Curvilinear motion

Throw a particle into space with the initial angle of elevation α and initial velocity v_{0}. The mass of the particle is m . When the particle moves with the drag force given by the formula: $\vec{O}=-H \vec{v}$.

Task: Find the x and y motion of the particle as functions of time $x(t), y(t)$

Solution

First, we draw the free body diagram as the figure.

The 2 d cartesian coordinate system is chosen and placed at the initial position of the particle.

The forces act on the particle are:
the drag force: $\vec{O}=-H \vec{v}$, this force against the direction of motion.
the gravity force: $\vec{G}=m \vec{g}$
and the D'Alembert force \vec{D}
Generally, the equation of motion can be written in accodence with the D'Alembert's law:

$$
\sum \vec{F}+\vec{D}=\overrightarrow{0}
$$

Or:
$m \vec{a}=\vec{G}+\vec{O}$
Then we can write the component equations:
(x): $m \ddot{x}=-O \cdot \cos \varphi$
$(\mathrm{y}): m \ddot{y}=-O \cdot \sin \varphi-m g$
Or:
$m \ddot{x}=-H \nu \cdot \cos \varphi=-H \dot{x}$
$m \ddot{y}=-H v \cdot \sin \varphi-m g=-H \dot{y}-m g$
Then we get:
$\ddot{x}+\frac{H}{m} \dot{x}=0(1)$
$\ddot{y}+\frac{H}{m} \dot{y}=-g(2)$

Solve the homogeneous equation (1):

We are easy to see the auxiliary equation of equation (1) as follows:

$$
\lambda^{2}+\frac{H}{m} \lambda=0(3)
$$

The equation (3) has two solutions:
$\lambda_{1}=0$
$\lambda_{2}=-\frac{H}{m}$
Then we can get the general solutions of equation (1) in the form:
$x_{H}=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}$
Consider to (4), we have:
$x=x_{H}=C_{1}+C_{2} e^{-\frac{H}{m} t}(5)$

Solve the nonhomogeneous equation (2):

In the same way, we have the solutions of the homogenous equation $\ddot{y}+\frac{H}{m} \dot{y}=0$ (6) in the form:

$$
y_{H}=C_{3}+C_{4} e^{-\frac{H}{m} t}(7)
$$

Now we are going to find particular solution of equation (2)
We assume that a particular solution can be written in the form:
$y_{H}=A t(8)$
where A is a constant.
So we get:
$\dot{y}_{H}=A(9)$
And

$$
\ddot{y}_{H}=0(10)
$$

Substitute (9) and (10) into (2), we have:
$0+\frac{H}{m} A=-g$
So we find:

$$
A=-\frac{m g}{H}
$$

Then we obtain the general solution of equation (2) in the form:

$$
y=y_{H}+y_{p}=C_{3}+C_{4} e^{-\frac{H}{m} t}-\frac{m g}{H} t(11)
$$

Consider the initial conditions:
$t=t_{0}=0$
$x(0)=0, y(0)=0$
$\dot{x}(0)=v_{0} \cos \alpha, \dot{y}(0)=v_{0} \sin \alpha$
We are going to find the coefficients $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$
From (5), we have:

$$
\dot{x}=-\frac{H}{m} C_{2} e^{-\frac{H}{m} t}(13)
$$

Combine (5), (13) and (12), we have:

$$
x(0)=C_{1}+C_{2}=0
$$

$\dot{x}(0)=-\frac{H}{m} C_{2}=v_{0} \cos \alpha$

So :

$C_{1}=-C_{2}$
$C_{2}=-\frac{m}{H} v_{0} \cos \alpha$

From (11), we have:

$$
\dot{y}=C_{3}-\frac{H}{m} C_{4} e^{-\frac{H}{m} t}-\frac{m g}{H}(14)
$$

Combine (11), (14) and (12), we have:
$y(0)=C_{3}+C_{4}=0$
$\dot{y}(0)=-\frac{H}{m} C_{4}-\frac{m g}{H}=v_{0} \sin \alpha$
So :

$$
\begin{aligned}
& C_{3}=-C_{4} \\
& C_{4}=-\frac{m}{H} v_{0} \sin \alpha-\frac{m^{2} g}{H}
\end{aligned}
$$

