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2 Statistics for Quality 

Learning objectives  
• Understand main concepts of statistics for quality 
• Describe the differences between descriptive and inferential statistics 
• Learn main concepts regarding samples, population, standard deviation and sigma 

level 
• Differentiate statistical significance and business significance 

  
Keywords 
 
Statistical process control, sigma, normal curves, sample. 
  
Required skills 
A general knowledge of management on the bachelor's degree level. 
 
Time requirements for the study 
You will need approximately 90 minutes of your time to study this chapter. 
  
2.1  Introduction 

Statistics is valuable to quality management because it gives us a sound basis for making 
decisions such as: 

• Is this batch good enough to meet customer requirements? 
• Which of these changes will eliminate the most number of defects? 
• What change should we make to our process so future production meets customer 

requirements? 

Statistics is an independent discipline that fits well with the scientific method. It draws 
from - but is not part of - philosophy, science, and probability. It is applied in science, 
engineering, psychology, business, and other fields. In the broadest sense, the field of 
statistics is a structured way of saying things about how the world works. In practice, its 
two most important benefits are:  

• Statistics allows us to view a part of the world - a sample - and conclude things 
about a larger part of the world - the population - that we can’t see and measure 
affordably. 

• Statistics can be used to take information about the past and forecast the future. 

 
2.2  Measurement for Statistics 
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In statistical terms, each measurement is taken on one attribute of one subject (for 
example, our process, our product, or a component), on one occasion (at a particular time 
and in a particular situation), resulting in a value. We may want to measure many 
attributes at the same time, as they may affect one another. For example, the amount of 
humidity in a drying room can affect the dryness, and therefore the weight, of our product. 
So we would want to record the amount of time the product was in the room, the 
temperature, the humidity, and the weight of the sliced ham drying on the rack all at once. 
Every measurement also is associated with a variable that names what we are measuring 
(weight of ham, weight of cheese, length of hoagie roll) and a unit of measure. The end 
results of measurement are data - measured values that we record. Data is the input for 
statistical descriptions and statistical procedures. 
 
What if our measurements aren’t good? This brings up the issue of measurement error, 
which is very different from error in quality management. Error in quality management 
is about mistakes in production process. Measurement error is about mistakes in the 
measurement process, which would prevent us from finding the mistakes in the 
production process. Statisticians talk about two kinds of error: reliability and validity. 
Reliability is like precision - it is about results being closely clustered together, rather 
than widely scattered. Validity is about approaching the target, as opposed to being 
consistently in the wrong direction - validity indicates the absence of bias. 
 
2.3  Samples and populations 
 
The idea of samples and populations is key to statistics. A population is the total group in 
which we are interested. It might be every ham-and-cheese sandwich we ever made or 
ever will make, or every one we made in a particular factory in a year, or the entire batch 
of 10,000 ham-and-cheese sandwiches in the fridge that is due to go to the customer 
tomorrow. A sample is part of a population. Our goal is to measure a sample and be 
confident of something about the whole population. This can only happen if we are 
confident that the sample represents the population reasonably well. There are many types 
of samples, named according to how we select the sample from the entire population. Of 
all the types of samples on the following list, only the first two give us a reasonable degree 
of confidence that our sample will represent the population. 

• Comprehensive sample. In a comprehensive sample, we seek to include the entire 
population in the sample. The difference between a population and a 
comprehensive sample is due to mistakes such as missed items or lost data. 

• Random sample. In a random sample, each item in the population has an equal 
chance of being included in the sample. Getting a random sample is harder than 
you think! 

• Convenience sample. We want to avoid this kind of sampling, where we simply 
get the sample in the easiest, cheapest way. If we do this, our sample is unlikely 
to represent the population. For example, if we want to check the quality of 
sandwiches in our stores, it would be most convenient just to get sandwiches from 
the nearest store. But they wouldn’t be likely to represent sandwiches in all stores 
accurately, because they were all stored in the same refrigerator at the same time. 
Very different things might have happened to sandwiches in other stores. 
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• Systematic sample. Here, we get a sample in a non-random way. For example, we 
might pick the ham-and-cheese sandwich in the top right corner of each box. But 
what if our refrigeration unit is colder on top and warmer on the bottom? Then 
we’ll never see the moldy sandwiches. 

• Judgmental sample. This is a term from auditing, actually, rather than from 
statistics. It means using our own common sense - our expert judgment - to decide 
how to take our sample. For example, we might choose to look at the sandwiches 
from only the stores that failed health inspections in the last year. 

