
Law of conservation of mechanical energy of a system of two particles 

The system of two particles A, B with a given mass. They are connected by a bar 

(without mass and with a given length). When the system moves, the trajectory of 

particle A is the line kA and the trajectory of particle B is the parabola kB (as shown in 

the Figure) 

 

Given: 

the mass of particles: mA, mB, 

the length of the bar: L, 

the trajectory of particle A, kA: yA=L, 

the trajectory of particle B, kB: 
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B
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initial position: , 2 ,B Ax L x L     

potential energy for gravity force acting on the particles can be computed by: 

 V y mgy  

Task:  

Find the function of the velocity of the particles    ,A A B Bv x v x  

Find the function of displacement  Bx t  

Solution: 

Because the working force acting on the system is a potential force, we can use the law  

of change of mechanical energy 

0 0K V K V    (1)  



With the assumption that the initial velocity of the particles are 0, 
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So the initial kinetic energy 0 0K   

And the potential energy is given by: 

0 A BV m gL m gL    

The general kinetic energy and general potential energy are given by: 
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A B BV m gL m gy    

Substitute to (1), we have 
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Simplify and get: 
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Because the distance between particle A and particle B is L (the length of the bar), so 

we can write: 
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From the function of the trajectories of the particles, we have: 
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Substitute (4) to (3), we get: 
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The equation above is a quadratic equation with the variable xA and the roots can be 

presented in the form: 
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Simplify, we get: 
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The velocity of the particles are: 
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So : 
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Make the derivation of (4): 
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Then substitute to (7), we get: 
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Make the derivation of (5), we have: 
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The substitute to (6), we have: 
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Substitute (8) and (9) to (7), we have: 
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So we can rewrite (2): 
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So: 
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From (8), we have: 
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Solve the integral equation above we obtain the  B Bx x t  

 


