Pneumatics - introduction

Automation of apparel production

Advantages and Disadvantages of Pneumatic system

- Advantages:
- infinite source - medium (atmospheric air) is available in the world around us in unlimited quantities at all times and places
- Clean - the leakage of compressed air does not pollute the surroundings, the machine itself or the material being processed
- Safe - the air is not flammable and does not short-circuit or explode
- Temperature is flexible - Air can be used flexibly at various temperatures required (even in quite extreme conditions, the air was still able to work)
- Easy channelled - air is quickly passed or moved from one place to another through a small, long, and winding pipe. Without feedback (back into the atmosphere)
- The possibility of using central compressed air production in the company
- The transfer of power and speed is very easy to set up and smooth
- A pneumatic system is easy to maintain and easy to use.
- possibility of implementation into automatic work cycles
- the compressor does not have to run continuously (compressed air can be accumulated in a pressure vessel and transported)

Disadvantages:

- high air compressibility - uniform piston movement and constant parameters cannot be achieved; therefore, it cannot be used for die cutting)
- Requires installation of air-producing equipment - compressed air should be dry, clean and contain the necessary lubricant for pneumatic equipment (against excessive wear and tear)
- Easy to leak - we need a seal so that air does not leak; Seal leakage can cause energy loss
- Easy condenses - before entering the system, must be processed first to dry, have enough pressure, and contain a small amount of lubricant to reduce friction in the valves and actuators
- Potential noise - Pneumatic using an open system, meaning that the air that has been used will be thrown out of the system; the air comes out loud and noisy so that it will cause noise, especially on the exhaust tract. The fix is to put a silencer on each dump line.
- Sensitive in vibration
- Compressed air is more expensive than electricity

After knowing the advantages and disadvantages of using compressed air, we can anticipate that these losses can be avoided.

IDEAL GAS LAW

*The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas:

$$
p \cdot V=n \cdot R \cdot T
$$

where:

- p - pressure of the gas [Pa]

$$
n=\frac{m[\mathrm{~kg}]}{M\left[\mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right]}
$$

- V-volume of the gas [m^{3}]
- n - amount of substance of gas (number of moles) [mol]
- R-ideal or universal gas constant [J.mol $\left.{ }^{-1} . \mathrm{K}^{-1}\right]$
- $\quad T$ - absolute temperature of gas $[\mathrm{K}]$
- It is a good approximation of the behaviour of many gases under many conditions, although it has several limitations.

IDEAL GAS LAWS

Many technically applicable processes take place in such a way that some of the thermodynamic quantities remain constant during the process

Constant quantity	Name of the process
Temperature	Isothermal process
Pressure	Isobaric process
Volume	Isochoric process
Heat	Adiabatic process
Entropy	Isentropic process
Enthalpy	Isenthalpic process

IDEAL GAS LAWS

- BOYLE - MARIOTTE LAW

ISOTHERMAL PROCESS

"The absolute pressure exerted by a given mass of an ideal gas is inversely proportional to the volume it occupies if the temperature and amount of gas remain unchanged within a closed system."

- Law can be stated:

$$
T_{1}=T_{2}=\text { constant }
$$

$p_{1} \cdot V_{1}=p_{2} \cdot V_{2}=p_{3} \cdot V_{3}=$ constatnt
The dependence of pressure on gas volume is graphically expressed by the isotherm:

IDEAL GAS LAWS

Δ When the air is gradually compressed, the product of pressure and volume is the same in all cases. The volume decreases, and the pressure increases.

IDEAL GAS LAWS

- GAY-LUSSAC'S LAW ISOBARIC PROCESS

Gay-Lussac's isobaric law states that by heating a gas at a constant pressure you cause an increase in its volume and this increase.

$$
\begin{aligned}
& p_{1}=p_{2}=\text { constant } \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=\text { constant }
\end{aligned}
$$

The dependence of pressure on gas

volume is graphically expressed by the isobar

IDEAL GAS LAWS

- CHARLES' LAW ISOCHORIC PROCESS

A thermodynamic process during which the volume of the closed system remains constant. According to the ideal gas law, pressure varies linearly with temperature.

$$
\begin{aligned}
& V_{1}=V_{2}=\text { constant } \\
& \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}=\text { constant }
\end{aligned}
$$

The dependence of pressure on gas volume is graphically
 expressed by isochore

IDEAL GAS LAWS

- ADIABATIC PROCESS

A type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment.

