

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Preparation of the international Ph.D. study programme "Environmental Engineering" CZ.02.2.69/0.0/0.0/16_018/0002660

Transport processes in rock and soil

Lecture 2

Doc. Ing. Milan Hokr, Ph.D. Technical University of Liberec

Reminder

- Porous medium
- Homogenization
- Representative elementary volume (REV)
- Porosity
- Darcy's Law
 - Hydraulic conductivity
 - Piezometric head
- Average pore velocity X Darcy velocity

Plans

- Darcy's Law in 3D differential form
- Full system of flow equations (+balance)
- Characterisation of the hydraulic conductivity K
- Boundary conditions (for diff. eq.)
 - Cases for groundwater flow configurations

Water flow velocity – reminder

$$oldsymbol{v} = rac{1}{V_{REV}^w} \int\limits_{V_{REV}^w} oldsymbol{v}^{(mic)} \mathrm{d}V^w$$
 Water/pore volume

$$oldsymbol{q} = rac{1}{V_{REV}}\int\limits_{V_{REV}} oldsymbol{v}^{(mic)} \mathrm{d}V$$
 Total volume

Q = 191

$$qS = vSn$$

$$q = vn$$

$$v = \frac{q}{n}$$

$$v > q$$

v ... Particle movement from point to point

q ... Amount of water (across unit area)

q ... "Darcy velocity" (flow rate density)

v ... (average) pore velocity

Differential form

Experimental column ... infinitesimally small distance

- Spatial coordinates
- Generalized Darcy's Law

$$\frac{\partial}{\partial t} = -K \frac{\partial L}{\partial x}$$

$$\frac{\partial}{\partial t} = -K \left(\frac{\partial L}{\partial x} + \nabla R \right)$$

$$\frac{\partial}{\partial t} = -K \frac{\partial L}{\partial x}$$

Hydraulic conductivity

- Controlled by
 - Porous medium properties (microstructure geometry)
 - Fluid properties (viscosity)

$d = -K \left(\frac{90}{90} + 712 \right)$	= - k (on +pgon)
K < VLASNOST PROSTREDÍ N - 11- TEKUTINY VISKOZITÁ	1
	V KINEMAT. VISK [m2/s]
[m/o] K = 18-8	(M. DYNAM. VISK [Pa.s] REPREMENTION (PROSTREDI) (PROSTREDI)
	1D 2010-12

Kinematic viscosity
Dynamic viscosity
Permeability

Special unit 1 "Darcy"

Pore geometry ... anisotropy ... K

Properties of rock/soil

Full system of governing equation for porous media flow

18-mdV = - (89 ds + 1 PpdV Pobjewovy zdrog ZDROJE | PROPADY HMOTNOST OBJEMON (GAUSS.V.) Spardv = Smdir (gar)dV V V. (gar) dr (pm) dV + (v. (pq) dV - (pp dV = 0 Arbitrary dV dv=0 LIBOVOLUY V INTEGRAND = 0 d (pm)+ V-(pg) = Ppin STLACITELNOST compressibility

Both fluid and solid matric are incompressible
A) NESTLACITELNA TEKUTINA I MATRICE > of (pin) =0
ROTAICE V. Q = P
ROTHICE $\nabla \cdot \vec{Q} = P$ DOSAZENÍ $\nabla \cdot (-k\nabla h) = P$ $-\nabla (k\nabla h)$ POTENICIÁLOVÉ POLE
-√ (K ¬ l) Potential field
K KOUST K. D. & POTENKIALOVÉ POLE
(\$)d
LEAN POR EUPTICKÁ
Elliptic partial differential
equation (PDE)
Instant reaction to external condition change = "perfect inelastic"
I DEALIZACE OKAMZITA REAKCE NA ZMENU VNEJSICH PODM.
"IDYTNE hEbbash, "
APROX: SERVENCE STACIONARNICH STAVŮ
Model approximation as a sequence of steady states

Compressible case

Boundary conditions

Zero flux for

- Isolated boundary
- symmetry

Examples – natural groundwater systems

