked boundary condition is that of zero 
heat flux, see equation (14.36). 

Equations (14.26) - (14.28) and conditions (14.33) - (14.36) are sufficient for determining 
the unknowns 9i (r), 62 (r) and X (r). The pressure and gas velocity distribution in region 
1 follow from equations (14.1), (14.2) and (14.4) and equations (14.26) - (14.28) were 
solved numerically based on a finite-difference scheme. The algorithm and accuracy tests 
are described in Rocha et al. (2001) and the numerical results were generated by assuming 
the physical properties listed in Table 14.1. Each numerical run begins with assuming 
an initial (small) thickness for the lower layer XQ and the behavior of the temperature 
distribution in region 2 is illustrated in Figure 14.9. In this case the phase-change interface 
is marked by the equilibrium temperature 0 = 0, which remains almost constant as the 
time increases. The 9 (x) variation has the characteristic shape of most one-dimensional 
transient diffusion problems. The far-field condition (86/dx = 0 as x -)- 00) is satisfied 
approximately at x = 1 when the time r is sufficiently short and this is why in Figure 14.9 
the numerical simulation was terminated at r = 0.07. The calculations ended when the 
boundary temperature dropped by more than 2.5% from the specified boundary condition 
(l9 (x = 1) = 0.97 at T = 0.07). 

0.5 H 

Figure 14.9 Numerical solution for the temperature distribution in region 2 of 
Figure 14.8, see Rocha et al. (2001) 
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The corresponding pressure distribution in region 1 is almost linear in x for every value 
of r and these aspects are documented in Rocha et al (2001). The interface pressure 
decreases in time, but this decrease is accompanied by an almost imperceptible decrease 
in the interface temperature, see Figure 14.9. 

Figure 14.10 summarizes the complete behavior of the phase-change front X, as a function 
of both T and the assumed Xo value. The hydrate dissociation rate history is represented 
by the dimensionless group p{-v) calculated from the numerical solution using the 
expression 

r~/ ~M P ( - ^ ) , d X (14.37) 

According to the analytical solution, equation (14.23), the dissociation rate p{-v) is 
expected to decrease as ^~^/^, such that the dimensionless group A, defined as 

A = 
p{-v) 

PH {OL2ltf^'^ (JXJO^ 
(14.38) 

is equal to 1. On the other hand, the value produced by the numerical solution is, cf. 
equations (14.29) and (14.37), given by 

A=[p{-V)]nur 
2 r d X 

(14.39) 

This numerical result is reported in Figure 14.11, where the reference level A — I 
represents the analytical result, i.e., equation (14.23). It should be noted that the A group 
is the same as the ratio [p (-^)]numericai / [P (-^)]anaiyticai- The value of A is smaller 

o.y 

0.01-
0.001 

Figure 14.10 The evolution of the plane phase-change front, see Rocha et al. 
(2001) 
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Figure 14.11 The effect of the initial thickness of the plane dissociated layer 
on the agreement between the numerical and analytical solutions, see Rocha et 
al. (2001) 

than 1 because of the assumed finite initial thickness XQ in the numerical solution. This 
means that the numerical solution underestimates the dissociation rate. The latter is 
theoretically infinite at ^ =i 0+, as in the analytical solution. Figure 14.11 shows that 
the numerical solution approaches the analytical solution as the assumed initial layer 
thickness XQ vanishes. The smallest XQ value that could be used by Rocha et al. (2001) 
was XQ = 0.005, where a total of 1000 nodes were used to cover the x domain. The 
discrepancy between the numerical and analytical solutions also decreases as the time 
r increases. This effect is also due to the assumption made in equation (14.9), which 
becomes more accurate at larger times. 

Rocha et al. (2001) also showed the effect of hydrate saturation and initial temperature on 
the agreement between the numerical and analytical solutions. The agreement is better 
when (/) is small and Ti is large and, in general, the agreement improves as the time 
increases. The two solutions are in better agreement when the imposed low pressure PQ 
is of the order of 1 MPa or lower. 

An important feature of the numerical formulation is the assumed overall size of the 
system, L. This dimension was varied while repeating the numerical procedure for several 
values of the dimensionless parameter L = L/L^^^. For example, a test conducted for 
a relatively small time (r = 10~^) showed that L is large enough to be irrelevant in the 
final numerical results when L is of the order of 0.04, or larger, and physically this case 
means that L > 20 m. 
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14.5 THE EFFECT OF A GEOTHERMAL GRADIENT 

In this section we document the effect of the vertical geothermal gradient on the phase-
change and gas convection process. This is a continuation of the numerical work based on 
the plane model of Figure 14.8. This time the isothermal initial temperature is replaced 
by the assumption of a uniform initial temperature gradient in the vertical direction (x). 
The geothermal gradient represents the rate of increase of the temperature in the earth 
with depth. It is generated by the continuous flow of heat outward through the crust of the 
earth and its value varies from place to place depending on the heat flow in the region and 
on the thermal conductivity of the rock. 

The geothermal gradient is one of the important parameters that controls the thickness 
and the stability of the hydrate zone in marine environment, see Holder et al (1987), 
Roadifer et al (1987), Hanumantha Rao et al (1998) and Singh and Singh (1999). 
The depth, extent and stability of the hydrate zone are governed by the phase diagram 
for mixtures of methane and hydrate, and is determined by the ambient pressure and 
temperature. At sea depths greater than about 300 m, the pressure is high enough and 
the temperature is low enough for hydrates to occur at the sea floor. The base of the 
hydrate zone is a phase boundary between solid hydrate and free gas and water and its 
depth is determined principally by the value of the geothermal gradient, see Roadifer et al 
(1987) and Willoughby and Edwards (1997). The most favorable conditions under which 
gas hydrates are likely to occur are the normal range of geothermal gradients, which are 
below 60 K/km, see Subrahmanyam et al (1998). The geothermal gradient has also been 
reported to vary in the range 20 - 50 K/km, see Briaud and Chaouch (1997), Win and Rik 
(1999) and Gering et al (2000). 

To the numerical model of Figure 14.8, we add the initial temperature gradient, which 
covers region 2, namely 

where q" is the local heat flux generated by the earth, and kg is the thermal conductivity 
of the sediments. The initial and boundary conditions are given by 

T2-=-j{L-x)+Tsb at t = 0, (14.41) 

and T2 = Teq at x = X and T2 = Tsb at x = L, where Tsb is the temperature at the 
sea bottom. The dimensionless governing equations are the same as equations (14.26) -
(14.32), except that 

0^ = r^'~% ^ 0, = ^ ^ ' - % , (14.42) 
-^1,6,max -t-sb -^1,6,max -̂  s6 
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01 = 7Z (1 - X), 6/2 = jL (1 - x) and X = Xo at 

di = 6eg and 02 = deq at 

6I2 = 0 at 

r = 0, 

x = 0, 

X = X{T), 

x = 1 

(14.43) 

(14.44) 

(14.45) 

(14.46) 

and 7 is the dimensionless temperature gradient 

7 Ti 
1 = 

7n 
Tmax 

6,max -T. sb (14.47) 

The temperature at the bottom of region 1 is given by 

Ti,b = Tst + jL (14.48) 

and its maximum value is reached when the geothermal gradient is a maximum, namely 

2"l,6,max = Tsb + 7max^max- (14.49) 

The size of the computational domain (L) is now defined as the distance from the bottom 
of region 1 to the sea bottom. 

The dimensionless temperature at the bottom of region 1, ^1,5, was varied in the range 
0.4 - 1 and in this way we could study the effect of varying of the dimensionless geothermal 
gradient. Figure 14.12 shows how the geothermal temperature distribution varies. It is 
assumed that the initial thickness of the dissociated layer (XQ) is considerably smaller 
than the overall dimension of the computational domain (L), i.e., Xo < 1. 

sea bottom 4**C (9 « 0) X k 

0 0.2 0.4 0.6 0 

Figure 14.12 Initial temperature distributions showing the assumed geothermal 
gradient 
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The hydrate dissociation rate history is represented by the dimensionless group p {~v), 
which is calculated from equation (14.37) and details of the numerical work are provided 
by Rocha et al. (2001). Numerical results were generated by assuming the physical 
properties listed in Table 14.1 and the value XQ = 0.01 was selected based on numerical 
tests such as those shown in Figure 14.11. Each numerical run began with assuming a 
small enough initial thickness for the lower layer XQ and the behavior of the temperature 
distribution is illustrated in Figure 14.13. In this case, the phase-change interface is 
marked by the equilibrium temperature 6 = 0.12, which remains almost constant as the 
time increases. The 6 (x) distribution gradually returns to the initial distribution because 
of the continuous heat flux generated by the earth. 

The temperature at the bottom of region 1 is shown in Figure 14.14. This temperature drops 
quickly and reaches a minimum value close to the equilibrium temperature (6 = 0.13, 
when r = lO"'^). This result is in excellent agreement with the results of Rocha et al 
(2001) for phase change following an initial isothermal field. At greater times, the bottom 
temperature increases monotonically, in agreement with the behavior illustrated in Figure 
14.13. 

The evolution of the pressure distribution in region 1 is illustrated in Figure 14.15. The 
gradient is nearly uniform in x, and the pressure decreases in time at every point in 
the medium. The upper end of each curve indicates the position and pressure of the 
phase-change interface. The interface pressure decreases in time, and this decrease is 
accompanied by a small decrease in the interface temperature. This temperature decrease 
is too small to be visible in Figure 14.13. The high values of dP/dx at short times could 
trigger mechanical failure in the sediments, and, subsequently, the gas may flow through 
a porous medium that experiences erosion. 
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^3oa 

Y = l 
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Figure 14.13 The evolution of the temperature distribution following an initial 
geothermal gradient 
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Figure 14.14 The evolution of the temperature of the bottom of region 1 
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Figure 14.15 The evolution of the distribution of pressure in region 1 
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Figure 14.16 shows the effect of the initial temperature gradient on the position of the 
phase-change front. The thickness of the dissociated layer is larger when the gradient 
is larger. The corresponding rate of gas generation is reported in Figure 14.17, which 
confirms that the gas flow rate increases as 7 increases. The dashed line in Figure 14.17 is 
related to, but is not the same as, the scenario described in the preceding section, where the 
initial temperature distribution was isothermal. In the present case, the isothermal initial 
condition was ^ = 1, but the bottom temperature of region 1 was not fixed at ^i,^ = 1. 
The bottom condition was constant heat flux. Figure 14.17 shows that the dashed curve 
agrees very well with the solid curve for 7 = 1 at small times and this is because in this 
limit the temperature at the bottom of region 1 is essentially the same for both scenarios, 
^1,6 = 1. As the time increases, the dashed-line curve is lower than that obtained using 
7 = 1, and this effect is stronger as time increases. Again, the disagreement between these 
two curves is due to the fact that the curve 7 = 1 was obtained using a heat flux boundary 
condition at the bottom of region 1, to account for the continuous heat flux generated by 
the earth. 

To understand better the disagreement between the dashed curve and the solid curve in 
Figure 14.17, we compared the rate of the heat flux at the dissociation front (on the hydrate 
side, region 2), and the heat flux at the dissociation front (on the dissociated side, region 
1), by calculating the ratio 

q'^ ^ {de2/dx)\,^^ 

q'l k{dei/dx)\-^^' 
(14.50) 

Figure 14.18 shows that q'^ is the most important portion of the total heat flux for main-
taining the dissociation when T > TC, where TC is the time when the ratio q2/qi = 1. This 
means that, when r > TC, the heat flux generated by the earth plays the main role, and this 

Figure 14.16 The effect of the geothermal gradient on the evolution of the 
phase-change front 
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0.4i 

p(-v) 

Figure 14.17 The effect of the geothermal gradient on the rate of gas generation 

Figure 14.18 The evolution of the ratio between the upper and lower heat 
fluxes, q'^lq'l 

causes the difference observed in Figure 14.17. The geothermal gradient does not make a 
difference in the numerical model until the time that the bottom q'l dominates the upper 

Figure 14.19 shows that the effect of the hydrate saturation ((/>) on TC is insignificant when 
the geothermal gradient is kept constant (7 - 1). Further, it should be noted that TC 
decreases when the geothermal gradient decreases and 0 is kept constant. This effect 
occurs because the temperature variation in region 2 is smaller when the geothermal 
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Figure 14.19 The effect of porosity and geothermal gradient on the TC value 

gradient decreases. Therefore, the available qi^ is smaller, and q'^ dominates earlier the 
heat flux used in the dissociation process. 

The effect caused by the low imposed pressure (PQ) on the TC value is documented in 
Figure 14.20. The critical time TC increases when the pressure decreases. These results 
show that the heat transfer generated by the geothermal gradient dominates earlier the 
dissociation process when the dissociation pressure is larger. This makes sense because a 
larger dissociation pressure corresponds to a larger equilibrium temperature and smaller 
available heat flux in region 2. 

Po [MPa] 

Figure 14.20 The effect of the imposed low pressure (PQ) on the TC value 
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The rate of gas generation depends on other parameters, such as the hydrate saturation 
(0) and the imposed low pressure (PQ) and these effects are documented in Figures 14.21 
and 14.22. Gas generation is enhanced when (j) and PQ decrease. The same behavior 
is exhibited by the numerical solution for the model with imposed constant temperature 
at the bottom of region 1, see Rocha et al (2001). It is also interesting to note that 
Po - 2.6 MPa was the smallest value simulated in Figure 14.22. The fundamental reason 
for choosing this limit value is that it corresponds to a Teq - 21A K, and this equilibrium 
temperature rules out the possibility that the water from the hydrates freezes as ice and 
blocks the gas flow. 

The rate of gas generation also depends on the size of the physical domain being modeled. 
Figure 14.23 shows dimensional results obtained for L - 500, 400, and 300 m using the 
geothermal gradient fixed on 7 = 0.046 K/m. We can observe in this figure that the 
hydrate dissociation rate decreases when L also decreases. 

