Measurement device component properties

Analogue part

1. Sensor

sensor converts the monitored physical quantity into electrical physical quantity (voltage, current,)

- 1.1. sensor static properties
- 1.2. static transmission characteristic errors
- 1.3. sensor dynamic properties
- 1.4. sensor properties = summary

- input range
- the minimum and maximum values of the input quantity that the sensor is able to process

- if the input quantity is inside the sensor range the output signal is proportional to the input quantity
- if the input quantity is outside the sensor range
 - the output signal does not match the input quantity
 - the sensor may be destroyed

- sensor static transmission characteristic (sensitivity)
- the relationship between the output and input signal

- generally it can be a polynomial function
- $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
- usually the function is linear

$$y = a_1 x$$

• the symbol S is used instead of the coefficient a_1

$$y = S * x$$

where S is the sensor sensitivity

• static conversion characteristic is valid only if the input quantity is within the range !!!!

- examples of the sensor description
- input range + sensitivity input 0 100°C, sensitivity 5mV/°C
- input range + output range input 0 100°C, output 0 500mV
- the sensitivity can be depended on power supply voltage for some types of sensors (eg strain gauge force sensors)

- example of this sensor description
 - input range 10kN
 - output **2mV/V** this information means that for the maximum force 10 kN the output will be 2mV per each one volt of power supply
 - for example, if the power supply is 10V, the sensor output will be 20mV at full load by force of 10kN

- additive error (zero shift) δ_A
- the zero input does not correspond to the zero output y = S * x + q
- deviation from the correct value $\Delta y = q$
- the deviation is constant over the entire range
- error calculaciton: $\delta_A = \frac{\Delta y}{v}$ (* 100 [%])

the additive error hyperbolically distorts the output, that is, most at the beginning of the range

reality

1°C

100°C

- lacktriangle multiplicative error (sensitivity error) δ_M
- the sensitivity is not S, but $S + \Delta S$
- $y=(S+\Delta S)*x$
- deviation from the correct value $\Delta y = \Delta K * x$
- the deviation increases with value
- error calculaciton: $\delta_M = \frac{\Delta_Y}{Y} = \frac{\Delta K * x}{K * x} (* 100 [\%])$

• the multipicative error is constant over the entire range

1.2. static transmission characteristic errors

- the sensor relative error (the sensor accuracy) δ_r
- multiplicative and additive error can occur simultaneously
- static characteristic can have other errors nonlinearity, hysteresis, etc.
- determining the resulting error would be very difficult
- therefore the sensor producer publishes the maximum output deviation Δy_{MAX} and guarantees that deviations in the whole range are always smaller than this maximum

• the relative error hyperbolically distorts the output

- the sensor resolution
- the deviation Δy caused by the relative error can be **positive or negative**
- the sensor resolution is the smallest change in a sensed quantity that can be unambiguously determined

• the resolution
$$r = \frac{1}{\frac{y_{MAX} - y_{MIN}}{2*\Delta y_{MAX}} + 1} \cong \frac{2*\Delta y_{MAX}}{y_{MAX} - y_{MIN}} = 2*\delta_R$$

• the sensor resolution is thus essentially twice the relative error (accuracy) of the sensor

1.3. sensor dynamic properties

the sensor transfer characteristic G(t) is defined as ratio of the outup function to the input function

- the ideal state is when the output function exactly follows the input function, thus G(t) is constant and it is G(t) = S, where S is the sensor sensitivity
- the input function is variable over time
- the internal circuits of the sensor work at some maximum speed
- if the rate of change of the input function exceeds the capabilities of the sensor, G(t) ceases to be constant and the output signal is distorted

- the sensor frequency characteristic
- this time function $G(t) = \frac{Y(t)}{X(t)}$ is converted by the Fourier Transform into the frequency domain

$$\cdot G(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = A(j\omega) * e^{j\varphi(\omega)} = P(\omega) + j * Q(\omega)$$
 where $\omega = 2\pi f$

• the frequency characteristic can be drawn in a complex plane:

1.3. sensor dynamic properties

- the sensor amplitude and phase characteristic
- the representation of the frequency response in the complex plane may be incomprehensible therefore, the amplitude and phase characteristics are displayed more often as a dependence of amplitude and phase on frequency

$$\cdot G(j\omega) = P(\omega) + j * Q(\omega)$$

$$A(\omega) = \sqrt{P^2(\omega) + Q^2(\omega)}$$

$$\varphi(\omega) = \arctan \frac{Q(\omega)}{P(\omega)}$$

- the sensor frequency range
- it is the maximum frequency of the input signal where no output distortion

1.4. sensor properties = summary

the manufacturer writes the following basic sensor properties in it data sheet:

- sensor input range
 - the minimum and maximum values of the input quantity that the sensor is able to process
- sensor sensitivity
 - the relationship between the output and input signal
- sensor accuracy and resolution
 - the maximum output deviation in the whole range are always smaller than sensor accuracy
 - the sensor resolution as twice the sensor accuracy
- sensor frequency range
 - the maximum frequency of the input signal where no output signal distortion

2. Amplifier

 amplifier regulates (increases) the size of the output sensor signal to the level required for its processing in the A/D converter

amplifier gain G

- one value gain for single-purpose input
- adjustable gain for universal input (set by the user program today)

differential amplifier

- used for sensors with differential output (eg strain gauges force sensors)
- it has two inputs + IN and -IN and amplifies the signal difference between these inputs