The adiabatic process is such a process that takes place so quickly that the exchange of heat with the environment is not enough.

However, both temperature and pressure, respectively volume, can change during a single run.

$$
\boldsymbol{Q}=\mathbf{0}
$$

The dependence of pressure on gas volume is graphically expressed by the adiabatic curve:

- POISSON LAW

$$
\text { p. } V^{\kappa}=\text { konst } .
$$

The exponent $\boldsymbol{\kappa}$ is called the Poisson's constant and its value is equal to:

$$
k=c_{p} / c_{V},
$$

where
c_{p} is the specific heat capacity at constant pressure, c_{v} is the specific heat capacity at constant volume.

Examples of thermodynamic processes

- What air volume must we take from the atmosphere to obtain compressed air with a pressure of 2 bar with a volume of 0.5 cubic meters? Consider an isothermal process; atmospheric pressure is 1 bar.
- The closed container contains air with a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 3 bar. How does the pressure in the container change when the temperature rises by $20^{\circ} \mathrm{C}$?
- How does the volume of air in the piston change if it heats up from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$? The current volume of air in the piston is 0.5 cubic meters.

AIR PRESSURE

Δ Pressure is the amount of force applied at right angles to the surface of an object per unit area:
where

$$
p=\frac{F}{S}
$$

p-pressure [Pa]
F - magnitude of normal force [N]
S - area of the surface on contact $\left[\mathrm{m}^{2}\right]$

AIR PRESSURE

Presently or formerly popular pressure units:
a) Atmosphere - absolute pressure in the technical system

$$
\begin{aligned}
& \text { lat }=\frac{1 \mathrm{kp}}{\mathrm{~cm}^{2}}=0,981 \mathrm{bar} \\
& \text { b) bar } 1 \mathrm{bar}=\frac{10^{5} \mathrm{~N}}{\mathrm{~m}^{2}}=10^{5} \mathrm{~Pa}=1,02 \mathrm{at} \\
& \text { c) Torr } \quad 1 \text { Torr }=\frac{1}{736} \text { at } \quad 1 \text { Torr }=\frac{1}{750} \mathrm{bar}
\end{aligned}
$$

Pressure Unit Conversion Table

	Pa	bar	PSI	at	atm	Torr
1 Pa $=$	1	1.10^{-5}	$1,45 \cdot 10^{-4}$	$1,02 \cdot 10^{-5}$	$9,87 \cdot 10^{-6}$	$7,5.10^{-3}$
1 bar $=$	10^{5}	1	14,5	1,02	0,987	750
1 PSI $=$	$6,89.10^{3}$	$6,89.10^{-2}$	1	$7,02 \cdot 10^{-2}$	$6,8.10^{-2}$	51,71
1 at $=$	$9,81 \cdot 10^{4}$	0,981	14,2	1	0,968	735,6
1 atm $=$	$1,01 \cdot 10^{5}$	1,013	14,7	1,03	1	760
1 Torr $=$	133	$1,33 \cdot 10^{-3}$	$1,93 \cdot 10^{-2}$	$1,36 \cdot 10^{-3}$	$1,32.10^{-3}$	1

1 Torr was originally the same as 1 mmHg .

AIR PRESSURE

For pneumatic circuits, there are:
Operating pressure - the pressure of air leaving the compressor or accumulator and located in the piping to the pneumatic motors.
Working pressure - the pressure required for the proper operation of pneumatic motors.
The maximum pressure is preferably $0.6 \mathbf{M P a}$. This corresponds to the design of the pneumatic components.

Adherence to constant pressure is a prerequisite for the correct and reliable function of the pneumatic elements.

AIR PRESSURE

The following depend on the constant pressure value:

- speed
- forces
time courses of pneumatic components functions

Pressure-regulating valves are used to maintain a constant pressure value.

Thermodynamic Processes Examples

What air volume must we take from the atmosphere to obtain compressed air with a pressure of 2 bar with a volume of 0.5 cubic meters? Consider an isothermal process; atmospheric pressure is 1 bar.

- The closed container contains air with a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 3 bar. How does the pressure in the container change when the temperature rises by $20^{\circ} \mathrm{C}$? (isochoric process)?
- How does the air volume in the piston change if it heats from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$? The current volume of air in the piston is 0.5 cubic meters. (isobaric process).

