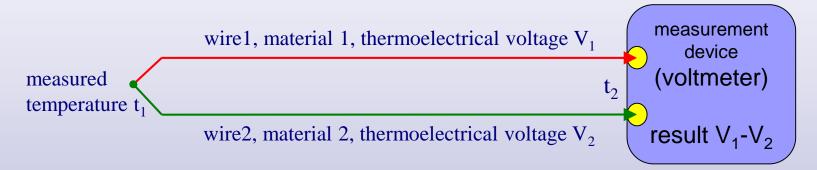

- Thermocouples
- RTD resistive sensors
- Thermistores
- Semiconductor sensor
- Non-contact measurement metodes

- the sensor function principle
 - the thermal gradient on the wire causes electrical voltage thermoelectric effect
 - discovered in 1821 by Thomas Johann Seebeck
 - the voltage value V depends on
 - the temperature difference t_1 - t_2
 - the material thermoelectric coefficient α $V = \alpha$ (t1-t2) it is on the order μV per $^{\circ}C$

temperature $\mathbf{t_1}$ wire - thermoelectric coefficient $\boldsymbol{\alpha}$ temperature $\mathbf{t_2}$ thermal gradient = thermoelectrical voltage $V = \alpha$ (t1-t2)


- the fundamental problem is to measure this voltage
 - both ends of the wire must be connected to a voltmeter for the voltage measurement
 - however, the same thermoelectric effect occurs in the connecting wire
 - if the material of both wires is the same, the same thermoelectric voltage is in both wires => the measured result = 0 (Kirchhoff's voltage law)

connecting wire, the same thermoelectric coefficient α, the same thermoelectric voltage V

- the sensor function principle
 - solving the voltage measurement problem
 - different material (different thermoelectric coefficients) wires are used

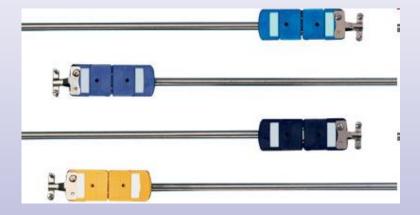
- two different material wires connected (welded) at one end are called **thermocouple**
- the resulting voltage depends on
 - the material coefficient of wires
 - stable pairs of materials are used (with different temp. coefficient and linear dependencies)
 - the temperature gradient = temperature difference between thermocouple ends
- the thermocouple does not measure temperature, but the temperature difference at both ends !!!
 - the temperature measurement end is called a "warm junction"
 - the voltmeter end is called a "reference junction"

for temperature measurement, the "reference junction" temperature must be known!

1. Thermocouples

- the sensor real design
 - typical pairs of materials (thermocouples) are used (historical development)
 - thermocouples are marked by letter and color
 - color chaos different countries, different standards = different colors for the same thermocouple
 - the temperature range depends on the thermocouple type
 - range -270°C to 1300°C (to 2320°C special wolfram alloys are used)

the most commonly used termocouples

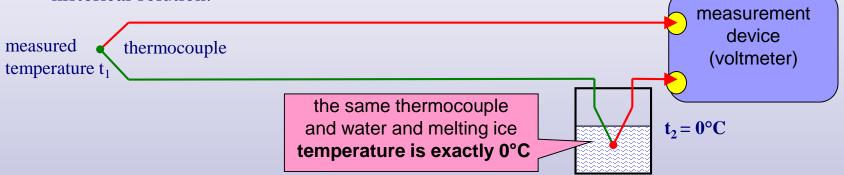

	Kombinace slitin		rozsah (°C)			Kombii	rozsah (°C)	
	Vođič +	Vodič –				Vodič +	Vodič –	
J	Fe (železo)	Cu-Ni (Konstantan)	0 až 750	5	S	Pt-10%Rh (platina- rhódium)	Pt (platina)	0 až 1450
	Ni-Cr (nikl- chrom)	Ni-Al (nikl- hliník)	-200 až 1250	I	В	Pt-30%Rh (platina- rhódium)	Pt-6%Rh (platina- rhodium)	0 až 1700
Т	Cu (měď)	Cu-Ni (Konstantan)	-200 až 350	G	<u></u> 31	W (wolfram)	W-26%Re (wolfram-	0 až 2320
Е	Ni-Cr (nikl- chrom)	Cu-Ni (Konstantan)	-200 až 900	C	₂ 1	W-5%Re	rhenium) W-26%Re	0 až 2320
N^1	Ni-Cr-Si (nicrosil)	Ni-Si-Mg (nisil)	-270 až 1300			(wolfram- rhenium)	(wolfram- rhenium)	
R	Pt-13%Rh (platina- rhódium)	Pt (platina)	0 až 1450) ¹	W3%Re (wolfram- rhenium)	W-25%Re (wolfram- rhenium)	0 až 2320