• Stratified sample. Building a stratified sample is complicated, but essentially, a 
stratified sample is a combination of a judgmental sample, then random items 
selected from groups selected on the basis of expert judgment. 

• Quota sample. Again, a poor choice, the quota sample is similar to the 
convenience sample, except that we stop collecting when our sample is large 
enough. 

• Self-selected sample. In this case, the subject has a say in whether or not to be 
included in the sample. Of course, ham-and-cheese sandwiches can’t stand up to 
be counted, but customers can. A good example of a self-selected sample is 
customers who choose to answer our customer survey. Unfortunately, we can’t be 
sure that the self-selection doesn’t bias the sample. 

Just as we can have error in measurement, we can also have sampling error. If we know 
we didn’t use a random sample, then we know that our sample is probably not 
representative of the population. If we think we have a random sample, then we have 
more confidence that there is little sampling error and that the sample is similar to the 
population. However, whenever we can’t take a comprehensive sample, there is always 
some doubt as to the question of whether our sample truly represents the population. 
 
2.4  Descriptive and Inferential Statistics 

Once we select a sample and take measurements of attributes of items in the sample, we 
have our data values, which are the input to our statistical calculation. Descriptive 
statistics are a summary of the data. Commonly used descriptive statistics include the 
minimum and maximum values, and any of several types of averages (mean, median, and 
mode, among others). We can also calculate the variance and the standard deviation, 
which express how our sample is clustered near or spread out far away from the mean 
(the average or central tendency of the sample). Descriptive statistics describe our sample, 
but they can also be extended through a process called estimation to describe the entire 
population. For example, if we try out an advertisement on 1000 people randomly selected 
from a list of 100,000, and 20 of them buy a ham-and-cheese sandwich, then we have a 
2% purchase rate. If we advertise to all 100,000 people, we should expect to sell about 
2% of 100,000, or 2000 sandwiches. A good statistician could tell us more; he could make 
that “about” more precise. Depending on the sample size, he might say, “There is a 68% 
chance that you will sell about 1900 to 2100 sandwiches.” 

Inferential statistics go beyond description. Inferential statistics provide a measure of the 
relationship between two or more variables along with a second measure that indicates 
how confident we are that the first measure is correct. 
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Using inferential statistics, we can do things like forecast likely future events and 
determine if a particular intervention is likely to have a desired effect. 

Although estimation and forecasting have more general meaning in business, in statistics, 
estimation always means making statements about the population based on statistics from 
the sample, and forecasting always means predicting expected future measures or results 
based on past measures or results. In fore-casting, it is essential to remember that we can 
never truly know the future. Rather, we are saying, “If the future is like the past, then this 
is what is likely to happen.” Also, our past numbers do not cause our future numbers. 
Rather, our past numbers are a result of past causes. Those numbers show the state and 
trend of the figures. A forecast says, “if the underlying causes remain similar to the past, 
and the numbers continue to change in the same direction, then the future is likely to be 
like this.” 
 
2.5  Normal Curves and Standard Deviation (Sigma) 
 
When we gather the data values from our sample, we can plot them on a curve. Often, the 
results look like Figure 2-1, the normal curve, also called the bell curve. The normal curve 
is the representation of a population that is randomly distributed around a central point 
called the mean. Our results might vary from the normal curve in a number of ways. If 
the curve leans one way or the other, we say it is skewed. If the curve has two peaks, we 
call it bimodal, and we know we need to examine our data and data collection methods. 
Skewed curves are shown on the left of Figure 2-2, and a bimodal curve is on the right. 
Most statistics won’t give useful results if our sample population has a bimodal 
distribution because most statistics operate on the assumption that the curve of sample 
and population are normal or near normal - and the math doesn’t work right when that’s 
not true. 
 

 
Fig. 2-1 (l) and 2-2 (r). A normal curve and Skewed and bimodal curves. 

 
If we’ve done our homework - particularly used a good sampling method, chosen an 
appropriate sample size, and measured well - then the shape of the sample curve will be 
pretty much the same as the shape of the population curve. Thus, if the sample curve is 
normal, we can figure the population curve is normal, too. Why does that matter? A 
statistically normal curve is the result of natural and inevitable variation with no particular 
cause. A non-normal curve is an indication of the presence of some special cause or 
causes that are changing the shape of the curve. For example, if we picked a random 
sample of high school senior boys and measured their heights, we would probably get a 
normal curve because there is a certain average height, and about equal numbers are taller 
and shorter than average, but more are close to average than way off average in either 
direction. But if we picked senior boys playing a pickup game of basketball, and half the 
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kids were on the high school basketball team, we’d be likely to get a skewed curve. If we 
picked the kids who happened to be in the gym on a particular day, and that turned out to 
be the basketball team and the wrestling team, we’d be likely to see a bimodal distribution. 
Now turn all of this around. If we measure a sample or a population, and its distribution 
curve doesn’t match the normal curve, then there’s a reason, and it makes sense to go find 
out what that reason is. We’ll see how to do this later in this chapter. 

