

Ironing, pressing and shaping process

Doc. Ing. Antonín Havelka CSc.

Theoretic analysis of problem influence temperature

- Thermoplastic. Polymer materials soften during heating and revert during cooling (PL, PA), reversible action, the bond are released
- **Thermoset**. Polymer materials that cure, through the addition of heat, to a stronger form (epoxy). Irevesibe action.

Graph of heating low-molecular liquid (water).

Graph of heating high-molecular liquid

Characteristic temperature of synthetic fibres

Fibres	ϑ _{II} [°C]	ϑ _M [°C]	ϑ _ι [° C]
CA (Acetat)	180	175 ÷ 205	232
CTA (Three-acetat)	105	225	290 ÷ 300
PA 6 (Polyamid 6)	40	170 ÷ 190	215 ÷ 218
PA 6.6 (Polyamid 6.6)	47	235	245 ÷ 255
PL (Polyester)	80	230 ÷ 240	250 ÷ 260
PP (Polypropylen)	-10	149 ÷ 160	163 ÷175
PAN (Polyacrylonitril)	104	190 ÷ 220	-
PUR (Polyurethan)	-	170	183

Summary of effectiveness heat on fibres

Julilliary of effectiveness fleat off fibres					
Glass state	Transition zone	Visco- elastic state	Transition zone	Plastic state	Transition zone
$\sigma = E \cdot \varepsilon$	$\log E $ g_{II}	$\sigma = E \cdot \varepsilon + \eta \frac{d\varepsilon}{dt}$	$logE$ g_M g	$\sigma = \eta \frac{d\varepsilon}{dt}$	$\log E^{\uparrow}$ g_T
cure polymer	temperature of reversion II. order $(\theta_{II})'=$ temperature of	viscoelastic deformation	start of melting crystallic	plastic deformation	temperature of reversion I. order (θ_l) = temperature
elastic deformation	glass state (Tg)	elastic and plastic deformation	softening temperature $\mathcal{G}_{\mathcal{M}}$	viscous flow	of fusion (T_T)
Hooke's law		time dependence		Newton law	

Influence of temperature and humidity on strength fibres

Textile fibres strength depending up temperature (20, 100, 150, 200 °C).

Textile fibres strength depending up relative humidity φ (8, 35, 65, 93 %).

Viscoelastic behaviour at creep experiment

Total deformation:

$$\varepsilon = (t) = \varepsilon_0 + \varepsilon_z(t) + \varepsilon_v(t)$$

 ε_0 – elastic deformation, immediate

 ϵ_Z – elastic reversible deformation - delay

 ε_V – plastic deformation

Machines for pressing and forming

Hand Irons

- > Dry Electric Iron
- > Steam Iron
- ➤ High-Pressure Electric-Steam
- > Steam-Electric Iron
- > Ironing board,table

Machines for pressing and forming

Hand Irons

2. Steam iron

3. High-pressure electric-steam Iron

- 4. Steam-electric iron
- ➤ No use in industry at present

TS-diagram of steam (entropy)

- Boiling water
- Wet steam
- Saturated steam
- Dry steam
- Superheated steam
- (steamer gas)
- 2 kg/h steam for iron
- 20 kg/h steam for press
- 15 kg/h steam for pupi
- / finishing machine /

Machines for pressing and forming

Steam Generators

2. With separate cistern.

3. With separate pressure tank

4. Semiautomatic steam generator

5. Automatic steam generator

Machines for pressing and folding

Press machine

Pressing the whole surface all at once

• Example: finishing of back parts edges and hems jacket

upper pressing buck – steam heated

foot electro-pneumatic operation

• opening of the machine by separate foot

Machines for pressing and folding

Form Finisher

- automatically finds the bottom of the garment and properly adjusts the height of the form for pair of trousers
- allows for programming of 9 cycles of steam, steam/air, pause, and air times
- steam flow from within at first, then air flow

Applications: sports clothing, trousers, jeans, child's clothes,

shirts, clothes unlined

- New technologic process for better hand, ritch hand, forming shape
- Permanent connection the face, upper fabric and interlinnig
- Apx. 4O years old, first adhesivum PE
- Exact cutting
- Exact system of size
- The production of cloht changed to industrial large- scale production

- plane fusing is fusing which is made on full flat surface, no use in clothing industry, very bad physiological properties, membrane
- point fusing using in manufacture, better handy, better physiological properties
- interlining is textile material with adhesive that form joint of material using heat and press (woven,nonwoven,kntting)

.

no joining

deficient joining

optimal joining

instable joining

Adhesive

Druh	Туре	Temperature between layers	Properties	Using	Wash	Cleani ng
ıylen	High pressure	121/127°C	well fusing, it can be generated adhesion after chemical cleaning, but will not adhesive after pressing	Fusing of low part	60 °C	Р
H Polyethylen	Low- pressure	143/149°C	high viscosity - higher fusing press	material with special finish		Р
	Normal	132/138 °C	hard fusing is made with the help of more time fusing, small reaction to steam	woolen and	60 °C	Р
Polyamid	Modifica- tion	116/132°C	small reaction to steam	cotton compound fabric	40 °C	Р
Po	For leather	82/93 °C	low measure fusing, low viscosity, furring fusing low press	leather and furring	30 °C	Р
- Polyester	Normal	132/138°C	any reaction to steam	synthetic and	>60 °C	Р
	For leather	116/132 °C	low viscosity, low press fusing	compound fibres	60 °C	Р

Method of application of adhesive

1. powder is strewed - screen

2. powder is pressed - deep-printing

3. paste is spreads - screen printing

Method fusing Maximum needed bond strength

Demanding ness	Maximum needed bond strength [N/5cm]		
of clothes part	to processing	to using	to maintaining
very high	2	5	18
high	2	5	15
medium	2	5	12
low	2	5	9

Mechanism operation fusing of factors

Ρ

- temperature T [°C]
- pressure p [kPa]
- time t [s]

Dependence of needed bond strength P from energy E

Discontinuous fusing machine

- hydraulic press for good performance
- high buck is always heated
- flexible application and low maintenance especially designed for medium-sized production requirements

Continuous fusing machine

- these are equipped with new heating and pressure technologies, ensuring to meet steadily increasing quality standards with more precise results and faster reactions
- separation from loading station and machine belt, for a better working station
- over 1000 pieces of front sections of jackets per one hour

Continuous fusing machineFusing cylinder machine

- loading station and working station on same places
- bending fabrics round cylinder
- Little bad is adjustment temperature

• for small clothing lots: flap, wristband, pocket

Trend continuous presses fusing machine

- fusing machine with convex heating elements
- constant pressure and heat transfer
- lower temperature of fusing
- temperature-time curve growing 120 power and then stayed to constant
- Decrase **shrinking** of face fabrics
- Improve good handle

woven fabric

Fusing Production Line

- elimination of handling and other non-value adding time
- introduction of engineering workstations complete with user-friendly work aids
- clear and simple sequencing of various fabric and interlining combinations
- easier handling and position of super-light and

Lay-up stacker (AST)

- the most flexible unloading solution for the widest variety of garments and production requirements
- the fused parts transfer from the cooling conveyor onto transport belts divided into lanes
- each transport belt serves an individual stacking table which moves at the same speed as the transport belt

Transfer onto Stacker
Table

Small-Part Stacking