How important is it to incorporate the geothermal gradient as a feature in the model of 
Figure 14.8? In dimensional terms, based on the properties listed in Table 14.1, the results 
of Figure 14.17 indicate that when L = 500 m and 7 = 0.046 K/m the gas flow rate drops 
to the level p{-v) = 3.26 kg/ (m^ x years) in 317 years but the same dissociation rate 
drops to the same level in only 22 years when 7 = 0.0184 K/m. These figures emphasize 
the strong role of the geothermal gradient in the dissociation process and shows that this 
geophysical feature must be accounted for in more accurate models. 

In addition, the numerical simulations showed that almost the same results are obtained 
with isothermal and geothermal gradient conditions, when both have the same temperature 
at the bottom of region 1, and the upper q'^ dominates the bottom q'^, i.e., r < r^. In this 
case the geothermal gradient does not make a difference during the numerical simulation. 
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Figure 14.21 The effect of hydrate saturation on the thickness of the dissociated 
layer 
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Figure 14.22 The effect of the imposed low pressure on the thickness of the 
dissociated layer 
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Figure 14.23 The effect of the domain size (L) on the gas flow rate 
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It seems that the superposition principle applies here, and the thermal effects of hydrate 
dissociation and the effect of geothermal gradient do not interfere with each other when 
they are based on the same temperature at the dissociation front. This explains the good 
agreement found at short times. The eventual movement of the dissociation front to a 
region of different initial temperature explains why the results for the cases with and 
without geothermal gradient diverge over time. 

14.6 THE EFFECT OF POROSITY AND PERMEABILITY 
NON-UNIFORMITIES 

The porosity of sediments under the sea is not uniform, for example, the porosity varies 
in the vertical direction because of sedimentation and compacting in time. According to 
the Athy model the porosity decreases with depth exponentially, see Athy (1930), Rubey 
and Hubbert (1959), Magara (1971), Shi and Wang (1986), Yuan et al (1994), Hart et al. 
(1995) and Gering (2001), as follows: 

( / > ( x ) - 0 o e x p f - ^ ^ V (14.51) 

where A is an empirical constant, for example, A = 500 m, and 0o is the porosity at the 
sea bottom. The corresponding permeability decreases with depth as well. If we use the 
Carman-Kozeny model for the permeability of beds of particles of fixed size, e.g., Nield 
and Bejan (1999), then the permeability K varies with x via the porosity function 0 (x), 
as follows: 

'̂ «=^»(£)'(\̂ )̂ -
where the value of KQ is the permeability at the sea bottom, K {1). We investigated the 
effect of non-uniform porosity and permeability by substituting (j) (x) and K {x) into the 
numerical formulation presented starting with equation (14.24). For example, in equation 
(14.28), 0 is replaced by 0 (x) and in place of equation (14.27) we have 

== G-̂ — < — Wi + — —- -f 01 (x) -^:r > + <^-^^^ (14.53) 
dr { dx [ Ti^b,m8LK-Tsb\ dx ) dx^ 

where G — ujpHCp(l)o/ (pi^i) and 0i = exp [— (L - x) /A]. The initial and boundary 
conditions are the same as in equations (14.43) - (14.46). 

The numerical results shown in Figures 14.24 to 14.28 correspond to a computational 
domain with L — 500 m, XQ — 0.01, 7 = 1 and were obtained by assuming the 
physical properties listed in Table 14.1. Figures 14.24 and 14.25 document the evolution 
of the phase-change front and the effect of changing the sea-bottom values for porosity 
(assumed 100% saturated with hydrate) and permeability. Contrary to the trend seen in 
Figure 14.10, the function X (r) departs more visibly from X ~ r^/^. This departure is 
illustrated further in Figures 14.26 and 14.27, which show the evolution of the rate of gas 
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Figure 14.24 The evolution of the phase-change front when the porosity and 
permeability decrease with depth; the effect of changing the porosity at the sea 
bottom 

0.2 
0,001 

— 10̂  

dbi 

0,= OJ5 

0.1 

Figure 14.25 The evolution of the phase-change front when the porosity and 
permeability decrease with depth; the effect of changing the permeability at the 
sea bottom 

generation. Further, the group p {—v) decays as r ", where n decreases monotonically 
in time. 

The main conclusion is that the variations in porosity and permeability have a significant 
effect on global performance indicators, such as p (-t;). We see this more clearly in Figure 
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p(-v) 

0.01-

Figure 14.26 The evolution of the gas flow rate when the porosity and 
permeability decrease with depth; the effect of changing the porosity at the 
sea bottom 
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Figure 14.27 The evolution of the gas flow rate when the porosity and 
permeability decrease with depth; the effect of changing the permeability at 
the sea bottom 
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Figure 14.28 The effect of the porosity model on the evolution of the gas flow 
rate. Gas flow rates calculated with variable (j) and K models, versus flow rates 
calculated with constant (f) and K models 

14.28, which shows a comparison between the gas flow rates calculated by assuming 
constant porosity and permeability (dashed lines), and the flow rates based on variable 
properties (solid lines). The decrease in 0 and K with depth has the effect of decreasing 
the gas flow rate, and the effect is more noticeable at longer times. 

14.7 CONCLUDING REMARKS 

In this chapter we have reviewed an analytical and numerical study of the generation of 
gas (methane) through the depressurization of clathrate hydrates embedded in a porous 
medium. The model was simplified based on the assumption that the resistance to gas 
flow through the lowest region. Figure 14.4, right, is negligible. This permitted the one-
dimensional modeling of the phase-change and convection processes in regions 1 and 2, 
see Figures 14.5 and 14.8. 

The analytical solution was simplified further by the assumption that conduction in region 
1 can be neglected, i.e., the movement of the dissociation front is driven mainly by 
conduction through region 2, ahead of the advancing front. The same one-dimensional 
configuration was subjected to a direct numerical simulation which confirmed, in an 
order of magnitude sense, the behavior and results based on the simplified analytical 
solution. The effects of geothermal gradient and non-uniform porosity and permeability 
expanded the coverage of the numerical results developed, based on the time-dependent 
phase-change and convection model. 

The central conclusion provided by both methods is that the hydrate dissociation rate 
decreases monotonically in time. This decrease is proportional to t~^/'^ in the analytical 
solution, confirming a characteristic of one-dimensional phase-change processes in the 
media with constant properties, see Carslaw and Jaeger (1959). The numerical study 
showed that the decay of the hydrate dissociation rate is somewhat more complicated, 
as it depends on the initial thickness of region 1. If we regard the numerical model as 



394 METHANE HYDRATES IN POROUS LAYERS 

more realistic and the numerical solution as more exact, then the numerical tests reported 
in detail by Rocha et ai (2001) show that the analytical solution is more accurate in the 
limit of long time (r), small hydrate saturation (0), high initial temperature (Ti), and low 
imposed pressure (PQ)-

The hydrate dissociation rate—its level and behavior in time—is the central question in 
the modeling of the phase-change and depressurization process. With this information, 
one can assess the exergy-production potential of a known deposit, and its lifetime. The 
decaying production rate is, in this sense, similar to the rate of exergy extraction from hot 
dry rock deposits, see Lim et al. (1992). The depressurization process is considerably 
more complicated because of the interaction between region 1 and the well embedded in 
the lowest porous region. 

This chapter also documented the effect of the geothermal gradient in the dissociation 
process. We have showed that this physical feature plays an important role and must be 
accounted for in more accurate models, see Figures 14.16 and 14.17. However, if r < r^ 
the numerical simulation using isothermal initial temperature is a good approximation 
when the temperature at the bottom of region 1 is the same as in the numerical simulation 
in the presence of a geothermal gradient, see Figure 14.17. 

Porosity and permeability of sediments under the sea are not uniform. The variations in 
porosity and permeability have a significant effect on global performance indicators, such 
as the flow rate p {—v), see Figures 14.26 to 14.28. The group p {—v) decreases in time as 
r~", where n decreases monotonically in time. The decrease in 0 and K with the depth 
has the effect of decreasing the gas flow rate. 
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Abstract 

We develop a hierarchy of models to describe gravity driven flows in porous rocks and the 
models account for a series of phenomena which can change the structure and spreading rate 
of the current. These include draining through the lower boundary of the formation or into 
a fracture intersecting the channel; reaction of the injected liquid with the formation which 
changes the permeability; boiling of the injected fluid as occurs in a superheated system; and 
the effects of thermal inertia in producing a range of double advective phenomena in currents 
driven by both temperature and salinity. Where possible, theoretical models are compared with 
laboratory data and we include some discussion about the implications of the modelling for 
field scale processes. 

Keywords: gravity, reacrions, boiling, layering, draining, double advection, density 

15.1 INTRODUCTION 

Flow through porous media arises in many natural and industrial situations, see Bear 
(1988), Lake (1989) and Phillips (1991), and in many such cases, fluid of one density 
invades a porous layer saturated with fluid of different density, and this can lead to a 
gravity controlled flow, see Muskat (1949), Phillips (1991) and Woods (1999). Of the 
many natural or geological flows which are controlled by gravity, important examples 
include the migration of hydrocarbons from the site of their genesis to a shallow reservoir, 
the percolation of saline fluid into a rock saturated with relatively fresh water, following 

397 
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a period of sea-level rise, or as a result of fracturing during an earthquake which may 
connect two compositionally distinct aquifers; the percolation of rain water through the 
shallow sub-surface; and natural convective flows associated with the geothermal gradient, 
see Phillips (1991). Engineered flows include water injection into oil reservoirs, with the 
objective of displacing oil towards the producing well, see Lake (1989); water injection 
into superheated geothermal reservoirs, with the objective of producing vapour, see Woods 
and Fitzgerald (1993, 1997); and well-stimulation flows, in which acid is injected into 
porous layers with the purpose of dissolving some of the porous matrix and thereby 
enhancing permeability, see Lake (1989) and Raw and Woods (2000). More complex 
situations arise in heterogeneous formations in which the fluid may drain as it spreads 
along a high permeability layer, see Pritchard et al. (2001). In some waste management 
processes, fluid is injected to displace or enclose a second fluid already in the porous 
formation; this may lead to a gravity current composed of two fluids with different density 
and viscosity, see Woods and Mason (2000). 

In this chapter, we aim to describe some of the physical controls on the gravity driven 
spreading of fluid through porous layers, accounting for the extra complications to the 
flow associated with rock-fluid interactions. Our approach is to build from simple self-
similar models, in order to expose the fundamental controls on a variety of complex flow 
phenomena, rather than through numerical simulation. This provides a powerful means 
of describing the advance of a range of nonlinear flow processes and nonlinear interface 
development by reducing the problem to ordinary differential equations in the appropriate 
asymptotic limits, see Barenblatt (1996). As a building block for the subsequent analysis, 
we start by developing a model and then derive some simple similarity solutions to describe 
the motion of a finite release of dense fluid as it spreads through a porous layer. We also 
present a solution to describe the effects of draining from the end of the formation, as a 
model of draining into a fracture which bounds the porous layer. Also we expand the model 
and associated solutions to account for the motion of a gravity current moving through 
a high permeability layer, bounded below by a thin layer of much smaller permeability, 
but through which the current can eventually drain. In the remainder of the chapter, we 
investigate the effect of rock-fluid interactions, focusing on the role of 

(i) reactions between the injected liquid and the porous matrix, 

(ii) the thermal inertia of flow in a porous layer which introduces a lag between the 
mass and thermal signal associated with the injected liquid, 

(iii) the effects of capillarity or vaporisation on the leading edge of the current, both of 
which may reduce the mass in the current, and 

(iv) the effect of an overlying impermeable boundary on the development of the flow. 
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15.2 FUNDAMENTAL MODELS 

We first examine the situation in which liquid of density p + Ap spreads through a porous 
layer of permeability K and porosity (j) and which is initially saturated with liquid of 
density p. As the current spreads along the lower impermeable boundary of the formation, 
the current becomes long and thin. If we denote the length and depth scales by L and 
H, with L ^ H, then from mass conservation, the ratio between the horizontal, n, and 
vertical, v^ velocity has magnitude u/v ~ LjH > 1. For a one-dimensional channel 
flow, the flow may therefore be modelled as a unidirectional flow along the boundary, 
see Figure 15.1. The vertical velocity and any associated thinning or thickening of the 
current may then be described by an equation governing the depth of the current, h{x,t), 
according to the vertically integrated continuity equation 

(15.1) 

We now adopt Darcy's law, see Bear (1988), to describe the slow viscous flow through the 
porous layer, namely 

u = --{Vp-p9), (15.2) 

where p is the pressure, /i the viscosity and g is the magnitude of the gravity acceleration 
vector. Owing to the small vertical velocity, the pressure in the current may be approx-
imated as being hydrostatic, see Huppert and Woods (1995), so that the pressure in the 
current relative to that in the far field at the same level, pr say, is given by 

p-Pr = ^pgh. 

This leads to the governing equation for the shape of the current, namely 

(15.3) 

a/i _ K/\pg d 
dt /JL dx 

h — 
dx 

(15.4) 

Impermeable lower boundary 

Figure 15.1 Schematic of a gravity current propagating along an impermeable 
boundary in a porous layer of permeability K and porosity (j) 
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Equation (15.4) can be solved by application of suitable boundary conditions. In the 
present work, we describe flow in the region x > 0. The boundary conditions we apply at 
X = 0 may then be interpreted as either representing flow in a semi-infinite domain, with a 
rigid boundary at x = 0, or representing the conditions at the mid-point of a symmetrical 
flow — CO < X < oo. The flux condition at the source is given by 

_K^j^dh^ (15.5) 
/i OX 

and represents the flux supplied to the current from an injector at x = 0. The global mass 
conservation condition requires that 

ft rL{t) 

I Q{t)dt = (t> hdx, (15.6) 

where L {t) is the length of the current. If the volume of fluid supplied after time t, per unit 
width of the cell, can be expressed in the form V (t) = Vot^, then the above mathematical 
system admits similarity solutions of the form 

h{x,t) = H{ojtyf{rj), (15.7) 

where rj ~ x/H {cut) and the shape factor / satisfies the ordinary differential equation 

Here the characteristic velocity is given by 5 = KgAp/ficj), while the time scale over 

which the length of the flow evolves is given by 1/UJ, where LJ — (5^/Vo) ^ and the 

typical thickness of the current E — (Vo/S'^)^'^^^"^^ Here 5 is the gravitational descent 
velocity as described above. There are two special situations which admit analytical 
solutions to equation (15.8). 

