Movement of a particle on a cylindrical surface.

The particle of a given mass moves on the horizontal cylindrical surface from a given starting position with an initial velocity. Assume that no friction between the particle and the cylindrical surface.

Given:

The mass m of the particle.
The initial angle φ_{0} between the vertical axis goes through the center of the cylindrical surface and the line contains the particle and the center point.

Initial velocity: v_{0}
The radius of the cylindrical surface: r
Task:
Find the velocity of the particle in dependence of the angle $v(\varphi)$
Find the angle φ^{*} where the particle leaves out the surface.

Solution:

First, we draw the free body diagram:

In this case, the normal n - and tangent t-coordinates are considered to move along the path with the particle.

The forces acting on the particle include

Gravity force $\vec{G}=m \vec{g}$ (1)
Normal force \vec{N}
D'Alembert forces following the normal n - and tangent t-coordinates:
$\vec{D}_{n}=-m \vec{a}_{n}(2)$
$\vec{D}_{t}=-m \vec{a}_{t}$ (3)
Specification of the D'lembert acceleration components:
$a_{t}=\frac{d v}{d t}=\frac{d v}{r \cdot d \varphi} \cdot \frac{r \cdot d \varphi}{d t}=\frac{v \cdot d v}{r \cdot d \varphi}$ (4)
$a_{n}=\frac{v^{2}}{r}$ (5)
Generally, the equation of motion can be written:
$\sum \vec{F}+\vec{D}_{t}+\vec{D}_{n}=\overrightarrow{0}$
Or
$\vec{G}+\vec{N}+\vec{D}_{t}+\vec{D}_{n}=\overrightarrow{0}$
Then we can write the component equations by the following:
(t) : $G \cdot \sin \varphi-D_{t}=0$ (6)
(n) : $G \cdot \cos \varphi-N-D_{n}=0(7)$

Combine (1), (3), (5) and (6), we have:

$$
m g \cdot \sin \varphi-m \frac{v d v}{r d \varphi}=0
$$

Simplify:

$$
v d v=r g \sin \varphi \cdot d \varphi(8)
$$

Combine (1), (3), and (6), we have:
$m g \cdot \cos \varphi-N-\frac{m v^{2}}{r}=0$
Then we get the normal force:

$$
\begin{equation*}
N=m g \cdot \cos \varphi-\frac{m v^{2}}{r}(9 \tag{9}
\end{equation*}
$$

Find $\boldsymbol{v}(\varphi)$

Make the integration of both side of (8), we get:

$$
\int_{v_{0}}^{v(\varphi)} v d v=\int_{\varphi_{0}}^{\varphi} r g \sin \varphi \cdot d \varphi
$$

So:
$\left.\frac{1}{2} v^{2}\right|_{v_{0}} ^{v(\varphi)}=-\left.r g \cdot \cos \varphi\right|_{\varphi_{0}} ^{\varphi}$
Then we get:

$$
\begin{aligned}
& v^{2}(\varphi)-v_{0}^{2}=2 r g\left(\cos \varphi_{0}-\cos \varphi\right) \\
& v^{2}(\varphi)=2 r g \cdot\left(\cos \varphi_{0}-\cos \varphi\right)+v_{0}^{2} \\
& v(\varphi)=\sqrt{2 r g \cdot\left(\cos \varphi_{0}-\cos \varphi\right)+v_{0}^{2}}(11)
\end{aligned}
$$

Find φ^{*} :

When the particle leaves the surface, the normal force is no longer active on the particle, in other word: $N=0$.

From (9) and (10), we can write:

$$
N=m g \cdot \cos \varphi^{*}-\frac{m v^{2}\left(\varphi^{*}\right)}{r}=0
$$

or

$$
g \cdot \cos \varphi^{*}-\frac{2 r g \cdot\left(\cos \varphi_{0}-\cos \varphi^{*}\right)+v_{0}^{2}}{r}=0
$$

Simplify:

$$
\cos \varphi^{*}=\frac{2}{3} \cos \varphi_{0}+\frac{v_{0}^{2}}{3 m g r}
$$

So:

$$
\varphi^{*}=\operatorname{arcos}\left(\frac{2}{3} \cos \varphi_{0}+\frac{v_{0}^{2}}{3 m g r}\right)(12)
$$

