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i MODELING OF INTERNAL YARN GEOMETRY

The practically useful yarn pro- G E N E RAL

perties are the result of fiber pro-

perties, the mutual fiber interac- DESCR I PT I ON OF

tions inside the varn, and the

interactions between yarn and FIBERS IN YARN

outer influences. The internal i
structure of yarn is very impor- | General fiber yarn !

tar:jt esper(]:iall_y Ifor geo[[r_\etrica]l trajectories in varn: axisg!
and mechanical properties o - :
yar. - complicated

We observe that the specific shapes (/) D
regulations of internal yarn geo- - random
metry are relatively complicated S

due to the complex nature of CharaCt_er_S ]

deterministic and random influ- - deterministic C
ences. Lots of mathematical mo- trends }
dels on this topic were created

during the last two centuries. Description of point x,
Some of the well-known model on fiber : cylindri- O

will be presented in this lecture. ;
P cal coordinates I, 9, C
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HELICAL MODEL OF YARN

Assumptions of helical model can be formulated in the
following way:

1. Helical paths of fibers
(same sense of rotation).

2. Common axis of all

helixes Is yarn axis.

2mr

3. Same colil height for all fibers. Height of one fiber
coll is 1/Z, same for all fibers.
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The fiber positions in yarn (“starting points”), which are
not determined by the assumptions stated before, can be
characterized by the radial function of packing density
n=p(r). Because it is relatively complicated, the following
assumption are used: o AS-

Ve -
4. Packing density is constant in all places Re:al \f.%?p
Inside the yarn. S

Note: If all these 4 assumptions are valid, then we speak
about ideal helical model.

Note. Helical models and their applications are the oldest
concepts of yarn modeling, adherent with the names
A.Kochlin (1828), E.Mtiller (1880), S.Marschik (1904),
A.CH. Gegauff (1907), R. Schwarz (1933), E. Braschler
(1935), V.I. Budnikov (1945), L.R.G. Treloar (1956), etc.
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Number of fibers and shortening of yarn

Let us create differential T N\

annulus - “differential layer” /-

(Braschler) - at the general $
|
I
|
|

—
—
— ~—

~

radius r in a cross-section of

general helical model of

yarn.

Area of differential annulus: 2nrdr

Packing density of differential annulus: p=dS/(2zrdr)
where dS...area of fiber sections in diff. annulus (red)

(See lecture 1 - areal interpretation of p)
Area of fiber sections in differential annulus:
dS = 2murdr
Area of oblique section of one fiber: s* =s/cosf3
(where s...fiber cross-section - see lecture 1)
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Number of fibers in differential annulus:

2nrdrp S/COSB
dn = dS/ 2”0'”‘ dn=2mcospB urdr/s,
S COS

Substantial cross- sectlonal r=D2fECT =D/

area of yarn: _[ dS =2 j ur dr
r=0

Mean packing density ZRJ'D/Z ur dr D/2

of yarn: H= D24 D4 J' ur dr

Number of fibers in varn cross-section:

_ ]/<1+tan B)
r=D/2 D/2 D/2
n= j dn——J. cos prdr_zsnj' el pr dr

: Jma—n j J1+(2nrz Y

It was also derived before (lecture 1): n=tk, , t=T/t=S/s
(T...yarn count, t...fiber fineness, t...relative yarn fineness)

L DP2
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Coefficient k,, is now il
s 271: urdr

urdr

LI P
E I J1+(2mrZ )’ j J1+(2nrz Y

Note: The relation pu=p(r) is necessary to know for
numerical calculation of S,p,n,k . It is possible to obtain
the function p(rR as a result of experiment or try to apply
some theoretical model (e.g. based on differential equa-
tion of radial forces equilibrium in yarn — V./. Budnikoy,

J. W.S.Hearle, B.Neckar etc.)

Ideal helical model satisfies the assumption p = const.
and then substantial cross-sectional area of yarn:

r=D/2 const 2
S = ZTCJ p rdr_an(D2/4j’ SZ(TCDZ/4)M
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Mean packing denS|tv£D/2 =const. ] 8u ( D?/4 _
of yarn: H=— u rdr= , 1L
D 0

