Design of hobby 3D printers

Ing. Petr Keller, Ph.D.

Choice of technology:

- FLM technology
- DLP technology
- (3DP Technology)

RepRap 1.0 Darwin

Types of FLM printers

Cartesian

Left: Prusa printer, where the nozzles move in the Z axis

Right: Sigma R17 printer, where the printing plate moves in the Z-axis

CoreXY

Delta

Polar

Robotic - e.g. SCARA concept

Principles of machine design for servo drives (stepper motors)

- minimal clearance $x_v < 10 \mu m$ (20 μm)
- minimal passive resistance –

(otherwise there is a risk of irremovable jerky movements)

- minimisation of friction in guides

- rolling guides
- sliding with special materials (Teflon, etc.)
- hydrostatic
- minimising friction in drive mechanisms
 - ball screw
 - hydrostatic screws (expensive)
 - linear drives (trend)
- $f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \ge 50 \text{Hz}$ (30HZ) maximum stiffness – evaluated by natural frequency
- appropriate moment of inertia $J_z \le 3 J_m$

 J_7 – reduced moment of inertia of the load (calculated per motor)

J_m – motor moment of inertia

section of linear axis design with ball screw and rolling guide

 section of linear axis structure with toothed belt and rolling guide with guide rods of circular cross-section

section of rotary axis design with worm and worm wheel

rotary axis design with a gapless globoid cam

Frame

The bottom frame of the Rebel 2 printer, where the "combi" profiles connect the printed plastic plates

Connection of "combi" profiles via threaded insert and M6 screw

Drives

Threaded rod M6 and flexible hose coupling

Stepper motor with integrated trapezoidal screw

Drive with a trapezoidal screw mounted in bearings at both ends, connected to the motor via a flexible coupling

Stepper motors

Bipolar stepper motor Microcon SX17-1005

Momentová charakteristika motoru SX17-1003LQCEF, SX17-1005LQCEF s CD30x, CD30M (24; 48 VDC); SX17-1005LQCEF s SD14RE (40 VDC)

Extruder

Types of extruders

Diamond nozzle

Prusa i3 MK2 Multi-Material

Cyclops

Kraken

Dual head - TUL - KSA design

Filament feed wheels

China production

Machined at KSA

Stepper motor drivers

	A4988	DRV8825	
Max. current	2A	2.5A	
Max. microsteps	16	32	
PCB colour	Green or red	Purple	
Trimmer for current adjustment	Yes – at pin Dir		
Typical value of Rs	0.05 Ohm or 0.1 Ohm or 0.2 Ohm		
Calculation for Vref setting	Vref = I_TripMax * 8 * Rs		
Number of PCB layers	2	4	

Stepper motor drivers

SilentStepStick	TMC2100 (5V)	TMC2100 (3-5V)	TMC2130 (3-5V)	TMC2208 (3-5V)
SilentStepStick				
Interface	Step/Dir	Step/Dir	Step/Dir or SPI	Step/Dir
Configuration	CFG Pins	CFG Pins	CFG Pins or SPI	CFG Pins or UART
Native Microsteps*	up to 1/16	up to 1/16	up to 1/256	up to 1/256
microPlyer Microsteps	1/256	1/256	1/256	1/256
Logic Voltage VIO	5V	3 - 5V	3 - 5V	3 - 5V
Motor Voltage VM	4.75 - 46V	5.5 - 46V	5.5 - 46V	5.5 - 36V
Motor Phase Current	1.2A RMS, 2.5A Peak	1.2A RMS, 2.5A Peak	1.2A RMS, 2.5A Peak	1.2A RMS, 2.0A Peak
VM always needed**	no	yes	yes	yes
Internal V- Regulator**	disabled	enabled	enabled	enabled
RDSon	>=0.5 Ohm	>=0.5 Ohm	>=0.5 Ohm	<=0.3 Ohm
stealthChop (quiet)	yes	yes	yes	yes
spreadCycle	yes	yes	yes	yes
coolStep	no	no	yes	no
stallGuard	no	no	yes	no
dcStep	no	no	yes	no

Control electronics

Arduino Mega 2560

RAMPS 1.4

Control electronics

Control board MKS-GEN L V1.0

Control board Einsy Rambo 1.1a with integrated drivers for stepper motors (4 x Trinamic TMC2130)

Control electronics

Firmware

Repetier – web configurator: https://www.repetier.com/firmware/v100/index.php

Marlin – configuration description: http://marlinfw.org/docs/configuration/configuration.html

Overview of the most common materials for FLM technology:

	Odolnost				، در]	
Materiál	Materiál UV záření Kyseliny Hydroxidy Teplota (do 90°C)	Přibližná teplota pro zpracování [°C	Rozpustnost			
ABS	+	~	/	~	210-250	estery, ketony, xyleny, chloroform, etylén dichloridu, aceton
PLA	×	+	×	×	180-220	tetrahydrofurén, hydroxid sodný, chloroform
Nylon (PA6)	+	+	~	~	230-280	kyselina sírová (96%)
СРЕ	>	/	/	X	255-275	-
PC	+	+	×	~	230-280	dimethylformamid, chloroform
PP	+	/	/	/	210-230	xyleny
PET-G	+	~	~	×	210-235	-
ASA	/	~	~	/	230-270	xyleny, chloroform
PMMA	~	+	×	×	220-250	chlorované uhlovodíky, estery, ketony, ethery, xyleny, aceton, chloroform

