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The practically useful yarn pro-
perties are the result of fiber pro-
perties, the mutual fiber interac-
tions inside the yarn, and the
interactions between yarn and
outer influences. The internal
structure of yarn is very impor-
tant especially for geometrical
and mechanical properties of
yarn.
We observe that the specific
regulations of internal yarn geo-
metry are relatively complicated
due to the complex nature of
deterministic and random influ-
ences. Lots of mathematical mo-
dels on this topic were created
during the last two centuries.
Some of the well-known model
will be presented in this lecture.

GENERAL 
DESCRIPTION OF 
FIBERS IN YARN

General fiber 
trajectories in yarn:
- complicated 
shapes (/)

- random 
characters

- deterministic
trends

Description of point 
on fiber : cylindri-
cal coordinates 
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HELICAL MODEL OF YARN

2

Assumptions of helical model can be formulated in the
following way:

1. Helical paths of fibers 
(same sense of rotation).

2. Common axis of all 
helixes is yarn axis.

3. Same coil height for all fibers. Height of one fiber 
coil is 1/Z, same for all fibers.
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The fiber positions in yarn (“starting points”), which are 
not determined by the assumptions stated before, can be 
characterized by the radial function of packing density

. Because it is relatively complicated, the following 
assumption are used: 
4. Packing density is constant in all places

inside the yarn.
Note: If all these 4 assumptions are valid, then we speak

about ideal helical model.
Note: Helical models and their applications are the oldest

concepts of yarn modeling, adherent with the names
A.Köchlin (1828), E.Müller (1880), S.Marschik (1904),
A.CH. Gegauff (1907), R. Schwarz (1933), E. Braschler 
(1935), V.I. Budnikov (1945), L.R.G.Treloar (1956), etc.
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Number of fibers and shortening of yarn
Let us create differential 
annulus - “differential layer” 
(Braschler) - at the general 
radius r in a cross-section of
general helical model of
yarn.
Area of differential annulus:
Packing density of differential annulus:

where dS…area of fiber sections in diff. annulus (red)
(See lecture 1 - areal interpretation of μ)

Area of fiber sections in differential annulus:

Area of oblique section of one fiber:
(where s…fiber cross-section - see lecture 1)
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Number of fibers in differential annulus:

Substantial cross-sectional 
area of yarn:
Mean packing density
of yarn:
Number of fibers in yarn cross-section:

It was also derived before (lecture 1):
(T…yarn count, t…fiber fineness,  τ…relative yarn fineness)
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Coefficient kn is now

Note: The relation              is necessary to know for 
numerical calculation of              . It is possible to obtain 
the function        as a result of experiment or try to apply 
some theoretical model (e.g. based on differential equa-
tion of radial forces equilibrium in yarn – V.I.Budnikov, 
J.W.S.Hearle, B.Neckář etc.)
Ideal helical model satisfies the assumption
and then substantial cross-sectional area of yarn: 
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Mean packing density
of yarn:

Further, the following integral is valid:

Number of fibers in yarn cross-section:
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Coefficient kn is now

For the fiber on the yarn surface (                  ) it is valid

…intensity of twist (see also the 
derivation in lecture 1). The alternative equation for kn can 
be derived using equation mentioned before.
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The graphical interpretation of last
function do shown on the picture.
Note: The angles βD of common yarns
lie usually between 20° and 30°. Then
the value of kn surrounding the value 
0.95 characterizes the influence of 
fiber slope due to twist in ideal helical 

model. The value kn can 
be a little higher for real 
function of         (follows our equation for

general helical model) and less in consequence of diffe-
rent effects of radial migration. (In reality, we measured 
the values round 0.95 for traditional ring yarns, but values 
round 0.80 for rotor yarns.)
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YARN RETRACTION IN IDEAL HELICAL MODEL
Non twisted  Twisted

Length of bundle           ………… ζ
Yarn retraction
Number of fibers       n…………… n
Volume of fibers        V0 ………….V
Mass of fibers            m ………… m
Starting yarn count
Yarn count (final)                  …
Number of coils          0 ………… NC
Latent yarn twist
Yarn twist (real)                    …
Latent twist coeff.
Twist coeff. (real)                  …
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2. Idea of total fiber volume
Usually the following assumption is taken as granted 
(E. Braschler) : Total fiber volume in yarn and fiber cross-
sectional area (fiber diameter) do not change due to twist.