Further, the following integral is valid:

o2 m X dx
R e T A

Substltutlon X :1+(2an) ,
2xdx = (27cZ)22rdr rdr = xdx/ 2nZ) ’

Number of fibers in varn cross sectlon

—ConSt
ror _ [\/1+ 7DZ )’ —1}

J- u rdr 2nuj-
JL+( 2an Jl+(2mz) S (2nz)

ﬁ{m S}W“(“sz 1] n:(nDZ) N“ (xD2) 1}
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Coefficient k, is now

kn:ﬂzl 2t [\/1;(RDZ)2—1] an - 2|:\/1+(7'CDZ)2 —1:|

T T(aDZ)’ (nDZ)
For the fiber on the yarn surface (r=r,, p=p,) it is valid
=D/2

)
tanB, =2n r Z=nDZ =x ...intensity of twist (see also the
derivation in lecture 1). The alternative equation for k, can
be derived using equation mentioned before.
2 2

k, = | M+(aDZ)’ -1|= | f+tan’p, - 1 |=
(TCDZ) =tanBp ( tan BD k_“’z_—d :cosB;/cosBD
— N :1/cos Bo

=tanBp =sinBp /cosPp

:(1—0052 BE ):sin2 Bo
_2COSZBD (1—cosBD)(1+cosBDj K — 2C0sP,
T sin®B,  cosP, (1+cosBy) " 1+cosB,
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The graphical interpretation of last 17
function do shown on the picture. kp >
Note: The angles By of common yarns 09571~

the value of k, surrounding the value 0.90}
0.95 characterlzes the influence of I
fiber slope due to twist in ideal helical 0 85———————
u /gsr;]p_ model. The value k, can 0 10 B2DO[ de3g(i
e \Ltion be a little higher for real

——5>— function of p(r) (follows our equation for
general helical model) and less in consequence of diffe-
rent effects of radial migration. (In reality, we measured
the values round 0.95 for traditional ring yarns, but values

round 0.80 for rotor yarns.)

lie usually between 20° and 30°. Then pm ;“*;
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Non twisted Twisted

Length of bundle (S C
Yarn retraction 8=(G,—&)/C, =1-/C, Co
Number of fibers Neveeeeee, n

Volume of fibers
Mass of fibers

Starting yarn count

Yarn count (final)
Number of colls
Latent yarn twist
Yarn twist (real)

L atent twist coeff.
Twist coeff. (real)

YARN RETRACTION IN IDEAL HELICAL MODEL
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2. 1dea of total fiber volume

Usually the following assumption is taken as granted

(E. Braschler) . Total fiber volume in yarn and fiber cross-
sectional area (fiber diameter)_do not change due to twist.

V, =V...const., s...const. —

Fiber volume - non-twisted V, =n sC, ‘ C
- twisted -\ V = SC (lecture 1) =" 9
=nsC, =S¢

S e oA, Bk L

n,s
Retraction was defined by equation § =1-( /¢, coefficient
k, was derived before for ideal helical model. Therefore

T - 2[ 1+(nDz)2—1}

(x02)
yarn retraction 8:1—££j:1— k, =1- [\/1+ (nDZ )’ 1}
(nDZ)
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(Continuation) Teer]

s N\

5 (\/1+(nDz)2 +1)— (nDzz)2 [\/1+(7ch)2 —1:|(\/1+(TCDZ)2 +1)
J1+(nDZ )’ +1
S —— JL+(mDZ)" -1
J1+(7DZ ) +1- (D27 {1+(nDz)2 —1} \/1+ (nDZ )2 +1
i J1+(7DZ )’ +1 B \/1+ tan® B, —1

B 1+tan®B. +1
In another form \/ Po

=k, _ 2cosPp =1-cosPp
—

s 1|51 Hﬁf% _l+cosp, 2cosp, _ 1+cosP, —2cosP, S — 1-cosP,
0 " 1l+cosB, 1+cosB, l+cosB, 1+cosf,
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Bo
Rearrangement R j’{%]
Po 2 Pp 2 Pp 2 Bp B
cos” =2 4+sin® =2 || cos® T2 —sin® BB 2 Po
:1—cos[3D _ 2 2 2 2 ) 2611 2 S = tan2 BD
1+c0sBy (0052 Po , in2Po |, [ o2 Po _gjn2 Po ZCOS2 BD 2