15.2.1 Finite release 

For the case of a finite release at ^ = 0, the current has the shape of a parabola, 

/ = ^ W - ^ ' ) , (15.9) 

where a——h— —1/3 and r̂ o = (9/0)^^^. In this solution, the depth decays with time 
according to the law 

h{Q,t) = h{0,to)[-] . (15.10a) 



A. W. WOODS 401 

while the length of the current increases with time according to 

L{t) = L{to) 
to 

1/3 

(15.10b) 

This fundamental solution of the diffusion equation was discovered by Pattle (1959) and 
has been confirmed by laboratory experiments using a Hele-Shaw cell, see Huppert and 
Woods (1995). In the experiments, syrup was placed behind a lock gate at one end of a 
Hele-Shaw cell, consisting of two parallel plates oriented so that the normal to the plates 
was horizontal. The syrup was then released from behind the lock gate and observed as it 
spread along the impermeable base of the cell. Figure 15.2 shows the very good agreement 
between the observed shape of the current and the model solutions. It should be noted that 
this experimental model of equation (15.4) is valid as long as the current is deeper than the 
width of the cell, so that the dominant friction is that due to the no-slip condition on the 
two vertical walls of the cell. Existence of this fundamental analytic solution is especially 
useful since it provides a reference for more complex flows which we will examine later 
in the chapter. 

15.2.2 Flow with draining at x = 0 

It is worth noting that there is a second analytic solution to the nonlinear diffusion 
equation, as described by Barenblatt (1996). This second solution corresponds to the case 
of a flow which is able to drain at x = 0, for example into a fracture, while spreading 
from X = 0 along the horizontal lower boundary of the porous layer, see Figure 15.3. 

h (cm) 1.0 

40 60 
X (cm) 

Figure 15.2 Comparison of experimental measurements of the shape of a 
spreading gravity current of syrup, shown as crosses, with the theoretical 
prediction of equation (15.9), shown as the solid line. The experiment involved a 
finite release of fluid. After Huppert and Woods (1995) 
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1 1 1 1 1 r— 

Time = 3 

Distance 

Figure 15.3 Illustration of the distribution of fluid in a porous layer as it 
spreads under gravity while draining into a fracture at x = 0, see equation 
(15.11). Curves of the free surface are shown for three dimensionless times to 
illustrate the evolution of the flow 

The solution is given in terms of the similarity variable, 77 = x/H (CJ^)^ and has form 
h — H (ut) / (^), where / is the shape factor which is given by 

/ - Iv'^' {rj^ rj' 
3/2^ (15.11) 

The dimensionless flux at x = 0, given by - / d / / d r / , has value ryo/12. This solution 
corresponds to the situation in which the second, or dipole moment of the current shape, 
/Q ^ ^ /i^ dx, is constant. Owing to the loss of fluid at x = 0, the volume of the current 

decays gradually with time, according to a law of the form V = VQ (^/^O)~^^^- This 
solution is especially valuable for evaluating how far into a porous formation a release 
of fluid may advance while it drains away through a high permeability fracture. For 
example, in the engineering context of tracer tests, in which a discrete mass of tracer fluid 
is injected at one well and subsequently fluids are sampled at other wells, then even if the 
dominant flow path is the draining flow into the fracture at x = 0, some of the tracer may 
be recovered through gravity driven spreading through the porous layer. 
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15.2.3 Other injection rates 

dh ^d 
r-TT = ST-

dt dr 
( .^h 
\rh-;r-
\ dr 

For power law injection rates, Q (t) = Qo^^~^ with c > 0, there is a family of similarity 
solutions with a = (2c — 1) /3 and 6 = (c + 1) / 3 . The shape of these solutions is found 
by numerical integration of the ordinary differential equation (15.8), coupled with the 
global equation for mass conservation and the boundary condition at x = 0, see Huppert 
and Woods (1995). Although we do not know of any analytical solutions, power series 
approximations to these solutions may also be found, using a similar method to that 
described by Hatcher (2001). Perhaps it is worth noting that for a constant injection rate, 
c = 1, the current depth increases at a rate h (0, t) = h (0, to) (t/to)^^^, while the current 
length increases at a rate L{t) = L (to) (t/^o)^ • 

A similar modelling approach may be used to describe radially symmetric gravity currents, 
for which the governing equation takes the form 

(15.12) 

in terms of the radial distance from the source, r, where 5 = KgAp/(t)T. In this case, 
the exponents which govern the spreading of the current are different due to the different 
geometry, although the modelling approach is analogous. For example, with a finite 
release of fluid at ^ = 0, the radius increases at a rate proportional to f̂ /̂ , while the depth 
decreases at a rate proportional to ^^/^. 

15.3 EFFECTS OF STRATIFICATION IN THE ROCK OR FLUID 

15.3.1 Layered rock and the effects of draining 

In many natural systems, the rock is highly layered, and this can have an important impact 
on gravity driven flows. Here, we consider two limiting cases to illustrate the potential 
impact on the motion of the current. First we examine the case in which there is a thin 
horizontal layer of low permeability, Ki, and thickness /, which separates two layers 
each with much greater permeability. The lower boundary of the upper layer is therefore 
permeable and a density current spreading through the upper layer gradually drains into 
the lower layer, see Pritchard et al (2001). If the relatively dense current is draining under 
gravity, then, assuming a hydrostatic pressure distribution in the upper layer, the loss of 
mass through the intermediate low permeability channel is proportional to the depth of 
the current in the upper layer. For a permeability ratio R — Ki/K < 1, between the 
low permeability boundary and the upper layer, the equation of mass conservation for the 
current in the upper layer is given by the local balance 

^dh ^ KApg d /dh\ KRApgh ^^^^^^ 
dt /JL dx \ dx J fil 
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where / is the thickness of the thin low permeability layer. This relation is valid while 
h^ l. For an instantaneous, finite release of fluid, equation (15.13) may be transformed 
by rescaling time to the form T = [1 — exp {-6t)] /A, where V is the initial volume of 
the current, A = RV^^^/l and S = XS/V^f^, to give the dimensionless equation, see 
Pritchard^^fl/. (2001), 

f. = « (Hf.) , ,,5.14, 
DT dy \ dy J 

where H = [h/V^f^) exp(5t) and y = x/F^/^. We can find an exact solution to 
equation (15.14) by drawing from the solutions presented earlier. For a finite release of 
material, equation (15.14) has solution 

^ ( y , r ) = ^ ( 9 ^ / 3 - - g , ) , (15.15) 

and this exact solution illustrates that the length of the current increases according to the 
relation 

/ Q \ l / 3 

L it) - (j) y i /2 [1 - exp {-St)f' . (15.16) 

This is a key result as it illustrates that the current only spreads a finite distance into the 
formation before it has fully drained into the underlying layer. In dimensional units, the 
maximum run-out distance L ^ = V^^^ (9//iZ)^^^ only depends on the permeability ratio, 
R, to the power of 1/3, and therefore, even with a large permeability contrast, the distance 
the current spreads in the upper layer before fully draining through the low permeability 
band and into the lower layer may be quite limited. The evolution of the current length as 
a function of time, as predicted by the relation (15.16), is shown in Figure 15.4(a) and this 
result is compared to some experimental measurements in which a gravity current spreads 
along the horizontal base of a Hele-Shaw cell in which there was a small gap at the base 
of the cell, see Figure 15.4(b). The theory describes the observed spreading and draining 
of the flow through the cell to very good accuracy. 

Application of this analytical model hinges on the initial current geometry, in particular, 
the assumption that the initial current length is small compared to the final run-out distance, 
so that the flow can adjust to this simple model solution. Numerical calculations described 
in detail by Pritchard et al. (2001) identify that for a simple gravity current, the adjustment 
length to 95% coincidence with the similarity form for a current with initial aspect ratio 
of unity and initial length of 1, is about 1.64. This might be known as the 1.6 lock-
length rule. For a draining current, similar convergence to the asymptotic solutions occurs 
whenever the initial current length is several times shorter than the maximum run-out 
length; otherwise, the current may drain from the layer before the solution has converged 
to these analytic solutions. Also it should be noted that the solution for a current spreading 
through a permeable rock which is bounded below by a layer of small permeability and 
which is intersected by a fracture at x = 0 can be described using the same transformation 
of time as in equation (15.13). 



A. W. WOODS 405 

(b) 

Figure 15.4 (a) Photograph of a draining experiment in which fluid spreads 
under gravity through a Hele-Shaw cell, while leaking through the lower 
boundary of the cell. The mass of fluid in the current is seen to gradually 
disappear (b) Comparison of the model (equation (15.20)) with the theoretical 
prediction as applied to the laboratory experiment of (a). After Pritchard et al. 
(2001) 
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15.3.2 Continuously varying permeability 

A further development of the model described earlier is to consider a layer with con-
tinuously stratified permeability. For example, we now examine the flow in a layer in 
which the permeability, K (y), increases uniformly from the value K (0) = 0 to the form 
K (y) = Gy for y > 0. This leads to a governing equation for the current depth, h {x, t), 
which, after suitable reduction to dimensionless variables, has the form, see Huppert and 
Woods (1995), 

By contrast with the earlier solutions for a finite release of fluid, this equation admits 
solutions with different exponents in the scaling for the length and depth of the current, 
namely 

L{t) = L{to)ij-j and h{t) ̂  h{to) l - j . (15.18) 

Since the mean permeability seen by the current decreases as the current thins, the spread-
ing rate of the current is much more gradual than in a layer of uniform permeability in 
which the current length increases more rapidly, at a rate L{t) = L {to) (t/^o) and the 
depth decreases more rapidly, h{t) = h {to) {t/to)'^ - In contrast to these solutions, 
for a current supplied with a constant flux of fluid at the source, and hence in which the 
current length and depth both increase with time, the spreading rate is faster than in a 
layer of uniform permeability. Indeed, the length increases as L{t) — L {to) {t/to) 
in comparison to the uniform layer in which L{t) — L {to) {t/to) • Again, although 
these solutions are highly idealised, they do reveal some of the complexities which are 
introduced as a result of layering or non-uniformity in the permeability structure of the 
rock. We now turn to effects of stratification in the fluid of which the current is composed. 

15.3.3 Two-layer gravity currents 

Woods and Mason (2000) extended the modelling approach to describe the motion of a 
two-layer or continuously stratified current. For a two-layer current, the flow of each layer 
depends on the depth of both layers, as may be seen by noting that, for each layer, the 
mass conservation equation satisfies the relation 

where the speed Ui in each layer is given, to leading order, from Darcy's law and using 
the approximation of local hydrostatic pressure gradient 

Pi = Pr-^Pu9{hi-\-K-y)-pg{Hr-y) for 0<y<hi, (15.20a) 
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corresponding to the dense lower layer, and 

Pi = P^- Apig {hi -y)- ApuOK - pg {Hr - y) for hi <y <hi-\-hu, (15.20b) 

corresponding to the less dense upper layer, where Pr is the reference pressure at height Hr 
above the boundary. Woods and Mason (2000) have shown that these equations combine 
to form the two nonlinear diffusion equations 

X dx J ' 

dhu n ^ f I. ^^i L ^^y-_ S—lhu-^ + hu-^], (15.22) 
at ox \ ox ox J 

where 5 = ApugK/(t)/jLu,R = Pu/l^i and J5 = Api/Apw Motivated by the fundamental 
solution (15.9), they showed that for a finite release of mass in each layer, then these cou-
pled equations have similarity solutions which consist of piecewise continuous parabolae, 
with the morphology of the solution depending on the value of three parameters, namely 

(i) the viscosity ratio of the fluids, R = /Jiu/P'h 

(ii) the buoyancy ratio of the fluids, B = Api/Apu, and 

(iii) the volume ratio of the two fluids, V = J^ "" hu dx / J^ hi dx. 

The range of different solutions is sketched in Figure 15.5(a) and (b) following Woods 
and Mason (2000) and the different parameter regimes may be seen in Figure 15.6 in the 
case of a finite release of each layer. It may be seen that for a low viscosity and low 
density upper layer, the upper layer runs ahead of the lower layer. However, as the upper 
layer becomes progressively more viscous, the upper layer becomes attached to the source 
and the nose of the upper layer recedes relative to the lower layer. Eventually a critical 
condition is achieved for which the two currents behave as a single layer, even though 
they have different viscosity and density. As the upper layer becomes even more viscous, 
it begins to lag behind the lower layer and eventually the lower layer runs out ahead of 
the upper layer, separating from the source. Woods and Mason (2000) have considered 
these solutions in detail, establishing detailed conditions under which there are specific 
transitions in the flow structure, see Figure 15.5. They also showed how the different flow 
regimes for these two-layer currents can be realised in laboratory experiments by using a 
Hele-Shaw cell, and an example of these experiments is included in Figure 15.5(b). 

The model may be extended to describe the case of a current which is continuously stratified 
in density or viscosity. Woods and Mason (2000) thereby established conditions under 
which such continuously stratified flows can behave in a self-similar fashion. Although 
this is a highly idealised problem, it identifies how a two-layer current can propagate 
through a porous layer. The insight associated with this is of great value for interpreting 
more complex flow structures, such as that associated with a reacting current, as considered 
in the next main section of the chapter. 
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(a) 

(ii) 1.2 

(iii) 1.2 

(b) 

(«v) 1.: 

(V) 1.2-

Dimensionless distance 

Figure 15.5 (a) Diagram illustrating the range of flow regimes which may 
arise with a two-layer gravity current spreading through a porous layer As the 
viscosity of the upper layer increases moving from figure (i) - (vii), the upper 
layer is progressively retarded and eventually the lower layer advances ahead 
of the upper layer, (b) Photograph of a laboratory experiment in which a finite 
release of low viscosity, dense fluid is displaced by higher viscosity, less dense 
fluid, see Woods and Mason (2000) 
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Figure 15.6 Regime diagram illustrating the transitions in current structure, 
as seen in Figure 15.4, as a function of the volume ratio of the two layers and the 
viscosity ratio of the two layers, see Woods and Mason (2000) 

15.4 REACTING FLOWS 

In some cases, fluid invading a reservoir reacts with the matrix leading to either precipita-
tion or dissolution reactions, see Phillips (1991). This can change the permeability of the 
porous matrix and, in turn, this has a feedback on the morphology of the spreading current, 
see Raw and Woods (2000). Here we consider frontal reactions across which there is a 
change in permeability. In a typical frontal reaction between the matrix and the injected 
fluid, a volume of fluid (j) is required to react with a volume (1 — 0) A of the matrix where 
(j) denotes the porosity of the matrix. As a result, the location of the reaction front lags a 
distance A behind the front of the injected fluid. If the injected fluid is of different density 
from the fluid in the formation, then, as the injected fluid spreads through the formation 
and deepens, the flow will become progressively controlled by the buoyancy. In this limit, 
we can extend the model of gravity currents to account for the change in the permeability 
across the reaction front. 

