Téma 11 Příklad 1

Příklad 1

Zadání příkladu:

Výsledky kontroly 100 náhodně vybraných DVD lze popsat rozdělením četností počtu vad viz tabulka.

Počet vad	n _i
0	65
1	20
2	10
3+	5
Celkem	100

N 5% hladině významnosti rozhodněte, zda lze počet vad na DVD považovat za náhodnou veličinu, která se řídí Poissonovým rozdělením s parametrem $\lambda = 0.55$.

Vypracování příkladu:

Počet vad	n _i Empirická četnost	$\pi_{0,i}$ Teoretická četnost	$n\pi_{0,i}$ Očekávaná četnost	$\frac{(n_i - n\pi_{0,i})^2}{n\pi_{0,i}}$
0	65	0,57695	57,695	0,92492
1	20	0,31732	31,732	4,33757
2	10	0,08726	8,726	0,18600
3+	5	0,01847	1,847	5,38246
Celkem	100	1,00000	100,00	10,83095

Teoretická četnost = pravděpodobnostní funkce Po(0,55).

Hodnoty pro parametr $\lambda = 0.55$ nelze nalézt v běžných statistických tabulkách, proto je třeba každou hodnotu vypočítat dosazením do pravděpodobnostní funkce Poissonova rozdělení.

$$P(x) = e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}$$

$$P(0) = e^{-0.55} \cdot \frac{\lambda^{0}}{0!} \doteq 0.57695$$

$$P(1) = e^{-0.55} \cdot \frac{\lambda^{1}}{1!} \doteq 0.31732$$

$$P(2) = e^{-0.55} \cdot \frac{\lambda^{2}}{2!} \doteq 0.08726$$

$$P(X \ge 3) = P(X \le 2) \doteq 0.01847$$

1. H_0 : *vyhovuje* Po(0,55) H_1 : *non* H_0

2.
$$G = \sum_{i=1}^{k} \frac{(n_i - n\pi_{0,i})^2}{n\pi_{0,i}} = 10,83095$$

3. $W = \{G; G \ge \chi^2_{1-\alpha}(k-1)\}$ $W = \{G; G \ge \chi^2_{0,95}(3)\}$ $W = \{G; G \ge 7.81\}$

Kvantil rozdělení χ^2 vyhledáme ve statistických tabulkách.

4. Závěr testu:

Testové kritérium leží v kritickém oboru, proto zamítáme H_0 a přijímáme H_1 . Na 5% hladině významnosti jsme prokázali, že počet vad na DVD nelze považovat za náhodnou veličinu, která se řídí Poissonovým rozdělením s parametrem $\lambda = 0.55$.

SPSS 28:

Zadat do datového listu tabulku rozdělení četností počtu vad. V proměnné x tak vytvoříme řadu hodnot, se kterou budeme nadále pracovat.

Analyze - Nonparametric Tests - Legacy Dialogs - Chi-square

Proměnnou x přesunout doprava do pole Test Variable(s).

V okně *Expected Values* zaškrtneme položku *Values*. Vedle se otevře zadávací okénko, do něhož postupně vložíme pravděpodobnosti pro 0, 1, 2, 3 a více. Potvrdíme OK.

Test Statistics			
	VAR00001		
Chi-Square	10,811 ^a		
df	3		
Asymp. Sig.	,013		

Nejnižší hladina významnosti pro zamítnutí H_0 je 0,013, proto na 5% hladině významnosti zamítáme H_0 a přijímáme H_1 .

MS EXCEL:

Do jednoho sloupce zadáme empirické četnosti, do vedlejšího sloupce očekávané četnosti, vypočtené pro Poissonovo rozdělení s parametrem $\lambda = 0,55$. V tomto případě byly navíc sloučeny poslední dvě třídy z důvodu nedostatečného obsazení poslední třídy.

Vzorce – Další funkce – Statistická

Zvolíme funkci CHITEST.

V panelu Argumenty funkce zadáme do jednotlivých řádků:

Aktuální: empirické četnosti

Očekávané: teoretické (očekávané) četnosti

Výsledkem testu je hodnota P - Value = 0,028494 < 0,05. Na 5% hladině významnosti proto zamítáme H_0 a přijímáme H_1 . Prokázali jsme, že počet vad na DVD nelze považovat za náhodnou veličinu, která se řídí Poissonovým rozdělením s parametrem $\lambda = 0,55$.