Solution

1 Evaluate following expressions, where a = -2, b = 1 and c = 1.5.

$$A = a + \frac{3b^2}{-a^3} + 2c - 1$$
$$B = \frac{(a+3b)^2}{(-a^3+2)c}$$

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

・ロト ・部ト ・ヨト ・ヨト

3

Solution

Let m = 2.05 g be a weight of yarn, l = 100 m be a length of yarn. Find fineness of yarn T in [tex].

>> m = 2.05; >> 1 = 100; >> L = 100*0.001 % convert meters to kilometers >> T = m/L % fineness in tex unit т = 20.5000

Solution

Such that $\rho_{SS} = 7500 \text{ kg/m}^3$ be a density of stainless steel and $\rho_{PP} = 910 \text{ kg/m}^3$ be a density of polypropylene circular cross-sectional shape fiber. Find diameter $d \ [\mu m]$ of these fibers having fineness t = 2 dtex.

```
>> rhoSS = 7500;
>> rhoPP = 910;
>> t = 2;
>> t = t*0.1; % covert dtex to tex
>> dSS = 2*sqrt(t)/sqrt(10^6*pi*rhoSS); %diameter in meters
>> dPS = 2*sqrt(t)/sqrt(10^6*pi*rhoPP); %diameter in meters
>> dSS = dSS*10^6 %diameter in micrometers
dSS = 5.8269
>> dPP = dPP*10^6
dPP = 16.7282
```

Course	description
	C1eng

Solution

Ind the name of the function for calculating the sample variance

>> lookfor variance	
cov movvar var xcov	- Covariance matrix. - Moving variance value. - Variance. - Cross-covariance function estimates.

```
>> help var
var Variance.
For vectors, Y = var(X) returns the variance of the values in X. For
matrices, Y is a row vector containing the variance of each column of
X. For N-D arrays, var operates along the first non-singleton
dimension of X.
```


・ロト ・四ト ・ヨト ・ヨト

3

Solution

6

Find the name of the function for converting angles from radians to degrees

>> lookfor radians	
acos	- Inverse cosine, result in radians.
asec	 Inverse secant, result in radians.
asin	 Inverse sine, result in radians.
atan	- Inverse tangent, result in radians.
cos	 Cosine of argument in radians.
cot	 Cotangent of argument in radians.
csc	 Cosecant of argument in radians.
deg2rad	 Convert angles from degrees to radians.
rad2deg	 Convert angles from radians to degrees.
sec	 Secant of argument in radians.

```
>> help rad2deg
rad2deg Convert angles from radians to degrees.
rad2deg(X) converts angle units from radians to degrees for each
element of X.
See also deg2rad.
Documentation for rad2deg
Other functions named rad2deg
```