In general, the finite time for the reaction kinetics leads to the formation of a reaction zone 
between the injected fluid and the original rock of the formation. However, it follows from 
the two-layer gravity current solutions of the previous section, that as the flow develops, 
it migrates through the rock progressively more slowly. As a result, more time becomes 
available for the reaction per unit distance travelled. Thus the length of the reaction zone 
becomes a progressively smaller fraction of the domain occupied by the injected liquid. 
In the limit that this is a very small fraction, we can model the reaction zone as a sharp 
front dividing the region of reacted and unreacted rock within the current. If we denote 
the depth of the current in the unreacted region near the source by hi and the depth of the 
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current in the reacted region ahead of the front by /12, see Figure 15.7, then the equations 
for mass conservation in the lower, unreacted and upper, reacted zones become, to leading 
order, see Raw and Woods (2000), 

0 dt 
A ^ ( f t i u i ) . 

^^a^^'*^"^) + a^('^^"^)' 

(15.23) 

(15.24) 

where the first term on the right-hand side of equation (15.24) denotes the flux of fluid 
across the reaction front as the fluid invades the reservoir. These equations are coupled 
with the approximation of hydrostatic pressure gradient for a long thin current, which 
takes the form 

p{y) = Pr-p{Hr -y)-^p{hi +h2-y). (15.25) 

Here, for simplicity, we assume that the density of the current does not change across the 
reaction front. This is consistent with a number of reactions in which the concentration of 
reactant in the fluid is small and has little impact on the density, compared to another dis-
solved, but unreacting phase, which controls the density. For example, the dolomitisation 
reaction sometimes involves transport of Mg ions by sea water invading a porous layer 
saturated with relatively fresh water, see Phillips (1991). However, effects of changes in 
density can be built into the model, see Raw and Woods (2001). 

The resulting governing equations are as follows: 

dhi 
dt 
dh 
dt 

= XS 
d 

dx 

dx 

hi 
dh 

dx 

([KRh + (1 KR) hi 
dh 
dx ) • 

(15.26) 

(15.27) 

Reaction front Leading edge of current 

Figure 15.7 Schematic of a double structure reacting gravity current, 
illustrating the region behind and ahead of the reaction front 
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where h = hi + hu'is the full depth of the injected fluid zone, including that in contact 
with both the reacted and unreacted rock, and Kr — KujKi is the ratio of permeabilities 
in the upper and lower layers. This system of equations applies as long as the reaction 
front is ascending and hence migrating into the formation. For example, in the case of 
constant injection of liquid into the formation, the system admits (dimensionless) similarity 
solutions for a two-dimensional flow of the form 

where the shape functions / i and /2 satisfy the following ordinary differential equations, 
expressed in terms of / i and / = / i + /2: 

1-^1%' 3 5 ^ [K^S + (1 - KR) M g , (15.29b) 

and H and u are scales for the height and inverse time scale of the flow. 

The system is closed by imposing the boundary condition of constant flux at re = 0 given 
by 

5 / i i ^ = Q, (15.30) 
ox 

and the condition that the depth of the reacted zone at x =: 0 is zero, hu = 0. The 
solutions of the two ordinary differential equations depend on the permeability contrast 
across the reaction front, KR, and the reaction parameter A which denotes the volume of 
rock matrix which reacts with a volume (/>/ (1 - 0) of liquid. As expected, the numerical 
solution of the equations identifies the very different structure of the flow for precipitation 
reactions in comparison with dissolution reactions. For precipitation reactions in which 
the rock permeability increases, see Figure 15.8(a), the reaction front remains very close 
to the source and forms a vertical front. As the injected fluid passes through the front, 
reacting with the rock, the reacted fluid is able to spread much more rapidly ahead of the 
front through the higher permeability original rock. The figure illustrates the variation 
of the morphology of the reaction front as a function of A, the chemical constant for the 
reaction. If a large volume of liquid is required to react with unit volume of rock then the 
unreacted fluid runs far ahead of the reaction front, whereas when a smaller volume of 
liquid is required for the reaction then there is only a small reacted liquid zone ahead of 
the front. 

In contrast, in dissolution reactions, see Figure 15.8(b), in which the permeability of the 
rock increases through reaction, then the gravitational force driving the flow tends to draw 
the oncoming fluid into the high permeability reacted zone. As a result, the reaction zone 
runs out along the base of the reservoir. As the oncoming injected fluid passes through this 
reaction front, it accumulates above the reaction zone, in the lower permeability original 
rock. Given the permeability contrast across the reaction front, there is a critical value 
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Figure 15.8 Numerical solutions illustrating the shape of the reaction front 
and the leading edge of the fluid for both (a) precipitation and (b) dissolution 
reactions. The region near the source, shaded with lines of negative slope, 
denotes the region flooded with injected liquid trailing the reaction front. The 
region shaded with lines of positive slope denotes the region ahead of the reaction 
front, but which is flooded with injected liquid which has already passed through 
the reaction front. The three figures in each of (a) and (b) show the evolution 
of the structure of the current as the volume of liquid per unit volume of reacted 
rock changes. In (a) the three figures (i) - (Hi) illustrate the increasing region 
ahead of the reaction front into which the reacted fluid spreads as more fluid is 
required to react with unit mass of rock. In (b) the figures (i) - (Hi) show how 
the region of reacted rock becomes an increasing part of the whole current as 
the mass of fluid required to react with unit mass of rock decreases, see Raw and 
Woods (2000) 

of the chemical constant A at which the reaction front extends to the leading edge of the 
current. If a larger volume of fluid is required to drive the reaction then the volume of 
fluid above the reacted zone increases, and this fluid is able to run ahead of the leading 
edge of the reaction front. For smaller values of the chemical constant, the shape of 
the current behind the reaction front evolves but the leading edge of the injected liquid 
coincides with the leading edge of the reaction front, see Figure 15.8(b). The solutions 
have interesting implications for tracer studies in situations in which the injected liquid 
reacts with the formation. In particular, for a precipitation reaction, measurement of the 
first arrival of the injected liquid may give little indication of the location of the reaction 
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front itself. It is also curious that the gravity-driven dissolution front reorganises itself 
into a dominant single intrusion at the base of the reservoir. This leads to a well-defined 
reaction front morphology, in sharp contrast to the case of pressure driven flow, in which 
the acid-etching instability sets in for a dissolution reaction, see Hinch and Bhatt (1990), 
leading to a highly convoluted interface structure. 

15.5 DOUBLE ADVECTIVE CURRENTS 

Earlier, the motion of gravity currents in which the density remains constant as the 
current spreads through the porous formation was considered. However, somewhat more 
complex flow regimes develop in the case of currents with different initial temperature 
and composition from the host fluid. This is a result of the thermal inertia associated with 
flow through a porous formation coupled with the dependence of fluid density on both 
composition and temperature. Thermal inertia manifests itself through the decoupling of 
the fluid front and the associated thermal front owing to heat transfer between the fluid 
and the porous matrix. Near the source, the temperature of the matrix adjusts to that of 
the source fluid, while near the leading front of the injected liquid, the temperature of the 
fluid adjusts to that of the matrix, see Phillips (1991) and Woods and Fitzgerald (1997). 
As a result, near the source the density of the injected liquid relative to the original fluid in 
the porous rock depends on its initial composition and temperature, while near the leading 
edge of the injected liquid, the density difference depends primarily on the composition 
of the injected liquid, see Figure 15.9. 

This change in the density of the current as it advances into the porous matrix changes 
the driving force for the current and hence the structure of the flow. In order to model the 
different flow regimes, we can extend the modelling approach outlined above, but now we 
introduce an internal front in the current associated with the temperature change from the 
input temperature to the rock temperature, see Woods and Raw (2001). The internal front 
will be localised within the flow as long as the speed of thermal diffusion, K, across lateral 
extent of the current, L, as given by the scaling K/L, is small compared to the velocity of 
the current. For a steady injection rate, the current speed gradually wanes and so the limit 
of a sharp front is most appropriate during the first stages of propagation of the current. In 
this model, we also assume that the conductive heating of the current from the bounding 
impermeable reservoir rocks is small. This will be a good approximation in the limit that 
the rate of deepening of the current is much greater than the rate of thermal conduction 
across the current, dh/dt > K/h. For a 10 m thick current, this requires a deepening rate 
in excess of about 10"^ m/s for K, ~ 10~^ m^/s, see Woods (1998). 

To model the flow, we denote the density of the injected fluid relative to the density of the 
fluid in the reservoir by the relation 

Ap = po{-aAT + PAS), (15.31) 

where AT is the initial temperature anomaly, AS the compositional anomaly, and a and ^ 
here denote the thermal and compositional expansion coefficients, respectively. First, we 
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Figure 15.9 Illustration of the thermal inertia effect in a porous rock as 
exhibited using an experiment in which cold liquid was injected from a central 
source into a two-dimensional hot porous layer It is seen that a sharp transition 
in temperature occurs within the zone occupied by the injected liquid, see Woods 
and Fitzgerald (1997) 

consider currents which are dense relative to the water in the formation, both before and 
after the temperature has adjusted to the temperature of the rock, so that Ap (AT, A5) > 0 
and also Ap (0, A5) > 0. If the injected fluid is supplied at a constant rate then the current 
and thermal fronts will deepen as they spread into the reservoir. If the injected liquid is 
hotter than the reservoir water then as the injected fluid spreads through the rock and 
adjusts in temperature, and the density of the current will increase. Even though this leads 
to an increase in density across the thermal front, the interface may be neutrally stable; 
essentially, if a parcel of the cooled fluid moves back through the thermal front, it will be 
heated up again and becomes neutrally buoyant owing to the thermal inertia, see Phillips 
(1991). We now examine the motion of both cooling and heating currents, assuming that 
the depth of the thermal front decreases with distance from the source but increases with 
time. 

The equation for heat transport through a porous layer has the form, see Phillips (1991), 

where 

dt 

T = 

+ T{U'V)T = KV'^T, 

PiCpi 
(t>PlCpl -h (1 - 0) PsCps ' 

(15.32) 

(15.33) 



A.W.WOODS 415 

Cpi and Cps are the specific heats for the Hquid and solid parts, respectively, and typically 
r = O (1). This identifies that the speed of the isotherms is a fraction Tcj) of the speed 
of the fluid which moves through the interstices. Typically, this has a value in the range 
0.1-1.0, e.g., in a number of North Sea oil reservoirs, see King (2001), it has value 
of about 0.3, while in laboratory experiments using glass ballotini it has a value in the 
range 0.4-0.5, see Woods and Fitzgerald (1997). If we denote the fractional speed of the 
thermal front by / then the equations of motion of the current are given in terms of the 
depth of the region with the original temperature of the injected liquid, hi, and the depth 
of the region with the formation temperature, /i2, see Figure 15.10. The mass conservation 
relations have the form 

.dhi fd 

^1r = £('̂ ^"^) + (^-^)|('^^"^)' 
peed of each layer is given by 

Kdpi 
H ox 

(15.34) 

(15.35) 

(15.36) 

and the second term on the right-hand side of equation (15.35) denotes the fluid passing 
through the thermal boundary-layer which is embedded within the current. In equation 

Figure 15.10 Sequence of photographs illustrating the evolution of a current 
in which the buoyancy reverses on passing through the thermal front. Initially 
the injected liquid is less dense than the relatively cold but fresh fluid which is in 
the bead pack. However, on passing through the thermal front and cooling, the 
injected liquid becomes of comparable temperature, but is relatively saline and 
therefore detaches from the upper boundary and descends to the lower boundary. 
After Woods and Raw (2001) 



416 GRAVITY DRIVEN FLOWS IN POROUS ROCKS 

(15.36), the pressure takes the hydrostatic value 

P{y) =Pr - p9{Hr-y) - / 
hi-\-h2 

Apgdy. (15.37) 

The difference in pressure, Ap, from the original reservoir value, pr — pg {Hr — y), which 
is the key term for evaluating the horizontal pressure gradient, is given by 

Ap {x, y, t) - Ap (AT, AS) g [hi {x, t)-y] + Ap (0, AS) gh2 (x, t), (15.38) 

for the region y < hi,in which the injected fluid retains the injection temperature, and 

Ap {x, y, t) = Ap (0, AS) g [hi (x, t) + /i2 (x, t)-y], (15.39) 

for the region hi < y < hi -\- h2 ahead of the thermal boundary-layer, in which the 
temperature of the injected fluid has adjusted to the temperature of the formation. The 
coupled equations then lead to the governing equations 

dt ^ dx 

^ = RS-
dt dx 

h I ^ H - i ? — 
dx dx 

dx dx +^<'-/'fe hi 
dhi 
dx 

R 
dh2 
dx 

(15.40) 

, (15.41) 

where R = Ap (0, AS) /Ap (AT, AS). These equations have features in common with 
the system describing the propagation of a reaction front and the solutions are somewhat 
similar. However, the change in density across the front provides an important additional 
control on the flow, which inhibits the formation of shocks, see Figure 15.8(a). 