V

J
=il —cosB

Because k =tanf, =nDZ = N oc/ \/7 (see before)
\/1+(2\/Ea/@) -1 - \/1+4noc / (up) -
\/1+(2\/Ea/\/@)2 f \/1+ 4noc2/(pp) +1

Using a = ao/(1—8)3/2, we can express & as a function of
latent twist coefficient o, as follows

5 = {\/1+ 4re( o1y /(1-5)" )2/(],lp) —1}/{\/“ 4re( oty /(1-5)" )2/(p,lp) +1]

0=
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(Continuation) S_NH 4mc _1] [\/1+ dma +1}
ho? pp(1-38)° pp(1-3)°

If we consider (:%5)3 = A, then we can write
up(1-

5=[Vi+A-1]/[VI+A+1], 8VI+A+5=I+A-1 1+8=-3VI+tA+1+A
1+8=IT A(1-8), [1+8] =[VI*A(1-5)] . 1+25+8° =(1+A)(1-5),
[1+28+8° |(1-8) = (1+ A)(1-3)" (1-3), [1+25+5" |(L-8)=(1+A)(1-3)",

=A
NS

— :(176)3
2 r == N\
1428+82-8-28°-8° =(1-8) 1+[ Ao 3J =1-35+38" —&° +4mal /(np),
- (we(1-9) )
5— 8" =-35+35" +4mnal /(np), 0=48"—45+4nal/(np), 0=25"-58+ma]/(pp),

4t ol
1+ 1-——2
s._ 1 wop 6:1+1\/1 4m o

2 2 2
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The discriminant of the quadratic equation must not be
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4 o
negative. Therefore 1231 % g gz BP 0 <
Y 4n Jup N AT

The latent twist coefficient is liImited!

Limit case: | 1 — 1
L = =0.281 5-1.1 1_4“‘0 O=—

Jup  Véamn 2 2 Hop 2

70.

2 BD’ hence %:tan2 BZD Bo _2arctan\/; By =

5

Since o6 =

From yarn retraction & =(\/1+tan Bo —1)/(\/1+tan Bo +1)
we obtain §1+tan?p, +6=1+tan?B, —1,

1+8) 148
1+5=1+tan? B, (1-5), (Ej =1+tan’ Py, tanBD=\/(1_6j
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and using the value 5 =1/2 we get for the limit case

anp = [[2r05) 1 _ T 1 «=nDZ =tanp. =242 = 2.828
°“\\1-05 D

The value of twist intensity is limited!
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Comparison of ideas

Summary of equations derived before:

Idea Retraction
2
N(S?ral o=1- 12 21—%00{%i%arccos£3‘@“&ﬂ
1+2 Hop
radius \/ Tema /(“p)
@ \/1+4750t2/(up) 1_1+£ 1_@&_5
Fiber 5
volume \/1+47t(x/},t +1 wop
/
@ B In\/1+47coc2/(pp) L IN 1+ 2 a, 1 In /714-]{ =2
Axial J1+4n0?/(up) - V+? -1 Jup 2dn|{ i+ —
force i = tan B, ...parameter (twist intensity)




. O\AWER/};
o

1
g 3
5 <
= B
9 =
G e
S

i,

OLTA TE}(‘\\J

Bohuslav Neckar, TU Liberec, Dept, of Textile Structures

MODELING OF INTERNAL YARN GEOMETRY 18

Graphical interpretation

®...ldea of neutral radius
@...ldea of fiber volume
®...Idea of axial force
Thick part ... real
Thin part ... hypothetical
/.. limit case - “saturated twist”,

parameters (summary):

Idea % S e Bo

®Neutral radius||0.248 | 0.423 2 63°

@Fiber volume

0.281| 0.5 |2.828]|70.5°

@Axial force

0.363|0.737|9.528| 84°

1 —
O
0.8+

0.6+

0" 010203 04

0‘0/\/_ [1]
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T T Experiment
! L 10.5tex, (95den) @O =A
02 1 PRACTICAL 02 1 x10tex, (90den) (J. Marko,
“ 1 REGION @ 1 A9 .4tex, (85den) B N@Cka,/‘?
o0 | o S ] v8.8tex, (80den) '
- T A ex, en
0.154 @ 0151 s isaem #  Lerlon
L 07 7tex, (70den) / filament
I [ &7.2tex, (65den) yarn
0.1 + 0.1 + 06.6tex, (60den) X
] Note:
1 1 Perlon fiber: v . d
0.05] 0,05 "l # Used 10 1S USEC,
i PG =075 Yofern®]
..const.  ~ Zo[m-q '
o 01 02 0 00 02 Topma /1000,
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Twist of second order

