
Movement of a particle on a cylindrical surface. 

 

The particle of a given mass moves on the horizontal cylindrical surface from a given 

starting position with an initial velocity. Assume that no friction between the particle 

and the cylindrical surface. 

Given: 

The mass m of the particle. 

The initial angle 0  between the vertical axis goes through the center of the cylindrical 

surface and the line contains the particle and the center point. 

Initial velocity: v0 

The radius of the cylindrical surface: r 

Task: 

Find the velocity of the particle in dependence of the angle v(φ) 

Find the angle 
 where the particle leaves out the surface. 

Solution: 

First, we draw the free body diagram: 

In this case, the normal n- and tangent t-coordinates are considered to move along the 

path with the particle.  



 

The forces acting on the particle include  

Gravity force G mg  (1) 

Normal force N  

D’Alembert forces following the normal n- and tangent t-coordinates: 

n nD ma  (2) 

t tD ma    (3) 

Specification of the D’lembert acceleration components: 
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Generally, the equation of motion can be written: 

0t nF D D    

Or  

0t nG N D D     

Then we can write the component equations by the following: 

(t) : .sin 0tG D    (6) 

(n) : .cos 0nG N D    (7) 

Combine (1), (3), (5) and (6), we have: 
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Simplify: 

sin .vdv rg d  (8) 

Combine (1), (3), and (6), we have: 
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Then we get the normal force: 
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Find v(φ) 

Make the integration of both side of (8), we get: 
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Then we get: 
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0 02 . cos cosv rg v      (10) 
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Find 
: 

When the particle leaves the surface, the normal force is no longer active on the particle, 

in other word: N=0. 

From (9) and (10), we can write: 
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or 
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Simplify: 
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