Termo	DIN 43710		ANSI MC 96.1		B\$ 4937		NF C 42-324	
	Označení EXT COM		Označení EXT COM		Označení EXT COM		Označení EXT COM	
Т			тх		тх 🛑		тх	3
U	ux 💮							
J			ух 🚺		ух 🚺		xt xt	
L	ıx 💮							
Е			EX		EX		EX	
			кх		кх		кх	
к		KCA						wc
						yx 😭		vc
N								
R S		RCB SCB		sx sx		sx sx		sc sc
В				вх				вс

1. Thermocouples

- the sensor real design
 - many different design
 - bare wires spot welded at one end the smallest temperature sensor
 - a probe and the thermocouple inside
 - laboratory or in industrial case

heating element

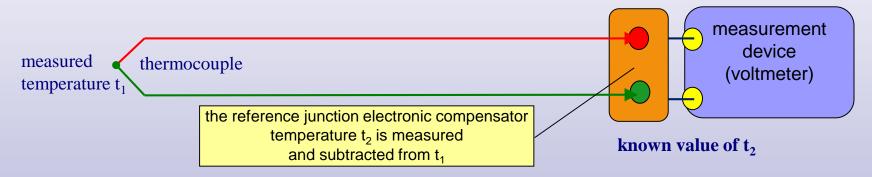

the same thermocouple in the box,

where the temperature is kept constant

usually it was 80°C

1. Thermocouples

- basic principles of connection and use
 - the temperature of the "reference junction" must be known
 - the voltage is proportional to the temperature gradient not the absolute temperature
 - reference junction compensation is used
 - historical solution:



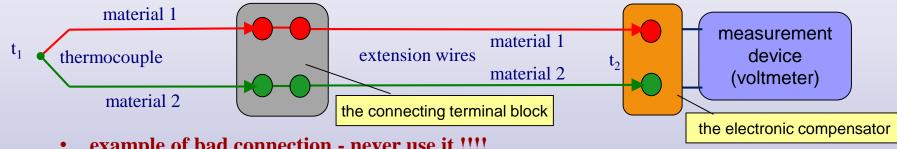
• the solution only works until all the ice has melted, so this solution has not been applicable in the industry

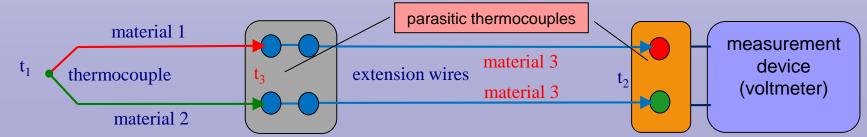
- a compensation box was used instead of ice, inside were the thermocouple and a heater
- the temperature inside box was kept constant, higher than normal ambient (usually 80°C), so that it was sustainable only by heating and no cooling was needed
- it does not matter what the cold end temperature was, a known and constant value was important

1. Thermocouples

- basic principles of connection and use
 - current solution
 - an electronic reference junction compensator is used
 - the current reference junction temperature t₂ is measured and subtracted from t₁

- electronic compensator
 - single-purpose only for one specific type of thermocouple
 - programmable the type of connected thermocouple can be set
- many different designs
 - separate compensator
 - built into the connector
 - built in the input circuits of the measurement unit





9.1. Thermocouples

- basic principles of connection and use
 - if it is necessary to extend the wires from the thermocouple
 - wires of the same material must be used !!!!!
 - all wires, connectors, terminal blocks etc. between the thermocouple and the compensator must be from the same materials !!!!