Fiber volume - non-twisted
- twisted                  (lecture 1)

Retraction was defined by equation                , coefficient 
kn was derived before for ideal helical model. Therefore 

yarn retraction

11

0 ...const., ...const.V V s=

0 0V n s= ζ
V S= ζ

  

0

0 0 0, , ,

nk

n s S s

V V n s S s S n
∗

=

= ζ = ζ = 
 = ζ = ζ ζ ζ =  



0 nkζ ζ =

01δ = −ζ ζ

 ( )
( )



( )
( )

2
2

2
2

1 1

0

2

21 1 1 1 1

nk DZ
DZ

nk DZ
DZ

 = = + π −  π
 ζ  δ = − = − = − + π −    ζ π 



Bohuslav Neckář, TU Liberec, Dept. of Textile Structures 
MODELING OF INTERNAL YARN GEOMETRY

(Continuation)

In another form
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Rearrangement

Because                                           (see before), 

Using                      , we can express δ as a function of 
latent twist coefficient α0 as follows
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(Continuation)

If we consider                , then we can write
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The discriminant of the quadratic equation must not be

negative. Therefore

The latent tw ist coefficient is limited!
Limit case:

Since               , hence
From yarn retraction
we obtain  
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and using the value           we get for the limit case

The value of tw ist intensity is limited!
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Comparison of ideas

Summary of equations derived before:
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Graphical interpretation
…Idea of neutral radius
…Idea of fiber volume
…Idea of axial force
Thick part … real
Thin part  … hypothetical

…limit case - “saturated twist”,
parameters (summary):
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Idea 0α
µρ

 δ κ  Dβ  

Neutral radius 0.248 0.423 2 63° 

Fiber volume 0.281 0.5 2.828 70.5° 

Axial force 0.363 0.737 9.528 84° 
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Experiment
(J. Marko,
B. Neckář)
Perlon 
filament 
yarn

Note:
It  is used 

19

[ ]

1 2 -3 2

-1

0 kg m

0 m

0 tex

-3

1000,

... kg m

Z

T

 
 

 
 

α =

= ⋅

⋅

 ρ  



Bohuslav Neckář, TU Liberec, Dept. of Textile Structures 
MODELING OF INTERNAL YARN GEOMETRY

Twist of second order
The saturated twist (limit case) is really observed 
experimentally, but for a smaller value of latent twist 
(usually by βD from 45° to 55° in case of filament yarns).
Axial asymmetry of twisted yarn is the probable reason of 
this phenomenon.
But, what happens if we give higher than the saturated 
twist to the yarn?  The yarn is not 
able to absorb it “inside” its struc-
ture and then some coils will be 
placed “outside” , as coils of

twist of second order.
The phases of this process are 
shown here.
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Yarn stress-strain relation
like Gegauff  and others

The general element of the 
helical fiber (length dl, angle 
β) lying at the radius r deter-
mines an elementary cylin-
drical surface (green) with
dimensions             . After 
yarn elongation the same
element shifts itself to a new 
(yellow) position at a smal-
ler radius r’ with new angle β’ and new dimensions

. It is valid:

Yarn axial strain:

46
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Radial strain:
Contraction ratio
(like Poisson):

Fiber strain:

Based on the Pythagorean theorem, it is valid
- before deformation:

- after deformation:

Note: Because of continuity of yarn body, dφ must be the
same. 
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Using earlier derived equation, we obtain

Assumption: Strains are small. Then                      and

Note: Gegauff (1907) used η=0
and then he obtained                                  
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Assumption (easiest case): The fiber tensile stress-strain
relation is linear , where σ…tensile stress and 
E…Young modulus. Axial force in fiber is                     and
the component force in the direction of yarn 
axis is                                 . The fiber sec-
tional area (red) is                . Normal stress 
on this area is 

(Small deformation
is assumed.)

Fiber sectional area inside the differential  annulus (red) is
(derived earlier) and then the

yarn axial force is

49

lEσ = ε

 

A – A: 

s 

s∗  A 

A 

β  

aF  1F  

1 lF s E s= σ = ε

1 cos cosa lF F E s= β = ε β
coss s∗ = β

( )


2 2cos

2

sin

cos cos
cos

a

a l
a l

F E Es
s s

ε β

∗

−η β

ε β
σ = = = ε β

β

( )4 2 2cos sin cosa aEσ = ε β−η β β

 d 2 dS r r= π µ

2

0
d

r D

ar
P S

=

=
= σ∫



Bohuslav Neckář, TU Liberec, Dept. of Textile Structures 
MODELING OF INTERNAL YARN GEOMETRY

Rearrangement:
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The contraction ratio η is generally a function of radius r of 
element, yarn twist intensity, etc. But usually it is
assumed: contraction ratio η = const. is a yarn parameter.
Then
Indefinite integrals:
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Yarn axial force is now

At the same strain εa, untwisted fiber bundle of the same 
count (fineness) has same substantial cross-sectional
area and the
axial force is                                          . Tensile force 
utilization coefficient in the twisted yarn is then
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Graphical representation of the last 
equation is shown on the figure:
Notes:
1. Using η = 0 we get                ,
derived by Gegauff (1907)
2. ϕ is applica-
ble also for 
determination 
of filament
yarn strength
(by η = 0.5) –
see example
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3. Strength of staple yarn is usually
interpreted – beside others - as 
a) a resultant of fiber path and

fiber straining in yarn and 
b) a complex of frictional mecha-

nisms. 
First of them () is described – say
about - by our ϕ (in an easiest case). The second one () 
is still an open problem in yarn theory.
Closing note: Helical model is the best known theoretical 
concept in internal yarn geometry. We showed only a few 
basic imaginations in this lecture. Many other versions and 
their applications can be found in traditional textile 
literatures. 
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