The saturated twist (limit case) is really observed
experimentally, but for a smaller value of latent twist
(usually by By from 45° to 55° in case of filament yarns).
Axial asymmetry of twisted yarn is the probable reason of
this phenomenon.

But, what happens if we give higher than the saturated

twist t0 the yarn? The yarn IS NOl pe———

able to absorb it “INSIde” ItS STrUC- R—
ture and then some coils will be T emwmws—" SS————

placed “outside” , as colls of

twist of second order.
The phases of this process are
shown here.




g” F " Bohuslav Neckar, TU Liberec, Dept, of Textile Structures
2

“.#7 /' MODELING OF INTERNAL YARN GEOMETRY 46

Yy et

Yarn stress-strain relation

like Gegauff and others
The general element of the
helical fiber (length dl, angle
B) lying at the radius r deter—G1
mines an elementary cylin- S
drical surface (green) with
dimensions rde, dg . After
yarn elongation the same
element shifts itself to a new
(yellow) posmon at a smal- -
ler radius r’ with new angle B’ and new dlmensmns

r'de, dC'. It is valid: tanB =rde/d, tanp’ =r'de/d¢’
Yarn axial strain: e, =(d¢'-d¢)/dC =d¢'/d0 -1, dC'=(1+¢,)dC
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Radial strain: £ = i TR —1 dr'=(1+g,)dr

Contraction ratio ar dc

(like Poisson): nm=-¢, /e, rd

Fiber strain: g = dii=di _dl -1, £—1+8| ,
d i 7

Based on the Pythagorean theorem, it |s valid
- before deformation: d°l _d2§+ rd? .
1+8

1-|-8

. ’d

dC’

- after deformation: d°l'= dz@' + (rd(P) =

2
=—Me,
=(1+¢,) d2(;+(1+ £, j (rde)’ =(1+e,) d®¢+(1-ne,) (rde)
Note: Because of continuity of yarn body, d¢ must be the
same.
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Using earlier derived equation, we obtain N
d2l’ (1+8a)2d2§+(1—n8a)2(rd(p)2 (1+8a)2 +(1—n8a)2(rd(p/d§) _

l+e¢ ’ = = —
( |) d2| d2€+(rd(|))2 —tan B 2
1+ rde/dC

(1+e,) +(1-ne,) tan’p - (1+ 2¢, +8§)+(l—2n8a +n28§)tan2[3 B
- 1+tan” B - 1+tan®B -
_1+2¢, +€; +tan® f—2ng, tan” f+n’e; tan’ B i 2¢, —2ne, tan’ B . g2 +m’e2tan’ B
B l_|_tan2B l/cos B l/cos B

1+tan’p 1+tan’p

(1+&) =1+2¢,(cos’ B—nsin® B)+e> (cos’ B+n’sin’ B)

Assumption: Strains are small. Then &’ — 0, &2 — 0 and
—0 —0

1+28|+;;=1+28a(0082[3—“r]3in B)+;(cos B+n’sin’p)
> ., .\ Note: Gegauff (1907) used n=0
_Sa(COS B-msin B) and then he obtained ¢, =¢, cos’ B
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Assumption (easiest case):. The fiber tensile stress-strain
relation is linear o = Eg, , where c...tensile stress and
E...Young modulus. Axial force in fiber is F, =os = Eg;s and
the component force in the direction of yarn
axis iIs F, = F, cosp = Eg,scosB. The fiber sec-
tional area (red) is s* = s/cosf. Normal stress
on this area IS . (cos?pnsin’y)

o = Fj _ Ea,scosB:E ; cos? B
S s/cosf

: (Small deforlmation
6, = Ee, (cos' p-nsin”Bcos’ B) “ig assumed.)

