Geometric optics, optical instruments

Reflection and refraction from mirrors and lenses. Microscope, magnifying glass, telescope.

Geometric optics

Optical elements

- Reflection mirrors
- Refraction lenses

Magnifying glass, camera, microscope, etc.

Ray optics, limited to narrow range of angles in the vicinity of principal axis (paraxial rays), none information about phase shifts between rays, interference etc.

Mirrors

Light reflection on plane, spherical, parabolic etc. mirror

Spherical mirrors

Convex mirror

Concave mirror

C F Odražené paprsky zdánlivě vycházejí z ohniska (F) za zrcadlem. Zrcadlo Paprsky rovnoběžné s hlavní osou Paprsek procházející středem křivosti (C) se odráží zpět po Odražené paprsky se rozbíhají. stejné přímce.

Mirror equation

Mirror focus, focal length

$$f = \frac{r}{2}$$

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

Particular rays

- 1. Goes through center of curvature, i.e. perpendicular to mirror → reflection without change of direction
- 2. Goes through focus \rightarrow reflection parallel to principal axis
- 3. Goes parallel to principal axis \rightarrow reflection to focus

Two rays starting from one point are reflected into one point.

Magnification of image

Transversal magnification of image $Z = \frac{y^{y}}{y}$

Thin lenses

Světelné paprsky

Světelné paprsky

Konvexní čočka

Konkávní čočka

Hlavní (optická) osa

Hlavní osa

Converging

Všechny zde uvedené čočky považujeme za tenké (tj. tloušťka čoček je malá ve srovnání s ohniskovou vzdáleností). I když se paprsky ohýbají jak při vstupu do čočky, tak při výstupu z ní, kreslíme je jako lomené pouze jednou ve svislé přímce procházející optickým středem čočky.

Body používané

(viz též str. 50)

k sestrojení dráhy

lomených paprsků

Ohnisko. Význačný bod na optické
ose. Všechny rovnoběžné paprsky
procházející blízko osy se
lámou tak, že se sbíhají do
ohniska (spojka) nebo se
z něho zdánlivě rozbíhají
(rozptylka). Ohniska jsou
dvě, protože světlo může
do čočky vstupovat
z obou stran – označení
F se dává vždy hlavnímu
ohnisku, do kterého se
paprsky sbíhají, nebo
z kterého se zdánlivě rozbíhají (druhé ohnisko je F').

Hlavní osa. Přímka

středem.

procházející středy

křivosti a optickým

Diverging

Střed křivosti. Střed koule, jejíž částí je povrch čočky. Protože čočka má dvě plochy, máme také dva středy křivosti – označení C se vždy dává středu křivosti na straně dopadajícího paprsku (druhý je C').

Optický střed (O). Střed

čočky. Paprsky, které jím

procházejí, nemění

Ohnisková délka (f). Vzdálenost mezi ohnisky a optickým středem.

Světelný otvor (apertura). Oblast, kterou světlo prochází při dopadu na čočku.

Converging and diverging lenses

Lensmaker's equation (power = 1/f [diopter])

$$\frac{1}{f} = (n-1)\left(\frac{1}{r_1} + \frac{1}{r_2}\right), \quad n = \frac{N_{glass}}{N_{env}}$$

Converging f>0

Diverging f<0

Ray tracing by lenses

Converging

Paprsky rovnoběžné Lomené paprsky se sbíhají v ohnisku před čočkou. Paprsek procházející optickým středem nemění směr. Skleněná konvexní čočka v prostředí hustším než sklo se chová jako rozptylka.

Diverging

Converging lens as magnifying glass

Virtual and magnified image

Diverging lens – ray tracing

Thin lens equation

The same as for mirrors (a = object distance, b = image distance, f = focal length)

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

Focal distance depends on refraction index and radii of curvature – lensmaker's equation

Sign convention for a,b,f < 0 or > 0

Transversal magnification

Magnification of image

$$Z = \frac{y'}{y} = -\frac{b}{a} = \frac{-f}{a-f} = -\frac{b-f}{f}$$

Upright image y'>0, Z>0

Inverted image y'<0, Z<0

Defects of ray tracing

- Reflection independent from wavelength
- Refraction dependent on wavelength
- aperture defects
- astigmatism
- distortion of image
- dispersion defects

Distortion of image

- Astigmatism two different focal points in perpendicular planes, image of circular spot is diverging spot of rays (comet)
- Distortion of image keg or pillow like

Dispersion defects

Different focal points for different wavelengths – mostly visible at the edge of image

Optical instruments

- Magnifying glass
- Telescope
- Microscope

Magnifying glass

Standard optical distance (focus of eye at near point) l=25cm

Simple magnifier (magnifying glass) = converging lens, object between focal point and lens (near focal point), image virtual and magnified

Observation from the distance *e* from magnifier

Angular magnification (angular power) of magnifying glass

Eye focused to infinity

$$b \rightarrow \infty$$

$$w = \alpha'/\alpha = \frac{l}{f} \frac{b-f}{b-e} \rightarrow \frac{l}{f}$$

Microscope

- Objective lens f_1 ~1mm
- Eyepiece lens - f_2 ~1cm
- Distance between focal point of lenses

 ⊿=160mm

Image formed by objective lens is magnified by eyepiece lens

Angular power of microscope

Product of magnifications of both lenses

$$w = \frac{\alpha'}{\alpha} \approx \frac{\Delta}{f_1} \frac{l}{f_2} = Z_1 Z_2$$

Telescope

• Keplerian (astronomical) – inverted image

• Galileian – upright image

Angular power of telescope

Angular magnification

$$w = \frac{f_1}{f_2}$$

• E.g. 8x50 = magnification of 8 times, 50mm input light beam diameter

Output light beam diameter = 50 mm/8 = 6 mm

Literature

Pictures used from the books:

HALLIDAY, D., RESNICK, R., WALKER,

- J.: Fyzika (část 4 Elektromagnetické vlny
- Optika Relativita), Vutium, Brno 2000

Velká ilustrovaná encyklopedie, Fyzika, Chemie, Biologie, Fragment, Havlíčkův Brod 2000