An interesting additional case arises when the density of the input liquid relative to the 
formation fluid changes sign on passing through the thermal boundary-layer, see Woods 
and Raw (2001). Figure 15.10 illustrates an experimental investigation of this phenomena 
as modelled using a bead back. In the experiment, hot but saline fluid is injected at the 
top of the bead pack which is initially filled with cold but fresh liquid. It is seen that the 
gravity current initially spreads along the upper boundary of the formation, driven by its 
original buoyancy. However, on passing through the thermal boundary-layer, the fluid 
temperature evolves and the fluid becomes cold and salty. The salinity then controls the 
density and the injected liquid descends to the base of the system. In the final two images 
shown in this sequence of photographs, the injected fluid is dyed a darker colour. This 
injected fluid may be seen spreading along the upper boundary of the layer, through the 
zone which has been heated by the previous passage of injected liquid. The dark fluid 
then passes through the thermal boundary-layer and begins to descend to the base of the 
system. 

In order to model the motion of such currents, we can appeal to the simple theory of 
gravity driven flows along impermeable boundaries described earlier in this chapter but 
extending the model to account for mass loss across the advancing front. This represents 
a very approximate method of modelling the effect of mass loss on such flows, since we 
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are assuming that the gravitational separation of the fluid on passing through the thermal 
boundary-layer does not induce any significant pressure feedback on the gravity current 
proper. With this simplified model, a continuous input of fluid, we can model the advance 
of the thermal front simply according to the relation 

This equation is solved together with the boundary conditions that the volume of fluid 
in the current matches the volume of injected which remains dense, f JQ Q {t) dt — 

(j) JQ h dx, and the source flux condition Q = —Sh dh/dx. For a finite release of fluid, 
the loss of fluid from the front of the current results in a progressively decreasing mass of 
fluid as a function of time. This process in fact yields similarity solutions of the second 
kind, and we consider this in the next section. 

15.6 CURRENTS WITH MASS LOSS 

A number of gravity current flows considered in this chapter have been described by 
similarity solutions. Each of these solutions has been based on the conservation of 
mass which has been imposed either through the injection of liquid at the source, or the 
requirement that the initial finite release of fluid remains fixed. One exception to this 
was the draining solution in which fluid leaked through the lower boundary of the flow 
domain. However, there are a number of different processes which lead to a loss of mass 
from the current as it evolves. In some such situations, the flow organises itself so that the 
evolution is self-similar. A classical problem, described by Barenblatt (1996), is the case 
of a finite release in an initially unsaturated porous layer, which slumps and spreads but 
also leaves a fraction of the fluid in the pore spaces owing to capillary retention. For an 
approximately homogeneous rock, the residual fluid in the formation occupies a fraction of 
the pore space, typically a volume fraction of the order 0.1-0.2. Therefore as the current 
slumps, the receding front leaves a fraction / of fluid in the pore spaces. In contrast, at 
the leading edge of the current, the current invades the porous layer, and we assume that it 
fully saturates the porous layer. This leads to the following nonlinear diffusion equations 
describing the propagation of the current: 

dt "^ dx y^dxj 

for 

for 

dh 
'di 
dh 
dt 

<o, 

>0. ^^ s4-(h^) for : ; ^ > 0 . (15.44) 
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Since mass is lost in the receding front, the equation for conservation of mass may be 
written in the integral form 

dt Jo ' ' ^ ^ - ^ / o ^ ' ' ' 
(15.45) 

where Ld {t) is the location of the point in the current at which dh/dt = 0 and L (t) is the 
full extent of the current in the porous layer. Furthermore, for this symmetrical slumping 
problem, the boundary condition at x = 0 takes the form dh/dx — 0. The system has a 
similarity solution of the form 

h{x,t) = H{cjtyO< 
H {ojty 

(15.46) 

where Oi is the shape function and now a and b depend on the value of the capillary 
retention constant, / , which determines the rate of loss of mass in the current. The mass 
of fluid in the current varies with time at a rate proportional to t̂ "̂ .̂ The exponent a-\-b 
is shown in Figure 15.11 for four values of / and this identifies how the rate of loss of 
mass of fluid in the current decreases with / . 

A second process in which a current loses mass occurs in superheated geothermal systems 
in which liquid migrating through the permeable rock is heated and boils, see Woods 

0.2 0.3 0.4 0.5 0.6 
Fraction vaporizing 

0.7 0.8 

Figure 15.11 Variation of the exponent controlling the rate of mass loss from 
the current, c, as a function of the fraction of the liquid which vaporizes as the 
liquid invades the porous layer, f. Curves are given for different values of the 
capillary retention fraction in the formation as indicated by the numbers on the 
curves. The vertical axis denotes the exponent of time which controls the mass 
of fluid in the current, see Woods (1998) 
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(1998). At an advancing liquid front, the mass fraction which boils, b, is a function of the 
superheat of the system, the rate of thermal diffusion and the speed of the liquid. If the 
liquid propagates sufficiently rapidly that thermal diffusion is unimportant, but sufficiently 
slowly that the pressure gradient required to drive the liquid ahead of the front is negligible, 
then the mass fraction which vaporises is simply a function of the superheat, see Woods 
and Fitzgerald (1993). In that case, the governing equations for the structure of the current 
are very similar to equations (15.43) and (15.44), except that now it is the region of ascent 
dh/dt > 0 in which the mass is lost, so that the model equations take the form (15.44) 
in the region dh/dt > 0 and (15.43) in the region dh/dt < 0, while the global mass 
conservation equation (15.43) becomes 

- / hdx = -b —dx. (15.47) 
dt Jo JhAt) dt 

The similarity solutions of the form (15.46) for this problem have been solved by Woods 
(1998), and the results are also shown in Figure 15.11. The solutions for the case of 
boiling liquid are of especial interest since they identify that all of the liquid injected into 
a geothermal system may boil off if the liquid is injected in discrete volumes at different 
wells. This contrasts with a more continuous input from a single well in which only a 
fraction of the injected liquid boils off and, instead, the remainder of the liquid is heated 
up, see Woods (1999). 

We have discussed the dynamics of currents of reversing buoyancy in which the buoyancy 
changes sign on passing through the thermal front. If the fluid separates from the current 
on passing through the front then this represents a loss of mass which may be modelled in 
a fashion which is directly analogous to the boiling fronts in geothermal systems. 

15.7 EFFECTS OF CONFINING GEOMETRY 

In all the models considered herein, we have focussed on gravity spreading in an essentially 
unconfined layer, and therefore the current is free to deepen as it spreads. Here we illustrate 
how the modelling approach may be extended to account for the presence of a confining 
upper boundary, see Figure 15.12. The key principle that we adopt is that the length scale 
of the flow is long compared to the depth of the channel, so that at each point along the 
channel the vertical pressure gradient is hydrostatic. If we denote the pressure gradient 
along the base of the channel by pb (x, t) then the pressure is given by 

P{x,y,t)=pb{x,t)-pgy for 0<y<h{x,t), (15.48) 

while in the upper less dense layer 

P{x,y,t)^Pb{x,t)-pgy + Apg{y-h) for h{x,t)<y<H. (15.49) 
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Figure 15.12 Schematic diagram illustrating the geometry of a gravity current 
spreading through a layer of fixed vertical extent 

We now couple these relations with the Darcy law for each layer, 

Ui — 
K_dP_ 

the mass conservation relations for each layer, 

and the conservation of total flux, Q, at each point along the channel, 

Q = uihi -\-u2h2, 

(15.50) 

(15.51) 

(15.52) 

to derive the equation for the depth of the interface, as a function of the position along the 
channel. For fluids of equal viscosity this is given by, see Huppert and Woods (1995), 

dh, 2Q dh _ 2KVpg d 
dt (j)H dx Hfic/) dx 

MH-.,g 
This equation has the exact solution 

2n(f> 

HKVpgt 

1/2 2Qt 
H4> 

(15.53) 

(15.54) 

This has been compared to a series of laboratory experiments involving a lock exchange 
flow in a Hele-Shaw cell, see Hatcher (2001), and there is very good agreement for the 
case of saline water displacing fresh water, see Figure 15.13(a). 

The model can be extended to account for fluids with different viscosities, and in the 
case of a pure exchange flow, Q — 0, the governing equation takes the form, see Hatcher 
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Figure 15.13 Comparison of (a) the lock exchange self-similar flow solutions, 
equation (15.41), with a laboratory experiment, and (b) the lock exchange self-
similar flow solutions, equation (15.43), for the case of fluids of different viscosity, 
see Hatcher (2001) 



4 2 2 GRAVITY DRIVEN FLOWS IN POROUS ROCKS 

(2001), 
„dh HKApg d 
H -

dt ^(f) dx 
h{H-h) dh 

h{l-V)+HVdx 
(15.55) 

where V — //lower/^upper is the viscosity ratio of the upper to lower layers. This 
equation admits similarity solutions for the structure of the exchange flow given by 
h{x,t) = Hf{r}), where rj = x/ {ut)^''^, with UJ — HKApg/(t)/j,. The distance the 
interface has spread after a time t increases as t^/^ and the shape of the interface satisfies 
the governing equation 

d/ _ _d_ 
dr] dry 

/ ( I - / ) df 
f{l-V)-{-Vdrj 

(15.56) 

This equation admits an exact nonlinear solution in the special case, V = 1, namely 
that f = rj - 1/2, see Huppert and Woods (1995). However, for other viscosity ratios, 
the current tends to spread more rapidly in the direction of the advancing low viscosity 
fluid. Figure 15.13(b) compares the results of a series of laboratory experiments with 
the theoretical predictions of equation (15.55) for exchange flows in a confined channel, 
see Hatcher (2001). In the laboratory experiments, glycerol and syrup were used as the 
two working fluids and each of these was diluted with water in order to run experiments 
with different viscosity ratios. The general trend of the data is captured very accurately 
by the model, except in the case of large viscosity contrast, in which case a small finger 
of the viscous fluid appears to spread adjacent to the boundary ahead of the predicted 
current shape. This is thought to be a consequence of the effect that only a fraction of 
the low viscosity fluid is displaced by the higher viscosity fluid as it spreads through the 
Hele-Shaw cell, see Yang and Yortsos (1997). As a result, a small layer of low viscosity 
fluid on the walls of the cell lubricate the higher viscosity fluid, and allow it to spread 
through the centre of the cell more rapidly than predicted by the model. However, the 
overall predictions of the model, especially when the viscosities are comparable is quite 
accurate. 

15.8 CONCLUSIONS 

In this chapter we have introduced a model for the gravitational spreading of fluid through 
a porous layer. We have then developed these models to account for a number of real 
processes that occur in porous layers. These include reaction of the invading liquid with 
the porous matrix, which can lead to changes in the permeability; the thermal inertia 
of the liquid as it spreads through the layer, which can lead to changes in density in 
the current; and the loss of the fluid from the current either through a low permeability 
lower boundary of the flow channel or through capillary retention or boiling of the fluid. 
Finally, we examined how the modelling approach may be extended to include the effects 
of an impermeable upper boundary, so that the current is confined vertically and a porous 
exchange flow develops. In several parts of the chapter, we have presented data from 
laboratory experiments which have been used to test the modelling approach. 
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There are numerous possible extensions to the present work, including the effects of 
more complex geometry, coupling of the various phenomena and the study of immiscible 
displacements in which the two phases mix within the porous formation, in which case the 
effective permeability for the flow of each phase is reduced owing to the presence of the 
other phase within the pore space and which is sometimes known as relative permeability. 
However, the present work has revealed how some nonlinear and complex flow problems 
may be reduced to analytical form, in the limit that the interface between the phases remains 
sharp. Immiscible displacements can also be influenced by capillary forces. However, 
if the flow extends over sufficiently large scales, the gravitational pressure gradients are 
sufficient to overcome such forces. In this case, to good approximation the flow behaves 
as described herein with a well-defined interface, see Lake (1989). However, in such cases 
the effect of residual saturation of each phase needs to be included in the models. This 
will form the subject of future work. 
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Abstract 

This chapter aims to review the basic problems that we have in representing the complex bed 
geometry and complex surface characteristics associated with flows over rivers and floodplains. 
The mathematical basis of existing treatments is presented, and the over-reliance upon empirical 
analyses with a poor physical basis is noted, both for the roughness of complex river surfaces 
and situations where rivers contain vegetation. The problems of using existing treatments in 
fully three-dimensional models is especially important because of the numerical diffusion and 
potential numerical instability that may result. Analogies with atmospheric flows demonstrate 
the complexity of treating rough and vegetated surfaces in numerical models and lead to the 
reconmiendation of a new way of treating these surfaces using numerical porosity. Preliminary 
results from a high resolution study of fluid flow over a rough gravel surface are presented and 
the scope of this method is identified. The chapter concludes by noting that whilst porosity 
approaches require high resolution geometrical and vegetation data, and that such data is 
increasingly available, it is unhkely to be a particularly effective approach in practical terms. 
However, its core potential will be in allowing a much better physical justification of meaningful 
parameter values for practical predictions of flood conveyance and ecosystem habitat. 

Keywords: rivers, conveyance, roughness, vegetation, drag coefficients, roughness 
heights, numerical porosity, atmospheric flows, canopy flows 

16.1 INTRODUCTION 

The traditional conception of a river channel is that it is a straight, trapezoidal channel with 
smooth boundaries. There are many examples of rivers that have been engineered so as 
to have this characteristic, see, for example, Figure 16.1(a). However, by far the majority 
of natural river channels have complex boundaries, see, for example. Figure 16.1(b) that 
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Figure 16.1 (a) A classic engineered river channel with a trapezoidal section 
(tributary of the River Rhone, Martigny, Switzerland), (b) The ultimate in river 
channel complexity (a wide, gravel-bed river in South Island, New Zealand), (c) 
The rough bed and bank morphology of an upland gravel-bed river (the Upper 
Wharfe. North Yorkshire, UK), (d) A highly vegetated river (a tributary of the 
River Nene, Northamptonshire, UK), (e) The ultimate porous river, vegetation 
and shopping trolleys in an urban stream (Glasgow, UK, photograph supplied by 
JBA Consulting) 
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are rough, see, for example, Figure 16.1(c), may contain vegetation, see, for example. 
Figure 16.1(d) and which may contain other obstacles, see, for example. Figure 16.1(e), 
especially when the channel flow through urban areas. The rivers in both Figures 16.1(d) 
and (e) represent an especially complex form of porous media: water can move within 
(see Figure 16.1d) and between (see Figures 16.Id and e) components on the surface. In 
addition to having a three-dimensional porosity structure that will be largely indeterminate, 
the structure of the porosity will evolve in relation to both the depth and the velocity of 
flow, and hence the river discharge. However, these sorts of channels are of immense 
practical importance. For instance, the porosity will control the relationship between 
water level and discharge. Figure 2 from Darby (1999) shows the simulated relationship 
between water level for a discharge with a five year return period in a river that is 6 m 
deep, with different percentages of bed vegetation cover and different grass heights up to 
33% of water depth. This shows how 

(i) higher percentages of bed vegetation, and 

(ii) taller vegetation 

result in higher water depths for a given discharge. This seems to imply that if we have 
more vegetation, the same discharge will cause more flooding. At the same time, it is now 
recognised that porosity in rivers is of immense ecological value. For instance, see, for 
example. Reiser (1998), egg nests (redds) are constructed by salmon and trout within river 
beds, commonly on the upstream end of riffles. This involves the construction of a small 
hole, laying of the eggs, and then covering of the eggs by gravels eroded by the mother 
fish from just upstream. Maintenance of a reasonable level of porosity in the buried eggs 
is crucial for the effective spawning of certain species. 

