Nuclear physics

Radioactive decay – alpha, beta, gamma, radioactive decay law, half-life, detectors of radioactive radiation, binding energy of nucleus, absorbed and effective dose.

Nuclear physics

Nuclear physics is specialized on the processes in nucleus

- nucleus decay and its transformation
- fusion and fission reactions
- nucleus structure by elementary particles
- reaction between elementary particles
- medical and industrial applications

-...

Atom structure

- Nucleus (10⁻¹⁵m), nucleons (proton, neutron), most of the atom mass
- Electron orbitals (10⁻¹²m), elektrons with specific energy levels (shells, subshells), electrons are responsible for the radiation spectra, periodic table of elements ordering by atom number Z

Atom nucleus

Rutherford 1911 α-particle scattering at Au-foil

Nucleus size

Scattering experiments by E.Rutherford – nucleus size of the order 5·10⁻¹⁴m

Electron is located inside bigger region of the diameter 5·10⁻¹¹m because of Heisenberg uncertainty principle

No information about nucleus structure from scattering experiment

Nucleus properties

- Mass atomic mass number A=Z+N
- Electric charge atomic number Z

$$\overset{A}{Z}X$$

Nuclide – radioactive nuclide (radionuclide)

Example: ¹²C, ¹³C, ¹⁴C – different masses of nuclei

Separation of nuclei in mass spectrometer – possibility to measure specific charge of particle (ratio of charge per mass)

Neutron number N = number of neutrons in nucleus

Nucleus structure

Hydrogen ${}_{1}^{1}H$ – single proton

Helium ${}_{2}^{4}He$ - charge +2e, but mass higher than two protons

1932 – J.Chadwick suggested new nuclear particle without charge – neutron

Electrically neutral, mass approximately the same as proton, spin $\frac{1}{2}$

Neutron is not stable outside nucleus, it decomposes during 10.8 min into proton, electron and antineutrino $n \rightarrow p^+ + e^- + \overline{\nu}$

Stability of nucleus

Very close packing of charged protons require very strong nuclear forces (short range forces) – compensation of electrostatic repulsive forces

Nucleons must follow Pauli exclusion principle, i.e. nuclei with higher number of nucleons have higher energies

Neutrons stabilize nucleus structure – stability of nuclei with approximately the same number of neutrons and protons

Nuclides chart

Stability up to Z=83 (Bi) – no stability above

Nuclear binding energy

Energy of particular nucleons alone minus energy of nucleus

$$Q = \Delta mc^2$$

Comparison by the binding energy per nucleon

Most stable isotope ${}^{62}_{28}Ni$, Q = 8.8MeV/nucleon

Binding energy

 $^{62}_{28}Ni$

fission

fusion

Radioactive decay

Nucleus changes its energy

Decay rate

$$-\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda N \qquad \qquad N = N_0 \mathrm{e}^{-\lambda t}$$

$$N = N_0 e^{-\lambda t}$$

Activity

$$R = -\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda N_0 \mathrm{e}^{-\lambda t}$$

Unit 1Bq = 1 decay per second (Becquerel)

Probability law – no way how to find out what nucleus will decay and when

Half-life

Defined as the time it takes for half the original amount of parent isotope in a given sample to decay.

Half-life and decay constant relationship

$$\tau = \frac{\ln 2}{\lambda}$$

Types of radioactive decay

• α-decay

Charged α -particles He²⁺ ²³⁸U \rightarrow ²³⁴Th + ⁴He, Q = 4,25 MeV

• β -decay (β^+ , β^-)

Charged particles – electron, positron

$$^{32}P \rightarrow ^{32}S + e^{-} + \nu \quad (\tau = 14,3 d)$$

64
Cu $\rightarrow ^{64}$ Ni + e⁺ + ν ($\tau = 12,7 \text{ h}$)

Neutral radiation – photons of short wavelength electromagnetic radiation

Decay series

Radioactive dating

Based on the measurement of ratio between isotopes – common ${}^{12}_{6}C$ and rare ${}^{14}_{6}C$ Half-life ${}^{14}_{6}C$ is 5730 years

Commonly 1 nucleus of ${}^{14}_{6}C$ is found per 10^{13} nuclei of common isotope ${}^{12}_{6}C$

¹⁴₆C is created in atmosphere from nitrogen nuclei during their collisions with cosmic radiation particles

Dosimetry

• Absorbed dose = absorbed energy of radiation per unit mass (units gray)

Natural radioactive background = 0.002Gy

$$1 \,\text{Gy} = 1 \,\text{J/kg} = 100 \,\text{rad}.$$

• Effective dose = absorbed dose multiplied by the factor of relative biological effectiveness (RBE) - RBE=1 (units sievert)

(RTG, elektrons), RBE=5 (neutrons), RBE=10 (α-particle)

$$1 \, \text{Sv} = 100 \, \text{rem}$$
.

Detection of particles

Geiger counter — charged capacitor is discharged by the current created at the interactions between particle and gas molecules in it

Wilson cloud chamber — condensation around path of particle in saturated vapour

Scintilators — recombination of particle and charge carrier in semiconductor, photon is multiplied

Nuclear energy

• Fission of heavy nuclei into lighter fission fragments, radioactivity influenced by neutrons (used for about 60 years, radioactive waste)

• Fusion of very light nuclei (in small scale experiments)

Chain reaction

Fission of uranium nuclei by neutrons – avalanche reaction $^{235}\text{U} + \text{n} \rightarrow ^{236}\text{U} \rightarrow ^{140}\text{Xe} + ^{94}\text{Sr} + 2\text{n}$

Energy created A \approx 240, 7.6MeV, A \approx 120, 8.5MeV

$$Q = 2(8,5 \,\text{MeV})(120) - (7,6 \,\text{MeV})(240) \doteq$$

 $\doteq 200 \,\text{MeV}.$

Chain reaction

- Critical mass to ensure neutrons ratio
- Moderator slow down of neutrons, higher probability of their absorption
- Uranium enriched mixture of isotopes $^{238}_{92}U$ (99.3%) and $^{235}_{92}U$ (natural resources only 0.72%, increase up to 3%)
- Control rods control of neutron number close to the critical state of reactor control of chain reaction, absorptive material (boron, cadmium)

Nuclear power station

Thermonuclear fusion

Fusion of light nuclei – in Tokamak fusion reactor Very high potential barrier when nuclei get into contact, e.g. hydrogen (400keV) - necessary to add high energy to particles by heating to very high temperature

Fusion in nature - Sun

Thermonuclear fusion

Reactions

Deuterium – Tritium

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He(3.5MeV) + {}_{0}^{1}n(14.1MeV)$$

Neutron – Lithium

$${}_{0}^{1}n + {}_{3}^{6}Li \rightarrow {}_{1}^{3}H(2.75MeV) + {}_{2}^{4}He(2.05MeV)$$

Total energy balance

$${}_{1}^{2}H + {}_{3}^{6}Li \rightarrow 2 {}_{2}^{4}He + 22.4MeV$$

Tokamak

"Toroidalnaja kamera s magnitnymi katuškami"

Literature

Pictures used from the book:

HALLIDAY, D., RESNICK, R., WALKER, J.: Fyzika (část 5 – Moderní fyzika), Vutium, Brno 2000