

Geometric Characteristics of Fibers

TECHNICAL UNIVERSITY OF LIBEREC Faculty of Textile Engineering Fiber		Chemical Composition
	Properties	Technology of production
Geometric properties	 Length, Fineness, Shape of cross section 	
Mechanical properties	 Strength, Elongation at break, Modulus, Stiffness, Recovery 	
Thermal and Thermomechanical properties	 Melting point, Thermal resistance, Transition temperatures, Loss angle, Loss modulus 	
Electrical properties	 Static charge, Dielectric behavior, Tribology, Insulation, Conductivity 	
Surface properties	 Roughness, Adhesion, Wetting, Wicking, Abrasion, Aging 	

Chemical Resistance, Weather resistance, Flame resistance.....

Properties of Fibers_KMI-VV

Dr. Mohanapriya Venkataraman, M.Tech, M.F.Tech., Ph.D.

TECHNICAL UNIVERSITY OF LIBEREC Faculty of Textile Engineering Geometrical properties

- Fiber flexibility is dependent on the tensile modulus *E* and inertia moment *I*. For circular fiber having diameter *d* is $I = \pi * d^4 / 64$
- Measure of flexibility is parameter

$$F_e = 1/(M^*R),$$

where *M* is bending moment and *R* is fiber radius of curvature. For beam bending is $M^*R = E^*I$. For circular fibers with diameter *d* is 64

$$F_e = \frac{64}{E * \pi * d^4}$$

- Fiber having higher modulus E will have the same flexibility if the diameter will be smaller. For chosen flexibility fiber diameter is indirectly proportional to the fourth root of modulus i.e. 1/E⁴.
- Flexibility is indirectly proportional to fourth power of thickness(diameter). For thickness higher than 40 μ m, fibers are too stiff (rigid) and are not suitable for staple yarn formation.

Natural fibers thickness is around 10 – 40 μm Synthetic fibers thickness is around 10 – 25 μm

Fineness

Fineness (linear density) *T* [tex] is defined as weight *m* [g] of fiber having length *I*=1km.

$$T = \frac{m}{l} = \frac{l * S * \rho}{l} = S * \rho$$

S – Area of cross section ρ – Fiber (volume) density For the same fineness T is lower fiber diameter for materials having higher density ρ .

Fiber density of ; Classic fibers - 900 – 1600 kg/m³ Ceramic fibers – 2000 – 4000 kg/m³ Metal fibers – 2000 – 10000 kg/m³

Finer fibers lead to:

More even yarns

- More cohesion within the yarns due to greater surface area
 - Achieve more strength with less twist
- Less fiber stiffness
 - Better drape and softness of fabrics (e.g.: cashmere and silk)

Properties of Fibers_KMI-VV

Surface area

 Surface area S_p, is defined as are per fiber mass. For circular fibers having radius r is

$$S_{p} = \frac{2\pi * r * l}{\pi * r^{2} * l * \rho} = \frac{2}{r * \rho} = \sqrt{\frac{4 * \pi}{T * \rho}}$$

• For non circular fibers is possible to use information about perimeter O_v and cross section area S_v

$$S_{p} = \frac{O_{v} * l}{S_{v} * l * \rho} = \frac{O_{v}}{S_{v} * \rho} = \frac{4 * \pi}{O_{v} * c * \rho} = \frac{4 * \pi (q+1)^{2}}{O_{v} * c * \rho}$$

Properties of Fibers KMI-VV

Hollow Fiber

O outer fiber perimeter, O_D hole perimeter, A_D hole area, A_{V} fiber area and $A = A_{V} + A_{D}$ total area. For hollow fibers the fullness coefficient F_p is defined as

$$F_p = \frac{A - A_p}{A}$$

Maturity coefficient

$$Z = \frac{A_{\nu}}{A}$$

$$F_{p} = \frac{4 * \pi (A - A_{p})}{O^{2}} = \frac{4 * \pi * A_{v}}{O^{2}}$$
$$Z = \frac{A_{v} A}{\pi d^{2}} = F_{p}$$

Fiber Length

- According to spinnability, the critical length is around 10mm.
- Critical length L_c is the fiber length in matrix for which the force required to retain fiber on matrix F_s is equal to fiber strength F_v

$$F_s = A_i * \tau \qquad F_v = A_v * \sigma_v$$

 $\sigma_f = \int_{1}^{\frac{1}{2}} \frac{\tau \cdot 2\pi r dx}{\pi r^2} = \int_{1}^{\frac{1}{2}} \frac{2\tau}{r} dx$

 $L_c = \frac{r * \sigma_v}{2 * \tau}$

A_i is interface area between fiber and matrix A_{ν} is fiber cross section area

 τ is shear stress between fiber and matrix

- Fibers with length higher than Lc have tendency to break and their strength is • fully exploited.
- Fiber with length lower than Lc have the tendency to be removed from matrix.