This chapter is written with these issues in mind. If we are to develop more robust methods 
for predicting stage discharge relationships and habitat related parameters we need a much 
improved understanding of the nature of rivers which, in most cases, may be conceived as 
being porous. 

16.2 RIVERS AS SOLID BOUNDARY PROBLEMS 

16.2.1 Flows over complex boundaries 

The conventional approach to modelling the interaction between river flows and bed topog-
raphy is based upon well-established flow hydraulics for the case of straight, rectangular 
channels. In the UK, for flood routing and floodplain risk mapping purposes, the approach 
is predominantly one-dimensional, based upon the St Venant equations. The equation for 
mass balance is given by 

dA Bv dA . ^^^^^ 
ot ox ox 
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and for momentum by 

dAv dAv'^ dAgh , , ^ ^ , dAgh , ^ ^ / o 

(a) + (b) - (c) + (d) = (c) + (e) - (f), 

where A is the cross-sectional area, t is time, v is the section-averaged downstream velocity, 
X is measured along the slope of the river in the downstream direction, i represents lateral 
inputs per unit length of channel, h is the average water depth. So is the bed slope, 5 / 
is the friction slope, P is the wetted perimeter, / is the Darcy-Weisbach friction factor, 
and g is the magnitude of the acceleration due to gravity. In equation (16.2), the temporal 
change in momentum (a) plus the downstream change in momentum flux (b) is equal to 
the net source of momentum, as determined by the downstream pressure gradient (c) and 
the net available energy (d). The latter has two components: available potential energy 
(e) and energy loss due to resistance to flow (f). In this case (f) is being represented as 
an effective friction slope. The basis of this derives from the du Buoys equation, which 
assumes one-dimensional, steady uniform flow, locally as follows: 

T = pgRSf, (16.3) 

where R is the hydraulic radius of the flow (equal to A/P, where A is the cross-sectional 
flow area and P is the wetted perimeter). In specifying (f), equation (16.3) is being 
expressed using one of a range of resistance formulae, in this case using the Darcy-
Weisbach uniform flow equation. This leads us to the essence of the problem of modelling 
natural river channels. We must assume that the flow is approximately hydrostatic and 
that the downstream component of mass flux is significantly greater than the vertical and 
cross-stream components. We also have introduced the term / in equation (16.2), and this 
has a very poor physical basis. 

To apply these equations to a natural river channel, as opposed to a channel with a straight 
rectangular cross-section, we have to introduce the natural geometric variability of river 
channel morphology. If we consider equations (16.1) and (16.2), the only physically 
based parameter that we have for representing this variability is in the discretisation of the 
equations in the x-direction: as x tends towards very low values, so we will have a better 
representation of downstream variability in channel shape. There are two limitations to 
this. The first is practical and relates to the density with which cross-sections may be 
measured and hence specified in the model. The second is theoretical. Equations (16.1) 
and (16.2) assume negligible mass and momentum flux in both the vertical and lateral 
directions and they also introduce a roughness term that represents the friction losses at 
the channel perimeter. The most common way of dealing with geometric variability is 
through the roughness term. In addition to the skin friction associated with shear between 
the fluid and the channel bed, the roughness term is augmented, normally implicitly, to 
represent 

(i) the effects of aspects of channel geometry that are not represented through channel 
discretisation. 
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(ii) the effects of vertical and lateral components of mass and momentum flux upon the 
downstream flux, and 

(iii) the effects of turbulent velocity fluctuations upon the extraction of momentum from 
the mean flow, and its dissipation at smaller spatial scales. 

Both (ii) and (iii) reflect the basic assumption that three-dimensional flow and turbulence 
can be treated as a net increase in the effective boundary roughness in a one-dimensional 
hydraulic model. 

16.2.2 Roughness in one-dimensional models 

There are two distinct approaches in which boundary roughness may be specified under 
these assumptions. The first involves the use of roughness as a calibration parameter. 
Approximate estimates of starting values, derived from methods considered below, are 
used to obtain a set of preliminary estimates. Roughness values are then perturbed in order 
to get a good fit between field observations and model predictions. In the second approach, 
roughness is specified using a range of empirical or semi-quantitative approaches. The 
most straightforward empirical approach involves the inversion of velocity formulae, such 
as that for Manning's n, or the Darcy-Weisbach friction factor / , given by (16.4b), 
assuming steady uniform flow (see, for example, Wolman, 1954), namely 

n ^ ? - ^ , (16.4a) 

/ = ^ . (16.4b) 

In these cases, the roughness {n or / ) can be estimated from properties of the channel 
{So and R) and of the flow (i.e., V and R). In addition to questions over the validity 
of expressions (16.4a) and (16.4b), the main problem here is that both / and n vary as 
a complex and nonlinear function of the flow. However, for practical river management 
purposes, notably associated with floodplain mapping and flood forecasting, we need to be 
able to predict flow properties on the basis of a given channel geometry and bed roughness. 
Thus, n and / are strictly speaking measures of effective hydraulic roughness and not of 
bed roughness itself. Furthermore, both expressions (16.4a) and (16.4b) have a strong 
dependence upon R. Knight (2001) notes that this can result in an odd situation when 
water levels reach bank full, and floodplain flow begins. At this point, there is a sudden 
increase in the wetted perimeter which results in an effective reduction in i?, and hence n 
or / , when floodplain flow results in a net increase in flow resistance due to 

(i) lateral shear between the main channel and the floodplain flow, see, for example, 
Thornton et aL (2000), and 

(ii) the higher relative roughness of floodplain flows. 
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The second approach to the specification of n and / is based upon the concept that 
roughness is additive. This follows from the observation above. Following Cowan 
(1956), it involves augmenting a roughness due to skin friction or individual grains (no) 
with that due to bed geometry (ni), cross-section morphology (712), obstructions in the 
flow such as boulders or islands (ns), and vegetation (714). In addition, these values may 
be scaled by m to represent the effects of channel curvature as follows: 

= (no + ni + 712 + ns + 714) m. (16.5) 

There is a clear logic to this expression in that this recognises the effective roughness of 
a river depends upon the scale over which it is measured. However, the question remains 
as to how n is estimated. The third approach addresses this in part by considering the 
relationship between channel bed material and the roughness parameter, see, for example, 
Strickler (1923). The final approach reflects all of these methods and is based upon 
photographs of river reaches of known roughness, often determined through expressions 
(16.4a) and (16.4b), see, for example, Barnes (1967) and Hicks and Mason (1991). 

A recent study by the Environment Agency ( R & D Technical Report Scoping Study for 
Reducing Uncertainty in River Flood Conveyance) consulted a range of twenty-six prac-
titioners and academics as to how they specified roughness in ID hydraulic models. This 
found that 88% used tables and photographs at some stage, 38% used the Cowan method 
at some stage and 88% also listed 'experience' as important in roughness specification. 
Only one consultee felt that they had a high confidence in how to estimate roughness. 

Equation (16.5) introduces the idea that roughness values depend upon the scale over which 
they measured. Equation (16.4) implies that roughness depends upon the hydraulics of 
the flow, as well as the channel surface itself. Both of these factors have resulted in the 
suggestion that different parts of the river-floodplain complex should be treated separately 
within a model, with appropriate interfacing between them, i.e., mass and momentum 
transfer. Thus, cross-sections may be divided into sub-areas and conveyance of each 
sub-area is calculated and then summed to give the total conveyance, see, for example, 
Knight (2001). The most extreme illustration of the need for this is in the case of out-
of-bank flow, when there is water in both the main channel and on the floodplain, and 
where the frictional retardation of the floodplain surface is significantly greater than that 
of the main channel due to the presence of vegetation on the flood plain and/or the greater 
relative roughness due to the shallower floodplain flows. Furthermore, empirical research 
has shown, see, for example, Thornton et al. (2000), that the apparent shear that results 
between the in-bank and out-of-bank portions of the flow can act as a significant resistance 
to flow, with associated implications for conveyance. 

In theory, this appears a logical development. However, in practice, it emphasises the 
need for higher dimensionality analysis (2D and 3D) of river channel flows in order to 
help justify the way in which channel capacity is estimated in one-dimensional models. 
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16.2.3 Roughness in higher dimensionality models 

What emerges from this review, and the above observations from the EA study, is the 
clear lack of knowledge that we have of how roughness should be treated in ID numerical 
models. In recent years, there has been a progressive move in the research community to 
2D, see, for example. Bates et al. (1992, 1995), Lane et al (1994, 1995) and Lane and 
Richards (1998), and 3D numerical modelling, see, for example, Hodskinson and Ferguson 
(1998), Sinha et al (1998), Gessler et al (1999), Lane et al (1999), Bradbrook et al 
(2000a, 2000b), Booker et al (2001) and Nicholas (2001), of natural river channel flows. 
It is with these developments that the limitations of traditional approaches to roughness 
terms become clear. The majority of 2D models continue to rely upon simple roughness 
parameters developed for ID uniform flow in their application to the 2D case, see, for 
example. Bates et al (1992) and Lane et al (1995). Clearly, the validity of the associated 
assumptions in 2D must be questioned. Similarly, little is known about how to specify 
effective roughness parameters in the 2D case. In 2D, roughness varies spatially. Thus, 
optimisation of model predictions through roughness parameterisation becomes seriously 
complex as there is the possibility of adjusting both the absolute values of roughness and 
their spatial distribution. 

Again, in the move to 3D little is known about how to deal with all of the spatial scales 
of river channel geometry. Following from the observation made with respect to 2D 
models that we have a range of spatial scales of topography that must be included in the 
numerical model, 3D models of natural river channels typically have a basic representation 
of river channel morphology, based upon the channel outline and either cross-sections or 
distributed data points sampled from within the channel. This involves a discrete sample 
of a continuous surface, and the roughness parameter is required to represent topographic 
scales that are not included in the topographic data that is used to define mesh geometry. 
This is illustrated conceptually in Figure 16.2. 

The roughness parameter is commonly identified in a fundamentally different way to 
that which is commonly used in ID and 2D models: it is based upon specification of a 
numerical roughness height that controls the vertical variation of velocity with elevation 
above the channel bed. In this case, roughness is strictly a property of the surface. Indeed, 
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Figure 16.2 Boundary fitted coordinates applied to sampled topographic data 
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a better label for the roughness terms in Section 16.2.2 would be conveyance factors as they 
represent aggregating measures that essentially control the rate at which discharge moves 
through a river channel system. In 3D models, roughness terms needs to be spatially 
variable but temporally fixed, unless there is sediment entrainment and movement, and 
the shape of the channel changes, or the roughness of individual grains changes, e.g., due 
to periphyton growth, see Godillot et ai (2001). However, determination of this spatial 
variability is not straightforward. 

There are a number of ways in which a roughness height may be specified. First, a skin 
friction associated with grain surfaces is identified. Second, this is multiplied upwards, see, 
for example, Clifford et al. (1992), to represent the effects of sub-grid-scale topography, 
e.g., sand dunes, grain surface morphology, grain interactions, as frictional retardation of 
the flow at the bed. The multiplication occurs up to the scale of topographic information 
that is contained within the numerical model. Third, the roughness height is applied to 
either an equilibrium or a non-equilibrium version of the law of the wall. Launder and 
Spalding (1974) recommend a non-equilibrium law-of-the-wall in which shear velocity 
(n*) is replaced by the square root of the turbulent kinetic energy per unit mass. A:, as the 
characteristic velocity scale, namely 

^ = ̂ lnfc--^^y (16.6) 
ul c'̂ 0.25^ y^^ u^ yoj 

where Uy is the flow velocity at elevation y above the bed, yo is the roughness height, 
cĵ  is an experimentally determined empirical constant, and K is von Karman's constant. 
In theory, provided the mesh is designed properly at the boundary, such that expression 
(16.6) is only applied to boundary cells, and the boundary is smooth, the main concern 
becomes the validity of the turbulence model. In practice, k may be determined from the 
transport equation in a two-equation turbulence model, with diffusion of energy to the 
wall assumed to be zero, production of what is expressed in terms of the shear velocity 
(uluz/2y) and the boundary condition for e set as 

2Ky y^ u^ yoj 

Whilst there are significant concerns over turbulence parameterisation in these near wall 
treatments, research has demonstrated that, in natural river channels with any sort of 
micro-scale topography, e.g., sand or gravel dunes, pebble clusters etc., much greater 
uncertainty is introduced into predictions of the three-dimensional velocity field due to 
poor knowledge and treatment of topographic variability than is introduced by uncertainty 
over turbulence treatments at the wall, see Lane et al. (1999). As with the ID roughness 
parameters, much of the debate relates to how to determine yo, and how to multiply it up 
to reflect larger scales of topography that are not represented in the mesh but which are 
clearly natural artefacts of the river channel, see, for example, Hey (1979), Bray (1982), 
Whiting and Dietrich (1990), Wiberg and Smith (1991) and Clifford et al. (1992). 
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Research has shown that it is possible to acquire high quality topographic data using close 
range remote sensing, see, for example, Butler et al. (2002). Data acquired at this scale has 
bee used to justify and to apply this multiplication, see, for example, Clifford et al (1992). 
However, some studies have noted problems in terms of numerical stability and solution 
accuracy for flows characterized by high relative roughness, see, for example, Nicholas 
and Sambrook-Smith (1999), with these difficulties resulting from the existence of an 
upper limit of A:̂  for a given near-bed cell thickness, see Nicholas (2001). The implication 
of this is that the thickness of the near-bed cell limits the maximum shear velocity at 
the bed, so that near-bed velocities may be over predicted in field situations with high 
relative roughness, see Nicholas (2001). In addition, there is the basic problem of setting 
the reference height of the bed in a numerical mesh: it is normally implicitly assumed 
that the effective bed surface in mass conservation terms is the same as the bed surface 
sampled during field survey. Figure 16.2 shows how blocked grid cells are not effectively 
blocked in a boundary fitted coordinate treatment, even if the drag term can be effectively 
specified: there will be mass conservation errors arising from cells that are not blocked but 
which should be, and cells that are blocked that shouldn't be. It also demonstrates the real 
uncertainty in the value that the multiplier of roughness length should take. The grid cells 
in Figure 16.2 are smaller than the average topographic spacing. Thus the multiplier effect 
has to represent both sub-grid-scale topographic roughness and a roughness component 
that is lost because of the coarse spacing of topographic data collection. 

