T1

Draw repeat of given pattern of 100% cotton woven fabric and calculate always for warp, weft and whole woven fabric: crossing factor [-], covering [%], cover factor [tex^{1/2}mm⁻¹], areal mass [gm⁻²] and thickness t [mm]

It is given: Do=278[threads/10cm], Du=278[threads/10cm], do=0.160[mm], du=0.160[mm], hu=0.05[mm], To=16.5[tex], Tu=16.5[tex], so=12[%], su=15.1[%].

Twill
$$K \frac{1}{3} Z$$

T2

Derive shape factor \mathbf{q} of ideal fiber with rectangle profile: rectangle with sides equal to \mathbf{a} and \mathbf{b} . See the scheme. Calculate shape factor in case $\mathbf{a} = 4\mathbf{b}$.

T3

Calculate number of fibers n in cross section of 100% polypropylene yarn. The parameters are given:

$$T = 45 \text{ tex}$$
 $t = 0.19 \text{ tex}$ $Z = 489 \text{ m}^{-1}$ $\mu = 0.489$ $\rho = 910 \text{ kg/m}^3$

T4

Calculate relative breaking strength of blended yarn 70POP/30CO, yarn count is 29.5tex, if you know properties of each component:

First component: tenacity = 0.243N/tex, breaking strain = 5.6% Second component: tenacity = 0.168N/tex, breaking strain = 25%

T5

For blended yarn **30wool/70PES** calculate mean value of fiber density ρ , mean value of fiber fineness t, if it is given:

 t_{vl} =3,5 dtex t_{PES} =4.8dtex ρ_{vl} =1310 kg/m³ ρ_{PES} =1360 kg/m³