- example of bad connection never use it !!!!
 - the extension wires and terminal block are made from different materials
 - unknown parasitic thermocouples between metals 1-3 and 2-3 are formed in the connecting terminal block with an unknown temperature
 - other parasitic thermocouples are on the compensator terminals
 - all parasitic thermocouples measure something, the resulting displayed value is complete nonsense

1. Thermocouples

basic properties:

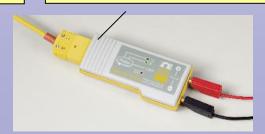
- different types of thermocouples for different temperature zones
 - range of common types approx. -200 ° C to 1200 ° C
 - \bullet special types extremes -270 $^{\circ}$ C and 2300 $^{\circ}$ C
 - not the whole range at once, just using different types of thermocouples
- appropriate wires insulation must be used problematic at high temperatures

advantages:

- large temperature range
- large selection of designs bare wires, probes
- the smallest possible temperature sensor
 - only two thin at the end welded wires

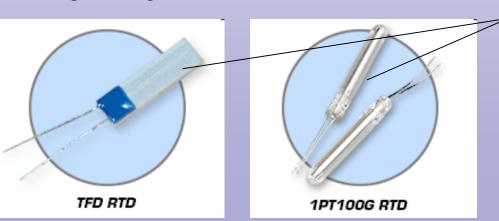
disadvantages:

- cold junction compensation according to the type of thermocouple is needed
- the entire connecting cables, connectors and terminal blocks must be from the same material as the thermocouple

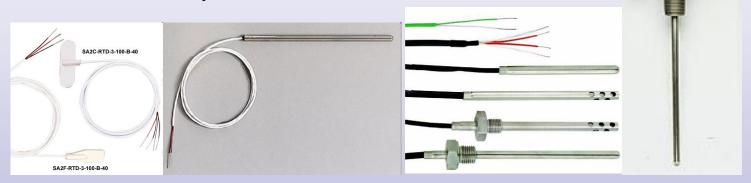

K-type thermocouple - yellow

connector and extension cable type K - yellow

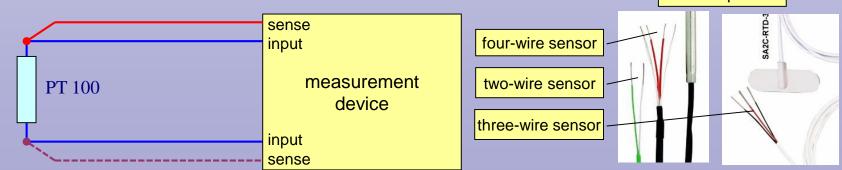
compensator for K-type - yellow



2. Resistive sensors


- the sensor function principle
 - dependence of resistance on temperature is used
 - $\mathbf{R} = \mathbf{R}_0 (1 + \alpha \Delta t)$
 - R_0 is the resistance at 0° C
 - α is the material temperature coefficient
 - Δt is the temperature difference from 0°C
 - the temperature change is converted to a sensor resistance change
 - this type of sensor is sometimes called RTD (Resistance Temperature Detector)
 - the resistance of each electrical conductor material varies with temperature
 - however, platinum (Pt) is used almost exclusively for temperature sensors, long-term stability is the main reason
 - the historical default resistance value for 0° C is 100Ω
 - PT100 slang marking for this sensor is derived from this

element with wound resistance wire


2. Resistive sensors

- the sensor real design
 - many different design
 - encapsulated element with wound resistance wire
 - a probe and an element with resistance wire
 - laboratory or in industrial case

- basic principles of connection
 - two-wire connection for short wire distances only
 - three or four-wire connection for long wire resistance compensation must be used (SENSE inputs, similar principle to strain gauges)

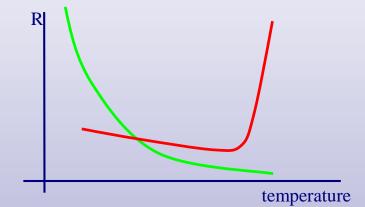
 examples

2. Resistive sensors

basic properties:

- range of common types approx. -50 ° C to 400 ° C
- special types extremes -200 ° C and 600 ° C
 - the appropriate probe material and conductor insulation must be used

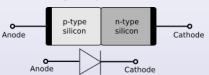
advantages:


- the most accurate temperature sensor
- large selection of designs encapsulated measuring element, probes, industrial probes
- no special cabling, no cold junction compensation

disadvantages:

- smaller temperature range
- larger dimensions
- higher price

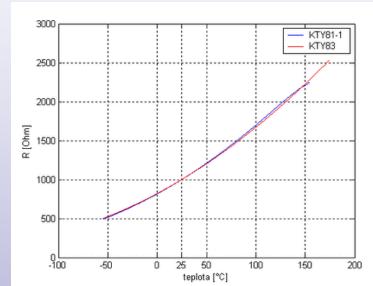
- the sensor function principle
 - the temperature change is converted to a sensor resistance change
 - the same principle as resistance sensor
 - another, very cheap material is used
 - polycrystalline ferroelectric ceramics (barium titanate BaTiO₃)
 - very nonlinear dependence
 - positive **posistor** or negative **negastor**
 - the sensor real design
 - electronic component
 - can be built into the probe
- basic properties:
 - temperature range -50 ° C to 150 ° C
- advantage:
 - minimal price
- disadvantage:
 - very nonlinear dependence



- due to nonlinearity, it is practically not used today
 - it was replaced by an equally cheap semiconductor component

4. Semiconductor sensors

- the sensor function principle
 - the temperature dependence of the P-N junction (diode) is used
 - slightly nonlinear dependence

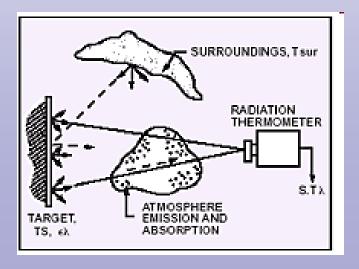


the sensor real design

- semiconductor device
- integrated circuit production technology
- circuits for characteristic linearization are built in
- from the user's point of view, it is a component whose resistance changes linearly with temperature or the output may be a specific data bus
- two variants of use
 - component on the circuit board of the device
 - placement in a probe or industrial case

basic properties:

- temperature range -50 ° C to 150 ° C
- advantages:
 - minimal price
 - many variants of output formats, easy connection

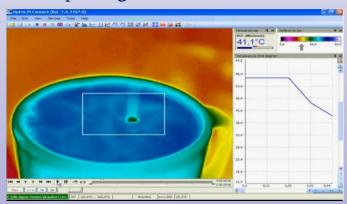


5. Non-contact measurement metodes

- the sensor function principle
 - infrared radiation of the measured object is detected by CCD sensor sensitive in the infrared region of the spectrum
 - the measured object must radiate "measurable heat"
 - it is affected by
 - distance of the sensor from the object
 - emissivity of the object surface
 - the ratio of the radiated energy of the object's surface at a given temperature to the energy radiated ideally by a black body at the same temperature
 - the "shinier" the object, the lower the emissivity difficult (impossible) measurement with this method
 - environment (fog, other parasitic heat sources)

5. Non-contact measurement metodes

- the sensor real design
- point sensor
 - measures the temperature at one point
 - the sensor must be focused to the measured point
 - predetermined distance of the sensor from the surface
 - for more expensive sensors the possibility of focusing and zooming
 - an auxiliary laser beam can be used to aim the measured point
 - built-in electronics
 - many different types of output signal (0-10V, 4-20mA, data bus)


- basic properties:
 - range from approx. -40 ° C to 2000 ° C
 - accuracy of 1% of range or \pm 1 ° C

5. Non-contact measurement metodes

- the sensor real design
- area sensor (thermographic camera)
 - measures the temperature of the entire surface of the object
 - the sensor must be focused to the measured surface
 - usually focusing and zooming are possible
 - an auxiliary laser beam is often used to aim the measured surface
 - fixed camera or handheld portable device
 - built-in electronics
 - data transfer to PC
 - the temperature is usually converted to a color map using SW

basic properties:

- range from approx. -40 ° C to 2000 ° C
- accuracy of 1% of range or \pm 1 ° C

Exam questions

- Thermocouples
 - the sensor function principle (p. 2, 3)
 - methods of sensors labelling, the sensors real design (p. 4, 5)
 - basic principles of connection and use historical and today way (p. 6, 7)
 - basic properties, advantages, disadvantages (p. 9)
- Resistive sensors
 - the sensor function principle (p.10)
 - the sensors real design and connection options (p. 11)
 - basic properties, advantages, disadvantages (p. 12)
- Semiconductor sensors
 - the sensor function principle, the sensor real design and basic properties (p. 14)
- Non-contact measurement metodes
 - the sensor function principle (p. 15)
 - point sensor real design and basic properties (p. 16)
 - area sensor real design and basic properties (p. 17)