In practice, the problems presented in Figure 16.2 arise from the coarse sampling of 
topographic data. The main alternative to using a multiplier of roughness length is to 
begin to include topographic data in the model. If actual data is available then roughness 
due to the difference in sampling density and grid density may be represented through the 
introduction of topographic variability into the boundary fitted coordinates. For instance, 
Nicholas (2001) attempted to include bedform roughness, e.g., particle clusters through 
using a random elevation model to introduce topographic variability into the CFD mesh. 
This reduces the roughness problem to sub-grid-scale topographic variability but assumes 
that the mesh distortion that arises from using the boundary fitted coordinate approach 
does not result in significant numerical diffusion or instability. The need for careful 
investigation of numerical diffusion associated with grid specification, the accuracy of 
discretisation, see, for example, Wallis and Manson (1997), and convergence problems 
associated with fine grids in finite volume discretisations, see, for example, Cornelius 
et al (1999), are all well established in the 3D case. 

This review implies that whilst rivers that are not vegetated may be conceived as solid 
boundary problems, dealing with those boundaries requires the development of new 
approaches. After a review of the vegetated case, we consider how some of these problems 
may be addressed through the treatment of the channel boundary as a porous media. 
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16.3 VEGETATION IN RIVERS AND ON FLOODPLAINS 

Most natural river channels, except in arid regions, contain some form of vegetation. The 
presence of vegetation has two key effects. First, it reduces the volume of the channel that 
can be occupied by water, and hence affects the mass conservation equations. Second, it 
affects the momentum equations by acting as a source and a sink for turbulent velocity 
fluctuations. Both of these increase the effective drag upon the water flow, affect river 
channel conveyance, and hence have implications for water levels and flood routing. 
However, these same processes also result in the significant enhancement of river channel 
habitat, by creating a complex flow structure, environmental refugia, and the source 
of important components of the aquatic food chain. Whilst the traditional engineering 
approach to the management of river vegetation focused upon its removal, the growth of a 
more holistic approach to environmental management has questioned the extent to which 
this is sustainable. There remains considerable uncertainty about the effects of vegetation 
upon river channel flow processes and this makes understanding the role of vegetation 
increasingly more important. 

16.3.1 Conveyance and multipliers of roughness parameters 

Most research into the interactions between in-channel and/or floodplain vegetation and the 
flow of water has been concerned with the effects of vegetation upon flood conveyance. 
The basic assumption here is that the flood conveyance is reduced by the presence of 
vegetation and that this reduction can be represented through an increase in a roughness 
parameter. Indeed, it has been demonstrated that vegetation can have a far greater effect 
upon conveyance than other components of roughness, e.g., bed material, in vegetated 
channels, see, for example, Kutija and Hong (1996). 

In practice, augmentation of n has varied in its sophistication. The simplest approach has 
been based upon addition or multiplication of roughness or roughness length to take into 
account the presence of vegetation, as per 714 in expression (16.5). A more quantitative 
approach, and one that is still widely used, is based upon empirical relationships for 
channels with different vegetative characteristics, normally related back to basic hydraulic 
parameters such as the vR product, see, for example, Watson (1987) and Bakry (1992). 
Strictly speaking, see Chen (1976), this is an n-Re relationship, where Re is the flow 
Reynolds number given by 

vR 
Re=— (16.8) 

u 
and 1/ is the viscosity of water. For submerged grasses, the n-vR relationship is normally 
negative, see Wu et al. (1999), and associated with plant bending as the vR product 
increases, resulting in the channel becoming hydraulically smoother. 

There are two main problems with these empirical approaches. First, the derivation 
can appear to be circular. As n has only a very poor physical basis, it is commonly 
estimated from properties of the flow. Discharge, water surface slope and hydraulic 
radius measurements are used to determine n, which is then plotted against parameters 
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like the hydraulic radius, or the velocity as derived from the discharge divided by the 
cross-sectional area of the flow. This problem is noted by Kouwen and Fathi-Maghadam 
(2000) who plotted a vegetative friction factor with a 1/F^ dependence on V, the section-
averaged velocity. They observed the importance of making sure that the form of the 
relationship is dominated by factors other than that imposed by the use of V on both sides 
of the relationship. This is an issue that is commonly overlooked in n-VR studies. 

The second problem is the dependence upon R. The hydraulic radius varies as a function 
of the ratio A/P, which is conventionally determined as wh/ {w -\- 2h). Thus, changes 
in R are dependent upon the nature of interaction between w (width) and h (flow depth), 
which depends upon the shape of the channel and the rate of change of h. This reduces 
the generality of curves derived experimentally for channels of particular shapes, and n 
has been shown to be strongly dependent upon h. Pre-submergence, n tends to increase 
with h, see Chow (1959), but this depends upon the plant physiology, i.e., its resistance to 
bending. 

With this in mind, it may be preferable to estimate vegetative roughness using a more 
physically-based analysis. A general form for the augmentation of roughness can be 
derived by considering the force exerted on a plant of exposed area Ay, which may also 
be referred to as the momentum absorbing area, see, for example, Fathi-Maghadam and 
Kouwen (1997). The drag on a plant per unit area (Fy) will be defined by 

Fy = 0.5pmCydv'^, (16.9) 

where Cyd is the drag coefficient associated with vegetation and m is a multiplier that 
reflects the exposed area of vegetation. A direct analogy here with flow around piers, after 
Hsieh (1962), leads to 

Fy=0.5ydCydPv\ (16.10) 

where y is the water depth and d is the stem diameter. 

If expression (16.10) is expressed as an augmentation to the du Buoys bed shear stress, 
and we substitute in expression (16.4a), then we get the increased n due to vegetation as 

ĝ + ^ i ^ 4 / ^ (16.11) 

where L is the channel reach length and no is the channel roughness in the absence of 
vegetation. There have been various suggestions for the value that m should take. For 
instance, Petryk and Bosmajian (1975) use the effective exposed plant area, namely 

Similarly, relationships can be developed for the Darcy-Weisbach friction factor (16.4b) 
that are similar in form to expression (16.12), see, for example, Pasche and Rouve (1985) 
and Fathi-Maghadam and Kouwen (1997). The use of an effective exposed plant area term 
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is useful as it can be specified independently to flow parameters or dependent upon flow 
parameters, according to the type of vegetation being studied. For instance, vegetation 
can bend when subject to shear, see Kouwen and Li (1980) and Darby (1999), and so it 
is important to make a distinction between flexible and non-flexible plants. Roughness 
with flexible plants will need a strong flow dependence. For instance, Fathi-Maghadam 
and Kouwen (1997) considered flexible unsubmerged vegetation. They showed that the 
frictional response is dependent upon changes in both flow velocity (which results in a 
streamlining effect) and the submerged momentum absorbing area (which depends upon 
flow depth). For subcritical, turbulent flow, they show that the vegetative drag coefficient 
can be expressed as 

where F is the friction factor or resistance parameter in non-submerged isolated plant 
flow, hn is the normal flow depth, assumed to be equal to the hydraulic radius for wide 
shallow channels, a is the horizontal area of the bed covered by vegetation, h is the 
average vegetation height, and J is the flexural rigidity of the plants, equal to the modulus 
of elasticity times the cross-sectional moment of inertia of the tree (see below). The 
precise form of the relationship, i.e., F and J, depends upon the vegetation species and 
their age. Kouwen and Fathi-Maghadam (2000) generalised this to a relationship of the 
form 

where a and /? are species-dependent empirical constants, and ^E is a vegetation index 
that is unique for all specimens of a tree species and related to the resonant frequency, mass 
and length of vegetation. Experimental results suggested that /? was negative, confirming 
the expected result that the friction factor is inversely proportional to velocity, i.e., a 
flexure and streamlining effect, and positively proportional to flow depth, i.e., an increase 
in momentum absorbing area effect, up to the point that vegetation becomes submerged. 

16.3.2 Roughness height treatments 

As considered in Section 16.2.3, it can be more useful to consider roughness as a roughness 
height. This is certainly required in 3D models, but has also been the basis of derivation 
of parameters like n and / for conveyance calculations. Darby (1999) summarises this 
for both flexible and non-flexible vegetation. In the case of / , it is common to use a 
relationship of the form, see, for example. Darby (1999), 

_ L ^ a - f c l n f - V (16.15) 
Vf \yoJ 

where a and c are empirical constants. Kouwen and Li (1980) conducted experiments 
over plastic strips to determine an empirical expression for yo that might be suitable for 
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flexible vegetation as follows: 

2/0 = 0.14 d 
0.25 / •• ^-^^ 

(^1 U (16.16) 

where d is the local height of the strips, r is the boundary shear stress, M is the vegetation 
stem density, and J is the product of E, the stem's modulus of elasticity, and / , the stem 
area's second moment of inertia. Measurement of the individual components of M J is 
difficult, see Darby (1999), and thus Kouwen (1988) treated it as a combined parameter 
in which stem density, M, and stem stiffness, EI, are thought to have an equivalent 
effect. Experiments by Temple (1987) justified this as they showed a strong correlation in 
laboratory experiments between vegetation height and the MEI parameter. 

In the case of non-flexible vegetation, see Darby (1999), an alternative approach is required. 
Non-flexible vegetation has a stronger effect upon the generation of turbulence. One 
solution here, see, for example, Li and Shen (1973) and Thompson and Roberson (1976), 
is to determine wake velocities and to use these to determine the friction factor. For 
instance. Darby (1999) used the Thompson and Roberson (1976) wake velocity equations 
to estimate the wake velocities from the ratio of vegetation spacing and vegetation diameter. 
The wake velocities were then substituted for the section-averaged velocities in expression 
(16.4b) to give a value of / . This emphasises an important point, namely, close attention 
needs to be given to the interaction between vegetation and turbulence, and especially the 
generation of turbulence, see, for example, Tsujimoto (1999). It is insufficient to introduce 
vegetation simply as a source of drag, and the turbulence treatment, especially in 2D and 
3D models, also needs to be developed. 

16.3.3 Application in numerical models 

Both conveyance and roughness height treatments are currently being used in numeri-
cal models. Morin et al. (2000) used a conveyance-type approach in a two-dimensional 
depth-averaged model of flow in Lake Saint Francois, in the St Lawrence River, Canada. 
This used a similar relationship to (16.11), but with the actual value of n set as a function 
of the maximum possible value of n. The latter was defined for vegetation at its maximum 
growth stage, maximum height and maximum density. This maximum value was deter-
mined through distributed parameterisation of the 2D model to optimise model predictions 
in relation to distributed velocity observations. Morin et al's work introduces an addi-
tional problematic issue for roughness estimation in the presence of vegetation. Whereas 
roughness due to river channel perimeter characteristics remains relatively constant, that 
due to vegetation shows a sensitive dependence upon season. 

The main problem with conveyance approaches in higher-dimensionality models is their 
dependence upon effective parameterisation and their failure to account for the interaction 
of vegetation-induced drag and vegetation-induced turbulence. The facts that 2D and 
3D models are more sensitive to turbulence treatments, see Lane and Richards (1998), 
and that a nonlinear plant species dependence between drag and turbulence is to be 
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expected, emphasise the need to consider treatments that explicitly incorporate both drag 
and turbulence treatments separately. Fischer-Antze et al. (2001) introduced a drag term 
based upon projected plant area and a drag coefficient as an additional momentum sink 
in the 3D momentum equations and this successfully reproduced velocity patterns in 
a compound section with the floodplain containing rigid vegetation. Lopez and Garcia 
(2001) went one stage further and in addition to introducing a vegetation-related drag term, 
also modified the turbulent kinetic energy and dissipation rate equations in a two-equation 
turbulence model. They found that this resulted in a good agreement between predicted 
and measured turbulent flow properties. 

Although recent years have seen considerable developments in modelling flow around 
vegetation in rivers, there is still a relative paucity of modelling attempts. The treatment of 
vegetation in numerical models is still largely empirical, see Sections 16.3.1 and 16.3.2, al-
though there is some important research seeking to define conveyance parameters in terms 
of generic models, see, for example. Darby (1999) and Kouwen and Fathi-Maghadam 
(2000), defined by properties of the vegetation, rather than the extension of solid bound-
ary roughness parameters to the vegetated case. Progress in understanding atmospheric 
flows has been much more extensive, especially in relation to numerical modelling. Thus, 
the next section of this paper considers research undertaken in atmospheric flows in an 
attempt to identify potentially fertile avenues for research in rivers. 

16.4 ANALOGIES WITH ATMOSPHERIC FLOWS 

The flow boundaries associated with atmospheric flows are directly analogous with river 
flows. There can be quite complex fixed boundaries, e.g., buildings, and dynamic bound-
aries, e.g., vegetation. As noted in Section 16.3, the problem of vegetation in river channels 
has conventionally been dealt with using the extension of roughness parameters designed 
to represent non-vegetated cases to vegetated situations using empirical evidence. Treat-
ment of atmospheric flows has progressed in a much more rigorous manner, based largely 
upon roughness height treatments and less so on conveyance-based parameters. 

