# Additive manufacturing (Rapid Prototyping)

Ing. Petr Keller, Ph.D.

#### **Additive manufacturing**

## The approved process categories according the standard ISO/ASTM 52900 are presented in the following list:

- material extrusion an additive manufacturing process in which material is selectively dispensed through a nozzle or orifice
- material jetting an additive manufacturing process in which droplets of build material are selectively deposited
- binder jetting an additive manufacturing process in which a liquid bonding agent is selectively deposited to join powder material
- sheet lamination an additive manufacturing process in which sheets of material are bonded to form a part
- vat photo-polymerization an additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization
- powder bed fusion an additive manufacturing process in which thermal energy selectively fuses regions of powder bed
- directed energy deposition an additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited

#### Additive manufacturing – summary

#### Classification by initial material:

#### Liquid:

Stereolithography Apparatus (SLA)
 Solid Ground Curing (SGC)
 Digital Light Processing (DLP)

Polyjet printing

#### Powder:

- Selective Laser Sintering (SLS)

- Selective Laser Melting (SLM, DMLS)

- Three Dimensional Printing (3DP)

- Multi Jet Fusion (MJF)

#### Solid:

Fused Deposition Modelling (FDM)

Laminated Object Manufacturing (LOM)

- Thermoplastic Ink Jet (TIJ)

- ARBURG Plastic Freeforming (APF)

#### **Photopolymer**

- a polymer that changes its properties when exposed to light
- these changes are often manifested structurally, e. g. hardening of the material occurs as a result of cross-linking when exposed to light
- example is shown below depicting a mixture of monomers, oligomers, and photo initiators that conform into a hardened polymeric material through a process called curing.



#### **Additive manufacturing**

 vat photo-polymerization – an additive manufacturing process in which liquid photopolymer in a vat is selectively cured by light-activated polymerization



Source: matca.cz/technologie/aditivni-technologie/

#### Stereolitography Apparatus



- curing the photopolymer selectively by laser in a thin layer on the surface
- liquid unprocessed
   photopolymer serves
   partly as a support,
   nevertheless it is
   necessary to build sparse
   supports for fixing the
   part on the platform
- the unprocessed photopolymer in the bath can be reused

#### Stereolitography Apparatus



#### Stereolitography Apparatus



- the supports are made of the same material as the model itself (they are very thin, so they look clear)
- they are attached to the surface of the part with a very small area, they can be easily removed mechanically without leaving traces
- the part is "sticky" after removal from the bath, subsequent curing in UV light is required







## Principals of point to point layer ceration



|                                     | Stereolithography (SLA)                                                                                                                                                                                                                                   |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications                        | Excellent for fit and form testing. Ideal for trade show-quality parts via painting and texturing. Best process for water resistant materials, not waterproof.                                                                                            |  |
| Maximum Dimensions                  | 635 x 635 x 530 [mm]                                                                                                                                                                                                                                      |  |
| Layer Thickness                     | High-Resolution: 0.050 - 0.100 [mm] Standard Resolution: 0.127 - 0.150 [mm]                                                                                                                                                                               |  |
| Material Options                    | ABS-Like White (Standard & High Res), ABS-Like Gray, ABS-Like Black, Rigid PC-Like (Standard & High Res), Durable PP-Like (Standard & High Res), Semi-Flexible, High-Impact ABS-Like, High-Temp ABS-Like, High-Temp PC-Like, Rigid, & Technician's Choice |  |
| Recommended Minimum Feature<br>Size | High-Resolution:<br>0.25 - 0.38 [mm]<br>Standard Resolution:<br>0.64 - 0.89 [mm]                                                                                                                                                                          |  |

### Advantages of SLA technology

- fine surfaces
- a big volume
- high accuracy (+/- 0.05 mm)



- one of the best process for indirect tools manufacturing
- micro Stereolithography for very small parts (micro or millimetres) – still in development







## Disadvantages of SLA technology

- a high volume of expensive photopolymers
- fragile parts
- limited materials
- the liquid resin is very sensitive to humidity
- the liquid resins are a potential hazard
- post-processing is necessary

#### **Inverted Stereolitography Apparatus**



#### **Solid Ground Curing**



## SGC: Solider



| Machine              | Solider SGC<br>4600 | Solider SGC<br>5600 |
|----------------------|---------------------|---------------------|
| Volume [mm]          | 350 x 350 x 350     | 500 x 350 x 500     |
| Accuracy [mm]        | ±0,084              | ±0,084              |
| Planarity [mm]       | 0,15                | 0,15                |
| Layer thickness [mm] | 0,1 – 0,2           | 0,1 – 0,2           |
| Speed                | 120 s / layer       | 65 s / layer        |
| Price [USD]          | about 200 000       | about 350 000       |

#### **Digital Light Processing**







#### **Digital Light Processing**



#### **Digital Light Processing**



#### **Advantages of Digital Light Processing**

- Relatively simple printing with good surface quality
- Reverse principle low consumption of photopolymer (it is enough if the level is higher than the thickness of the layer
- Also used for hobby printing
- Possibility of composite printing (eg photopolymer + ceramics)

#### **Disadvantages of Digital Light Processing**

- Materials based on photopolymers usually have poorer mechanical properties, especially they are mostly fragile
- Relatively short service life of materials
- Worse dimensional accuracy against SLA

#### Vat photo-polymerization

#### **SLA vs DLP**



#### **Vat photo-polymerization**

#### **SLA vs DLP**



Source: formlabs.com/eu/blog/resin-3d-printer-comparison-sla-vs-dlp

#### Additive manufacturing

 material jetting – an additive manufacturing process in which droplets of build material are selectively deposited



Source: matca.cz/technologie/aditivni-technologie/

### **Polyjet Printing**













#### **Polyjet Printing**



#### **Stratasys J750**













#### **Stratasys J750**

| Product Specifications  |                                                                                                                                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model Materials         | Vero <sup>™</sup> family of opaque materials including neutral shades and vibrant colors Tango <sup>™</sup> family of flexible materials Transparent VeroClear <sup>™</sup> and RGD720                  |
| Digital Model Materials | Unlimited number of composite materials including: Over 360,000 colors Digital ABS and Digital ABS2™ in ivory and green Rubber-like materials in a variety of Shore A values Translucent color tints    |
| Support Materials       | SUP705 (WaterJet removable)                                                                                                                                                                             |
| Build Size              | 490 x 390 x 200 mm (19.3 x 15.35 x 7.9 in.)                                                                                                                                                             |
| Layer Thickness         | Horizontal build layers down to 14 microns (0.00055 in.)                                                                                                                                                |
| Software                | PolyJet Studio™ 3D printing software                                                                                                                                                                    |
| Build Modes             | High Speed: up to 3 base resins, 27-micron (0.001 in.) resolution High Quality: up to 6 base resins, 14-micron (0.00055 in.) resolution High Mix: up to 6 base resins, 27-micron (0.001 in.) resolution |
| Accuracy                | 20-85 microns for features below 50 mm;<br>up to 200 microns for full model size (for rigid materials only)                                                                                             |
| Resolution              | X-axis: 600 dpi; Y-axis: 600 dpi; Z-axis: 1800 dpi                                                                                                                                                      |

#### **Advantages of PolyJet Printing**

- Possibility to combine materials
- Full colour printing
- Layer thickness 14 µm excellent surface quality
- Materials can be combined with each other so called digital materials - modification of properties

#### Disadvantages of PolyJet Printing

- Materials based on photopolymers usually have poorer mechanical properties, especially they are mostly fragile
- Relatively short service life of materials
- Immediately after printing, the printer heads need to be cleaned or they will dry out