A03 - Individual activity

1) In a given continuous production flow of 2-step process, workstation B assembles parts which has its components produced at station A. The demand, properly stabilized, is 5 units/minute. Determine the number of Kanbans for this component between these two workstations, knowing that there is no safety stock and that the parts are transported in containers, with a capacity for 150 units. The times, in minutes, to determine the production cycle, are given below:

Process		Time (min)	
		Workstation B	
Setup	6	6	
Unitary Production Cycle Time	0.2	0.6	
Motion	10	7	
Waiting	10	20	

Solution:

Lead time = Order delivered $\boldsymbol{-}$ order received

Cycle time (is shorter) = time interval between two batches/produced units
Takt time = customer- demand
Takt time = number of working hours/demand quantity
PT - process time

First it is needed to calculate the process cycle time given by the formula
$\mathrm{CT}=\left[\mathrm{PT}_{\mathrm{A}}+\mathrm{P} \mathrm{T}_{\mathrm{B}}+\mathrm{C} \cdot\left(\mathrm{OT}_{\mathrm{A}}+\mathrm{O} T_{\mathrm{B}}\right)+\left(\mathrm{WT}_{\mathrm{A}}+\mathrm{W} T_{\mathrm{B}}\right)+\left(\mathrm{MT}_{\mathrm{A}}+\mathrm{M} T_{\mathrm{B}}\right)\right.$,
Where:
$\mathrm{PT}_{\mathrm{A}}=6 \mathrm{~min}$
$\mathrm{PT}_{\mathrm{B}}=6 \mathrm{~min}$
$\mathrm{OT}_{\mathrm{A}}=0.2 \mathrm{~min}$
$\mathrm{OT}_{\mathrm{B}}=0.6 \mathrm{~min}$
$W T_{A}=10 \mathrm{~min}$
$W T_{B}=20 \mathrm{~min}$
$\mathrm{MT}_{\mathrm{A}}=10 \mathrm{~min}$
$\mathrm{MT}_{\mathrm{B}}=7 \mathrm{~min}$
$C=150$ units
Series process time $=$ Sum (operation time + process time + waste time)
Sum of set up time $($ PTA + PTB $)+(O T A+O T B)+(M A+M B+W A+W B)$
We need to unify the process in one...
$\mathrm{CT}=(6+6)+\mathrm{C} \cdot \mathrm{PCTa}+\mathrm{C}$. PCTB
$\mathrm{CT}=(6+6)+150 \cdot(0,2+0,6)+(10+20)+(10+7)=12+120+30+17=179 \mathrm{~min}$
The number of Kanbans is given by the formula
$N_{K}=(\mathrm{D} . \mathrm{CT}) / \mathrm{C}$
$N_{K}=(5$ units $/ m i n .179 m i n) / 150$ units $=5.97$, ie, 6 Kanbans

