Impact of particles - real impact

Given:

A ball with mass m dropped from the rest at zero initial velocity height h_{0} above a heavy horizontal steel plate. Assuming that the steel plate has the mass M-> infinity. After the rebound from the plate, the ball rises to a new height $h_{l}<h_{0}$ where it has zero velocity again.

Task:

Determine the coefficient of restitution e for the ball/the steel plate.

Solution:

Because the working force acting on the ball is the gravity force, so the potential energy of the ball at the initial position is:

$$
\begin{equation*}
V_{0}=m g h_{0} \tag{1}
\end{equation*}
$$

And the kinetic energy of the ball at the initial position is:

$$
\begin{equation*}
K_{0}=0 \tag{2}
\end{equation*}
$$

Because the initial velocity of the ball is 0 .
Before the impact between the ball and the steel plate, the so the potential energy of the ball is:

$$
\begin{equation*}
V=0 \tag{3}
\end{equation*}
$$

And the kinetic energy of the ball is

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \tag{4}
\end{equation*}
$$

According to the law of conservation of energy, we have:

$$
\begin{equation*}
V_{0}+K_{0}=V+K \tag{5}
\end{equation*}
$$

Or

$$
0+m g h_{0}=\frac{1}{2} m v^{2}+0
$$

So we get the velocity of the ball before the impact:

$$
\begin{equation*}
v=\sqrt{2 g h_{0}} \tag{6}
\end{equation*}
$$

After the rebound from the plate, the ball rises to a new height $\mathrm{h} 2<\mathrm{h} 0$ so the type of impact is real impact, a part of the energy is lost through the impact. In this case, we use the Newton's theorem:

$$
\begin{equation*}
\varepsilon=-\frac{v_{1}^{*}-v_{2}^{*}}{v_{1}-v_{2}} \tag{7}
\end{equation*}
$$

Where:
ε is the coefficient of restitution,
v_{1}^{*} is the velocity of the ball after the impact
v_{2}^{*} is the velocity of the steel plate after the impact
v_{1} is the velocity of the ball before the impact
v_{2} is the velocity of the steel plate before the impact
We know, with the assumption that the mass of the plate M -> infinity, its velocity is equal to zero before and after the impact:
$v_{2}^{*}=v_{2}=0$
and $v_{1}=v=\sqrt{2 g h_{0}}$
so we get:

$$
\begin{equation*}
v^{*}=v_{1}^{*}=-\varepsilon v_{1}=-\varepsilon \sqrt{2 g h_{0}} \tag{8}
\end{equation*}
$$

Then we continue using the law of conservation of energy for the ball after the impact:

$$
\begin{equation*}
\frac{1}{2} m v^{* 2}+0=0+m g h_{1} \tag{9}
\end{equation*}
$$

Or

$$
\frac{1}{2} m \varepsilon^{2} 2 g h_{0}=m g h_{1}
$$

So we get:

$$
\varepsilon=\sqrt{\frac{h_{1}}{h_{0}}}
$$