If the curve is a normal curve, then we can identify the degree of variation from the mean 
average using an idea called sigma. As shown in Figure 2-1, sigma is a quantity or 
distance-measured outward in both directions from the mean of the curve. One sigma is 
closest to the central line - the mean; two sigma includes one sigma and more, and so 
forth. In our sample, more of the values are more clustered near the mean, and that is why 
the curve is higher at the center. A very important issue in statistics and quality 
management is the percentage of the total area under the curve within each range of 
variance, measured in sigma. These values are shown in Table 2-1. 

As we become better at quality management, more of our products are within tolerances. 
Before TQM, 3 sigma (99.75% defect free) was very hard to achieve. However, U.S. 
business broke through that barrier in the 1980s, and started to move up. Because the 
curve is nonlinear, percents are no longer meaningful - everything is way over 99% error-
free. So we jump from measuring in percent (events per hundred) all the way up to 
measuring in events per million at 4 sigma. Four sigma quality is 999,936.66 good 
products per million, or only 63.34 failures. Statistically, 4.5 sigma quality has fewer than 
7 failures per million. By the time we reach statistical six sigma, we are actually looking 
at fewer than two errors per billion measurable events. That’s a lot of quality. 

If we know the size of the total population, then we can use a ratio to determine likely 
quantities of any range of values in the whole population. For example, if our sample of 
10,000 1-inch screws shows that 9975 screws are between 0.90 inches and 1.10 inches in 
length, then we know that 3 sigma (99.75%) of our sample fall within that range. If we 
produce a million screws, we can expect about 997,500 screws to fall within the same 
range. 
 
Table 2-1. Sigma values and percentages of the sample. 
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2.6  Statistical Significance and Business Significance 
 
When statistics is applied to science, there are very specific rules for statistical 
significance - for determining if statistical results provide enough information to support 
a new theory in place of an old one. However, this is not true for business. In business, 
we have to work closely with definition of business value in relation to statistical results 
so that the statistics are properly applied in making a business decision. Also statistical 
significance and business significance may be at odds with one another. For example, one 
time, an auditor told me how frustrated she was because she was looking for any 
significant correlation between methods used to do a particular type of work at different 
locations and effectiveness of the work. She couldn’t find any correlation that was 
statistically significant. I pointed out that the lack of a significant difference was a very 
significant business result, because if all methods are about equally effective, then the 
organization can save money by standardizing on the least expensive method. Statistical 
analysis showed us no significant difference in effectiveness - which means that the 
cheapest method is just about as good as the most expensive. A smart businessman will 
use a less expensive solution if it’s just as good as a more expensive one. Statistical 
insignificance can be significant for business. 
 
Summary 
 

There are two situations where statistical techniques and related analytical tools are very 
helpful in the work of quality management. One is when things are very, very bad, and 
the other is when things are very, very good. When things are very bad, we can feel 
overwhelmed by the number of problems and their complexity. In that situation, tools like 
Ishikawa diagrams to find causes and Pareto charts to prioritize our problems help bring 
error under control. We can tackle the most common or most costly errors first. These 
cost- and time-saving methods can be fed back into the continuous improvement effort. 
Iterating our improvement effort, we can bring a very bad situation under control. 

We also need statistics if we’re doing a very good job and we want to do bet-ter. As we 
improve the quality of our processes and products, there are fewer and fewer errors. At a 
certain point, errors simply become very hard to find. Also, obvi-ous causes are all taken 
care of, and we need subtle analysis and carefully designed experiments to find subtle 
causes. At this point, we’re going to need statistical techniques to hunt down the error and 
their causes so that we can keep improving. 
 
In this section, you will learn about the most important and commonly used tools of 
statistical quality management. For an in-depth discussion of these tools, their variations 
and many more statistical tools used in quality management, read Six Sigma Demystified 
by Paul Keller.  
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Review questions 
  
 

1. What is the difference between descriptive and inferential statistics? 
 

2. What does it mean in terms of sigma a defect rate of 3.4 PPM? 
 

3. Describe the concepts of sample and population highlighting their differences. 
 

4. What does it mean a statistically-significant population? 
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