Fiber sectional area inside the differential annulus (red) is

dS =2xnrdrp (derived earlier) and then the P

varn axial force is
r=D/2

P= c.dS

r=0 a
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Rearrangement:
r=D/2 D/2, DG S
P= | o,dS= | Eg,(cos*B—nsin’pcos’ B)andru_

r=0

D/2
= 2nuEe, j (cos* B—msin?Bcos®B)rdr =

0
=tan3

——
2nrZ  Dtanp  Dtanp dr — D dp
2nZ  27DZ  2tanP, 2tan B, cos’ P’

=tanPp
=r =dr
J\

/.

rdr:£DtanB)( D dE ]:( D j sin3[3 dp
2tan3, )\ 2tanB, cos” 3 2tan3, ) cos’ B

B=Bo .
= 2npEe, _[ (cos“B—nsinZBcosZB)( D j sinp dp =

Substitution: r =

o . 2tanB, ) cos’P
= 2nuEe ( cos* B —nsin® B cos® el d
p {ZtanBDJ O( B-nsin’p B)COSB B
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The contraction ratio n is generally a function of radius r of
element, yarn twist intensity, etc. But usually it is
assumed.: contraction ratio n = const. IS a yarn parameter.
Then p=2npEe,[D/(2tanB, ) U sinBcosBdp — ﬂ_[ (sin B/cosB)dB}
Indefinite integrals:

jschosBdB—jtdt t*/2 =sin’B/2 = (1-cos B/Z

Substitution:sin3 =t, cosdp = dt

ind 1-cos?
j%dB:I( cos[3B)SIanB J. I Itdt:
Substitution: cosf3 = t—sdeB dt
=—In|t|+t?/2 = —In|cosp| + cos’ B/2;

sin® B cos’ B

j(sinﬁcos[&—nc-o—sﬁjdﬁ:sinZB/Z:(1_C;S B)+nln\cosl3\—n >

f—_-/\_—\

=Incos“
] ﬂhnn —cos® B+n2In|cosp|—ncos’ B} - %[_‘H(“ﬂ)(l_cosz B)-+nincos’ ]
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Yarn axial force i1s now

=sin® B
P =2nuEe (BJZ L {1{ +(1+ )[1—c052[3 J+ Incos® B }—
“ a 2 tanZBD 2 n n D n D

1 ( - 2 ) 202
- —n+(1+n)\1-cos’0/+nIncos® 0

P =muEe, (D/2)°| (1+n)cos’ By +n(Incos® By ) /tan® By, |

At the same strain ¢,, untwisted fiber bundle of the same

count (fineness) has same substantial cross-sectional
area and the =Ee, =unD’/4

=

axial forceis P'=oc, S = nuEsa(D/Z)z. Tensile force
utilization coefficient in the twisted yarn is then

¢ =P/P" =(1+n)cos’ B, +n(Incos’ By, ) /tan’ B,
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Graphical representation of the last
eguation is shown on the figure:
Notes:

1. Using n =0 we get ¢ =cos’B,,
derived by Gegauff (1907)

2. ¢ Is applica- ™
ble also for  of*¥\

determination o Attemative * B~ points
theoretical X _\J W. Hearle

of filament model (B. Neckdi) ® X

respecting also fiber ™

yam Strength ¥ crimp variability

(by n=0.5) -
see example * B, [deg]

Experimental

0 n 20 30 40

1 -

0.87

0.4

0.67

n=0-"\\
N =025
1=050-"\"
n=0.75-""\

0 10 20 30 40
Bp [deg]
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3. Strength of staple yarn is usually

Interpreted — beside others - as

a) a resultant of fiber path and
fiber straining in yarn and

\frictional
: effect

resultanté Iike(Pour

CUrvé : model

Breaking tenacity
utilization coefficient

b) a complex of frictional mecha-
nisms.
First of them (|) Is described — say

Critical

i twist

ZoraorfBp

about - by our ¢ (in an easiest case). The second one (|)

IS still an open problem in yarn theory.

Closing note: Helical model is the best known theoretical

concept in internal yarn geometry. We sh

owed only a few

basic imaginations in this lecture. Many other versions and

their applications can be found in traditio
literatures.

nal textile
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