

New Opportunities for the Development of Education at the Technical University of Liberec

Specific objective A2: Development in the field of distance learning, online learning and blended learning

NPO_TUL_MSMT-16598/2022

KNT_TNA_Other methods of nanofiber production

Ing. Radek Jirkovec, Ph.D.

Repetition

Production of nanofibers:

- DC spinning
- AC spinning
- Centrifugal spinning

Other methods of production

- Melt-blown
- Bicomponent fibers
- Drawing
- Synthesis by template
- Phase separation
- Self-assembly

Production of fibers by blowing polymer melt

- Process:
 - Polymer melting
 - Transport of melt to the nozzle
 - Entrainment of the melt by a stream of hot air
 - Fiber drawing
 - Storing fibers on the collector

- Process parameters:
 - Melt flow index
 - MFI: 1000-1800
 - Hole size
 - 0.1-0.15 mm
 - Number of holes
 - 100 holes per inch
 - Dosage
 - 0.01 g/hole/min
 - Air temperature
 - 290-400 °C
 - Air flow rate
 - 100-500 mps

Run I.D.	$T_{\mathbf{p}}, T_{\mathbf{a}}$ (°C)	η^* at 1 s ⁻¹ (Pa s)	m _p (g/min)	$\phi_{\rm a}$ (SCFM)	Γ	d _{av} (μm)
PS-1	180	23	0.053	8	9	1.61
PS-2	260	1.6	0.07	7.5	6.4	0.62
PS-3	280	1.1	0.07	8	6.8	0.38
PP-1	180	35	0.35	6	0.5	1.23
PP-2	180	35	0.035	8	13.6	0.45
PP-3	220	15	0.035	8	13.6	0.30
PBT-1	265	137	0.35	4.5	0.4	1.22
PBT-2	265	137	0.035	10	17	0.44

Summary of the melt blowing experiments

Melt-blown – industrial line

Bicomponent fibers

FAMILY	BICOMPONENT FIBERS VARIANTS						
CORE & SHEATH	50/50	20/80	ECCENTRIC	TRILOBAL	CONDUCTIVE		
SIDE BY SIDE	50/50 20/80	MIXED VISCOSITY	ABA MIXED VISCOSITIES	TRILOBAL OR OTHERS	CONDUCTIVE		
TIPPED	TRILOBAL	CROSS					
MICRO - DENIER	SEGMENTED PIE	ISLAN	IDS-IN-A-SEA		STRIPED		
MIXED FIBERS	∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅<	⊗ ⊗ ⊗ ⊗ ⊗ ⊗ DENIERS, COMF	PONENTS, CROSS-	SECTIONS	© ⊗ ⊗ BICOMPONENT/ HOMOFILAMENT		

Bicomponent fibers

Bicomponent fibers

- Bicomponent fibers type islands in the sea
- 240 1120 nanofibers from one bicomponent fiber

Drawing

- Extraction of nanofiber from a polymer drop
- For solutions and melts
- Production of individual oriented fibers
- Unable to control fiber dimensions

Drawing

Drawing

 Use of oriented fiber scaffolds for nerve or muscle tissue

Synthesis by template

 Use of a template to obtain the required nanofiber materials

solution

solution

Production of fibers and tubes

Possibility to control fiber diameters

The template contains nanopores

pressured water

Synthesis by template

A) Schematic of the fabrication of polymer nanofibers using a nondestructive templating technique (grey: alumina template, green: resin, blue: polymer nanofibers, pink: silica replica template. (B-E) SEM images of 120 nm (b&c) and $1\mu m$ (d&e) polymer fibers fabricated by the above technique

Phase separation

- The production method includes the steps of:
 - Forming a solution
 - Gelation
 - Wash the solvent
 - Lyophilization

Phase separation

- Fiber diameters cannot be controlled
- A bulky nanofibrous material is formed

Formation of PLLA scaffolds with phase-separation Scanning electron microscopy images of poly(L-lactide) (PLLA) scaffolds produced using the phase-separation technique. (A) $500\times$, (B) $20,000\times$ magnification (scale bars are $50~\mu m$ and $1~\mu m$, respectively)

Self-assembly

- Nanofibers are formed by joining individual molecules through non-binding interactions
- Fiber diameters cannot be controlled

Comparison

Technology	Production	Fiber diameter	
Electrospinning	Indrustrial	over 50 nm	
Centrifugal spinning	Indrustrial	over 200 nm	
Melt-blown	Indrustrial	over 150 nm	
Bicomponent fibers	Indrustrial	over 500 nm	
Drawing	Laboratory	2 – 100 nm	
Synthesis by template	Laboratory	approx 100 nm	
Phase separation	Laboratory	50 – 500 nm	
Self-assembly	Laboratory	10 – 100 nm	

Thank you for your attention!

TEST

- What are the methods of nanofiber production?
- What melt flow index is used for melt-blown technology?
- How are nanofibers created by drawing technology?
- What methods can be used to produce bulky nanofiber material?