Příklad 4

Zadání příkladu:

U 32 pracovníků jisté firmy byl v rámci průzkumu zjištěn počet dětí do patnácti let:

1, 0, 4, 2, 1, 1, 0, 0, 3, 2, 0, 1, 3, 2, 2, 0, 1, 1, 2, 0, 0, 1, 2, 1, 0, 2, 0, 2, 0, 2, 0, 2

Stanovte modus a aritmetický průměr proměnné počet dětí do patnácti let a vypočtené hodnoty interpretujte. Dále změřte variabilitu proměnné směrodatnou odchylkou a variačním koeficientem, stanovené hodnoty rovněž interpretujte.

Vypracování příkladu:

Tabulka pro výpočet

Počet dětí <i>x_i</i>	n _i	$x_i n_i$	$x_i^2 n_i$
0	11	0	0
1	8	8	8
2	10	20	40
3	2	6	18
4	1	4	16
Celkem	32	38	82

Pro výpočet z tabulky rozdělení četností používáme vážené tvary příslušných vzorců.

 $\hat{x} = 0$

$$\overline{x} = \frac{\sum_{i=1}^{k} x_i n_i}{\sum_{i=1}^{k} n_i} = \frac{38}{32} = 1,1875$$

$$s_x^2 = \frac{\sum_{i=1}^{k} x_i^2 n_i}{\sum_{i=1}^{k} n_i} - \left(\frac{\sum_{i=1}^{k} x_i n_i}{\sum_{i=1}^{k} n_i}\right)^2 = \frac{82}{32} - \left(\frac{38}{32}\right)^2 \doteq 1,1523437$$

$$s_x = \sqrt{s_x^2} = \sqrt{1,1523437} \doteq 1,0735$$

$$V_x = \frac{s_x}{\overline{x}} = \frac{1,0735}{1,1875} \doteq 0,904$$

Interpretace:

 $\hat{x} = 0$ V daném souboru je nejvíce pracovníků bezdětných.

 $\overline{x} = 1,1875$ Průměrný počet dětí do patnácti let na jednoho pracovníka je 1,1875.

 $s_x = 1,0735$ V průměru se počet dětí jednotlivých pracovníků liší od svého aritmetického o 1,0735 v obou směrech.

 $V_x = 0,904$ Směrodatná odchylka se na průměru hodnot podílí 90,4 %. Jedná se o velmi vysokou relativní variabilitu.

SPSS 28:

Vytvořit proměnnou (data vložit do sloupce).

Analyze - Descriptive Statistics - Frequencies

Proměnnou přesunout doprava do pole Variable(s).

Tlačítko Statistics: zaškrtnout všechny požadované charakteristiky a potvrdit (Continue, OK).

Statistics

Počet_dětí

Ν	Valid	32
	Missing	0
Mean		1,19
Mode		0
Std. Deviation		1,091
Variance		1,190

Vzhledem k tomu, že SPSS 28 počítá výběrovou směrodatnou odchylku, je nezbytné její hodnotu přepočítat, aby odpovídala klasickému tvaru, a to podle vzorce

$$s_x = s'_x \sqrt{\frac{n-1}{n}} \, .$$

Pozn.: SPSS 28 má přednastaveno zaokrouhlování výsledků na určitý počet desetinných míst a v případě, že chceme počet desetinných míst změnit, je třeba provést následující akci. Na tabulku s vypočtenou hodnotou dvakrát klikneme, aby se otevřela tabulka pro úpravy (Pivot Table). Následně klikneme na hodnotu, u které chceme změnit počet desetinných míst a klikáním na ikonky v liště nahoře (šipka se třemi nulami) můžeme přidávat, resp. ubírat desetinná místa.

EXCEL:

Vzorce – Další funkce – Statistická

Postupně zvolíme funkce, které chceme vypočítat.

V panelu Argumenty funkce vždy zadáme do řádku 1 hodnoty A1:A32.

Technická univerzita v Liberci Ekonomická fakulta Katedra ekonomické statistiky *Téma 3 Příklad 4*

MODE = 0 AVERAGEA = 1,1875 VAR = 1,15234375 SMODCH = 1,073472752