Traditionally, the main motive for studying turbulent flow in the plant environment has 
been to understand the processes governing momentum, heat and mass exchange between 
the atmosphere and the biologically active canopy, see Raupach and Thom (1981). As in 
fluvial studies, the means of representing vegetation has been conditioned by the spatial 
scale of application. Also as in fluvial studies, a single parameter is unlikely to be able 
to represent the heterogeneous and complex boundary structures in the atmospheric case. 
This has been confirmed further when the processes operating with a plant canopy are 
considered. Raupach and Thom (1981) highlight the processes that require representation 
when this surface interacts with the air flow and within it. The interactions include 

(i) momentum absorption from the flow by both form and skin friction acting on 
individual drag elements, 

(ii) the transport of momentum and scalar properties by turbulent diffusion. 
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(iii) the generation of turbulent wakes, which convert the mean kinetic energy of the 
flow into turbulent kinetic energy at length scales characteristic of the elements, and 

(iv) oscillatory plant movement in relation to the flow passing around and through 
vegetation, with the plants storing mean kinetic energy as strain potential energy to 
release it as turbulent kinetic energy half a waving cycle later. 

The aerodynamic drag on the foliage is consequently the cause of two characteristics of 
flow through canopies, namely 

(i) an unstable inflected velocity profile, and 

(ii) a spectral short cut mechanism that removes energy from large eddies and diverts 
it to finer scales, where it is rapidly dissipated, bypassing the inertial eddy cascade, 
see Finnigan (2000). 

This forms a complex dynamic environment where the total dissipation rate is often very 
large as a result of the fine-scale shear layers that develop around the foliage. The velocity 
moments scale with single length and time scales throughout the layer, rather than being 
dependent on height, see Finnigan (2000). 

Despite these complexities, the treatment of atmospheric flows over vegetation is surpris-
ingly similar to roughness length treatments of flows in rivers. A standard approach is the 
parameterisation of a drag coefficient, which is representative of the total shear stress on 
the rough surface or the downward flux density of streamwise momentum to the surface, 
see Raupach (1992). This is normally computed by the Monin-Obukhov similarity theory 
and specified as a constant surface roughness length, see Mahrt et al. (2001). In the 
simplest case, where there is no vegetation, steady flow over bare soil can be described by 
the application of the logarithmic law, see Monin and Yaglom (1971), as follows: 

^*p ^^ ( y u ^ - - ^ l n ^ , (16.17) 

where Uy is the horizontal velocity at height z, u^g is the friction velocity for a bare soil 
and yog is the roughness length of bare soil. Expression (16.17) is similar in structure 
to expression (16.6), as discussed earlier in relation to representation of roughness in a 
fluvial environment. However, as the vegetative surface is more complex, the equation is 
modified to 

u^ fy-ds 
u, = -^\n(^ i , (16.18) 

k \ yog J 
where ds is the displacement height defined as the mean height in the vegetation on which 
the bulk aerodynamic drag acts, see Thom (1971). This is a different sort of treatment 
of the boundary to that used in fluvial flows. In expression (16.18), the vegetated canopy 
is effectively treated as a displacement (d) of the reference height at which the velocity 
becomes zero. As with the fluvial case discussed in Section 16.2, expression (16.18) has 
a relatively poor physical meaning, and under represents the processes operating in the 
environment. For example, a plant canopy consists of numerous elements such as leaves, 
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Stems and branches, aggregated into one complex structure, see Raupach and Thom (1981), 
and there can be significant flow within the structure. Further, the roughness length for 
canopies has been shown to vary as a function of both wind direction and wind speed. The 
drag coefficient for individual leaves is sometimes formulated to be inversely proportional 
to wind speed, v~^, where n = 0 for high Reynolds number flow (no dependence on 
wind speed) and n = 0.5 for low Reynolds number flow, see Raupach and Thom (1981). 
The large drag coefficients observed at weak winds were due to the importance of viscous 
boundary layers at low Reynolds numbers, see Deacon (1957). Similarly, Brunet et al 
(1994) suggested that for weak winds, viscous stresses dominate for a greater portion 
of the canopy. As with river flows, the wind speed also determines the architecture of 
the canopy, where the canopy can become more streamlined with increasing wind speed. 
For a weak wind, the canopy drag coefficient is at its maximum as the leaf surface area 
perpendicular to the wind velocity. However, the leaf orientation will alter due to wind 
stresses. The canopy drag coefficient has been observed to decrease by a factor of two 
with increasing wind speed for conifers, see Mayhead (1973) and Johnsen et al. (1982). 
The response of the canopy to turbulence depends on several factors including the density 
of shrubs, see Dudley et al (1998) and Grant and Nickling (1998), the architecture of the 
canopy and the stiffness and sway damping coefficients, see Kerzenmacher and Gardiner 
(1998). Due to these complex effects, researchers have found that individual plant species 
require individual drag coefficients, see, for example. Gillies et al. (2001), mirroring the 
observations of Kouwen and Fathi-Maghadam (2000) for flows in rivers. 

What emerges as more important is that for the roughness sub-layer above a vegetative 
surface, there is significant departure of the wind profile from that predicted by the 
logarithmic relationship, see Shaw and Pereira (1982), Wilson et al. (1982) and Sellars 
et al. (1986). Given these observations, numerical modelling has developed away from 
the standard roughness height approach. Standard free-air Reynolds equations have been 
adapted for use in canopies by the ad hoc addition of a source drag term, which was 
regarded as a smooth function of space, see Finnigan (2000). However, when attempts to 
write second-order turbulence closure models of canopy flow were made, the limitation 
of this approach quickly became apparent, see Finnigan (2000). At second-order, the drag 
term appeared as a strong non-Newtonian viscous damping of the turbulence, augmenting 
regular viscous dissipation and some orders of magnitude larger. However, in reality, the 
interaction of the wind field with the foliage ought to produce large amounts of fine-scale 
turbulence in the wake of canopy elements. Wilson and Shaw (1977) demonstrated that a 
rigorous spatial averaging procedure was required which produced equations for the area 
averaged wind field that contained the required source and drag terms as well as terms 
corresponding to the production of fine-scale wake turbulence. The spatial averages used 
by Wilson and Shaw (1977) and further developed by Raupach and Shaw (1982) were 
averaged over a horizontal plane while more general volume averages were subsequently 
introduced by Finnigan (1985). 

One of the interesting aspects of both fluvial and atmospheric flows is that most of the 
emphasis in numerical modelling has been upon treatments of the momentum equations. 
One of the most exciting developments in this area involves work on 'honami\ the wavy 
motion of a flexible canopy, see Ikeda et al. (2001), which was first studied by Inoue 
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(1963) over the top of rice plants. Ikeda et ai (2001) present work studying flow through a 
honami employing a two-dimensional large eddy simulation (LES). The modelling system 
is set up so that there are two different grids. Primarily there is a spatial discretisation 
which the LES simulation is calculated upon. In addition to this, there is a secondary 
grid, defined as the plant grid. In this grid movement of the plant is simulated by a 
flexible cantilever, in which the average displacement of plants is calculated. The mass 
of the plants is automatically conserved in the plant grid system while the drag due to the 
plant and its movement is formulated in proportion to the square of the relative velocity 
between flow and motion of plant in momentum equations for a turbulent flow field. This 
represents a combined treatment of both mass and momentum. A mass treatment may be 
crucial at high densities of vegetation, something that is illustrated implicitly by Godillot 
et al. (2001) for flow over periphyton in a river. They found that including the thickness 
of the periphyton matrix was crucial for effective prediction of the vertical variation of 
velocity. This is where we begin to see the potential for treating rivers as porous flows, 
and this is explored in Section 16.5. 

In summary, the representation of vegetation in atmospheric flows has seen less emphasis 
upon conveyance parameters and more emphasis upon the interaction between the canopy 
and both the mean and turbulent properties of the flow field. In some senses, this is not 
surprising: flows in rivers are clearly depth-limited. However, changes in the position of 
the water surface is of major concern for river management as it controls flood inundation. 
Given the strong flow dependence of these conveyance parameters, and the fact that models 
must be used in a predictive sense, the interaction between vegetation and water remains 
an area that needs considerable additional research. 

16.5 THE MATHEMATICAL BASIS OF POROSITY IN RIVERS 

In this section, we argue that a much more effective treatment of river channels, in terms 
of both complex topography and vegetation, is through an explicit treatment of the effects 
of blockages upon mass conservation using a numerical porosity. 

Figure 16.3 revisits the problem considered in Section 16.2, in which roughness heights are 
required to represent the effects of complex topographic variability, see Figure 16.3(a). 
As noted above, serious levels of grid deformation may be required if boundary fitted 
coordinates are used over these surfaces. 

One alternative to this approach is to develop the method identified by Olsen and Stokseth 
(1995). This involves the use of regular structured grids, in which all control volumes are 
orthogonal, in both computational and Cartesian space, with the bed topography specified 
using cell porosities (PQ): PQ = I for cells that are all water, PQ = 0 for cells that are 
all bed, and 1 < PQ < 0 for partly blocked cells. Hardy et al. (2002) have developed 
the Olsen and Stokseth method to address issues that were not resolved in the original 
Olsen and Stokseth study, notably through the inclusion of relevant drag terms, see, for 
example. Wen et ai (1998), in the momentum equations in combination with the porosity 
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(a) V (b) V (c) V 

Figure 16.3 (a) Boundary fitted coordinates applied to sampled topographic 
data, (b) Topographic representation using a porosity treatment with high 
resolution topographic data, (c) Topographic representation using a porosity 
treatment with sampled topographic data. Figures (a) to (c) represent an 
idealized, rough, gravel-bed surface. Black squares represent field sampled 
data points 

treatment. Hardy et al. also validate this approach using a dataset based upon particle 
image velocimetry as applied to a regular cuboidal surface. 

Figure 16.3(b) shows application of this method to the case where high resolution topo-
graphic data, for example Figure 16.4, is available. The development of digital photogram-
metric methods for the precise and high resolution measurement of river bed topography, 
see Buder et al. (1998,2002), Lane (2000,2001) and Lane et al (2001), means that such 
data are becoming readily available. This is normally in the form of a digital elevation 
model (DEM) which comprises a regular grid of elevation data. This leads to the rep-
resentation of continuous elevation values as a series of stepped elevation values, which 
is acceptable if the grid spacing is small as compared to local topographic variability. 

Figure 16.4 (a) Photograph and (b) 3 mm resolution digital elevation model 
of a gravel-bed river surface 
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Thus, under Figure 16.3(b), the numerical mesh is defined as a regular grid, with planform 
dimensions identical to those used in the DEM. In this case, porosity can be mapped 
directly into the numerical grid. The effective drag terms are specified as vectors in the 
3D momentum equations according to low-flow direction, i.e., an initial approximation of 
near boundary flow direction is obtained and used to define the local directions in which 
drag must be augmented by the effective cell area. As an example of the potential of this 
approach. Figure 16.5 shows a long profile of predictions of flow using a full 3D solution 
of the Navier-Stokes equations. This uses a 0.002 m^ grid, inlet boundary conditions 
specified from detailed measurement of inlet velocities, and a horizontal rigid lid across 
which normal velocity resolutes are set to zero. This gives us a flow field resolution that 
has never been seen before. Lane et al. (2002) report on this method in detail, including 
validation. 

Figure 16.3(c) shows a scenario more common in practice, where high resolution topo-
graphic data is not available. Even in this situation, use of a porosity treatment will result 
in a numerical solution that is more stable and subject to less numerical diffusion as a 
result of the use of orthogonal grid cells. The porosity treatment is especially amenable 
to roughness parameterisation: with basic knowledge of the scaling properties of a rough 
surface, see, for example, Butler et al (2002), it is possible to simulate a surface with 
the same roughness characteristics at all spatial scales. This is currendy being used to 
explore the effects of rough topography upon conveyance parameters avoiding the sort 
of circularity that can emerge in traditional methods of conveyance determination, see 

sf ***** *̂ *'' -•"':'î  V ':\ 
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Figure 16.5 Flow vectors modelled over a cross-section gravelly material. 
Fluid flow is into picture. The flow is depth limited {water depth 0.24 m). The 
model is finite volume, and grid cells are cuboidal f 0.002 m length). The figure 
shows the bottom 0.080 m of the model predictions. The solid line is the bed 
surface. The image shows rapid divergence (labelled Aj around gravel grains 
further downstream from this cross-section and convergence (labelled B j into 
areas of low pressure downstream of grains upstream of this cross-section 
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Section 16.2.2. It also avoids the need to arbitrarily scale drag coefficients in situations 
where there is complex bed microtopography. Similar treatments may be suitable for 
dealing with vegetation, and the next stage of this research will extend this approach to 
the vegetated case. This will need careful consideration of drag terms, and certainly either 
modification of traditional turbulence models (as per Lopez and Garcia, 2001) or a large 
eddy simulation treatment as per Ikeda et al. (2001). 

16.6 CONCLUSIONS 

The aim of this chapter has been to highlight the basic limitations of traditional treatments 
of complex bed geometries and vegetation in traditional models of river channels. Many 
of the methods used to deal with bed topography and vegetation suffer from one or more 
of the following problems: 

(i) a strong dependence upon parameters that have a poor physical basis and which are 
only readily determined using empirical means; 

(ii) a poor conceptual basis, in terms of the way they represent the effects of topography 
and vegetation upon the flow; and 

(iii) a tendency to introduce problems of numerical diffusion and numerical stability, 
especially in higher dimensionality numerical models. 

The use of numerical porosity may lead to a much improved representation of a range 
of open channel flow processes. Preliminary experiments over complex river gravels are 
producing very encouraging results, and may provide the means for an improved represen-
tation of vegetation in higher dimensionality numerical models. Problems of determining 
the geometry of the bed and the morphology of plants will inevitably mean that application 
of these methods in many practical situations may prove to be unfeasible. However, exper-
imental investigation of river channel processes using a numerical porosity approach may 
result in a better justification and more reliable identification of the conveyance parameters 
needed for flood identification and habitat characterisation. 
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