2. Amplifier

- the amplifier properties are practically identical to the properties of the sensor so the amplifier also has 4 basic parameters
 - input range
 - gain (usually can be set to several values)
 - relative error (accuracy)
 - frequency range (maximum rate of input change)
- since the parameter definitions are identical to the sensor, they will not be explained again here (only instead of sensitivity is here gain)
- amplifier
 - is an electronic circuit
 - relative error and frequency range are usually much better than the sensor properties
- measurement accuracy depends predominantly on the sensor

differential amplifier connection

• if a sensor with a differential output is used, the sensor outputs + OUT and -OUT are connected to the + IN and -IN amplifier inputs:

• if a sensor with a unipolar output is used, its output is connected to the amplifier + IN input:

- the amplifier input IN must be connected to ground so that it has a zero signal
- not connected amplifier input IN is an antenna for noise reception

- removes unwanted components (noise) from the signal
 - it is part of the amplifier
 - the filter principle is not to transfer certain frequencies in the signal, so it can prevent the transfer of noise
 - there exist 4 types of filters according to the band of non transferred frequencies
- filters classification according to the non transferred band:
 - two basic filters

• two compoud filters - consist of a pair of basic filters

it is not possible to realize a rectangular filter frequency characteristic in practice

- the course of the characteristic (slope) is given by:
 - filter type

type of electrical circuit the filter type is named after the its author – Bessel, Butterworth

• filter order

can be simply explained as the number of filters included in the series - the first order filter is one filter, the second order filter is two identical filters in a serie, etc.

higher filter order = steeper characteristic slope

 the slope of the filter amplitude characteristic is given in dB/decade or dB/octave for sound

3. Filter

- decibel (dB) definition
 - base unit **bel** (B) is named after A. G. Bell (he used it for attenuation in the telephone line)
 - 1B = ratio of 10: 1 between power of sound at the beginning and end of the telephone line
 - 1dB (decibel) is the tenth of the base unit bel
 - ie power ratio 10: 1 = 1B (10dB), 100: 1 = 2B (20dB), 1000: 1 = 3B (30dB)

• 1B =
$$\log(\frac{P_2}{P_1})$$
 [-, W, W]

• 1dB =
$$10 * \log \left(\frac{P_2}{P_1}\right)$$
 [-, W, W]

• if we need to express the ratio of the signal amplitudes instead of signal powers, we can define:

$$P = \frac{U^2}{R}$$
 and $log(x^2) = 2 * log(x)$

• 1dB= 20 *
$$log(\frac{U_2}{U_1})$$
 [-, V, V]

U [V]		P [W]
reduction	dB	reduction
1	0	1
0,89	1	0,79
0,79	2	0,63
0,707	з	0,5
0,5	6	0,25
0,35	9	0,125
0,316	10	0,1
0,22	13	0,05
0,1	20	0,01
0,01	40	0,0001

3. Filter

- example of the low-past filter
 - cutoff frequency 10Hz
 - slope 20dB/dec

U [V]		P [W]
reduction	dB	reduction
1	0	1
0,89	1	0,79
0,79	2	0,63
0,707	з	0,5
0,5	6	0,25
0,35	9	0,125
0,316	10	0,1
0,22	13	0,05
0,1	20	0,01
0,01	40	0,0001

- the amplitude of the signal with a frequency lower than the cutoff frequency did not change
- 20dB/dec means that on the range of one order (for example from 10 to 100Hz) the signal amplitude is reduced 10x
- the amplitude of the signal with a frequency of 100Hz is reduced to one tenth, ie 1V

3. Filter

- example of the real low-past filter
 - low-pass filter, type Butterworth, cutoff frequency 100Hz
 - left first order, right sixth order

amplitude characteristic is red phase shift is green

- the decrease in the real filter characteristic may not be linear
- each filter also causes a phase shift of the signal !!!!
- the higher order has a steeper slope of the amplitude characteristic, but also a larger phase shift

3. Filter

Summary of the filter properties

- filter type according to the non transferred band
- cutoff frequency [Hz]
- the slope of the filter amplitude characteristic [dB/dec]
 - type of electrical circuit (Bessel, Butterworth)
 - filter order

3. Filter

- final controversy whether to use the filter or not
 - it will never be in the measured data what the filter stops!!!
 - an incorrectly set filter can invalidate the measured data
 - the data will not contain some signal component
 - there will be a phase shift on the signals
 - the filter can also be applied mathematically to the measured data
 - for short-term non-repetitive measurements
 - it is better not to use any HW filter, to record all even with noise and then do the filtering mathematically on data files
 - it can be judged (compared) how the filter will affect the signal, but it is added work
 - for long-term repetitive measurements
 - to measure for the first time without a filter
 - using mathematical filtering on the measured data for "tune" the filter parameters to remove noise and not affect the signals
 - to set the real filter parameters by obtained parameters and use it for further repeated measurements
 - no further mathematical filtering of the data is then required

Exam questions

- sensor static and dynamic properties
 - input range (p. 3)
 - sensor static transmission characteristic (sensitivity) (p. 4)
 - additive error and multiplicative error (p. 7, 8)
 - the sensor relative error (accuracy) and the sensor resolution (p.9, 10)
 - the sensor frequency characteristic, amplitude and phase characteristic (p. 12, 13)
 - the sensor frequency range (p. 14)
 - sensor properties summary (p. 15)
- amplifier
 - unipolar and differential amplifier, principal, gain (p. 16)
 - amplifier properties summary (p. 17)
- filter
 - filters classification according to the non transferred band (p. 19)
 - the slope of the filter amplitude characteristic, unit (p. 20, 21)
 - filter type and filter order and their influence on the characteristic slope (p. 20, 23)
 - filter properties summary (p. 24)