Dynamics of translational motion of a body

A rigid body moves with two bars as shown in the Figure. The body with the center of mass S is connected to the bars by rotary joints at A and B. The first bar rotates by the rotary joint at A_{0} and the second one does by the rotary joint at B_{0}. Two bars rotate parallel from a starting position to another in a given time with the same constant angular velocity by applying a driving moment to the second bar. The gravity and weight of the bars are neglected.

Given:

- The dimensions $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r}$;
- The mass of the body m;
- The time of rotation T;
- The angular velocity of bars ω;
- The angle at the ending position is ϕ;
- The applied moment of the second bar: $\mathrm{M}(\mathrm{t})=M_{0} \cos (\mathrm{kt})$;
- The boundary condition:

$$
\begin{aligned}
& \mathrm{v}_{s}(0)=\mathrm{v}_{s}(T)=0 \\
& \varphi(0)=0, \varphi(T)=\phi
\end{aligned}
$$

Task:

Find k and M_{0};
Find the reaction forces $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$

Solution:

Firstly, we draw the free body diagram of the rigid body with considering to d'Alembert law in the normal n - and tangent t-coordinates:

We can write the component equations by the following:
(t) : $-G \cdot \cos \varphi+R_{B t}-D_{t}=0$
(n) : $G \cdot \sin \varphi+R_{A}+R_{B n}-D_{n}=0$
$\left(\mathrm{M}_{\mathrm{S}}\right):\left(R_{B t} \cos \varphi-R_{B n} \sin \varphi\right)(a-b)+R_{A} b \sin \varphi-\left(R_{A} \cos \varphi+R_{B n} \cos \varphi+R_{B t} \sin \varphi\right) c=0$

Next, we consider the second bar:

$\left(\mathrm{M}_{\mathrm{B}}\right): M(t)-r R_{B t}=0$
Kinematics of the body:

$$
\begin{align*}
& v_{S}=r \frac{d \varphi}{d t}=r \omega \tag{5}\\
& a_{S t}=\frac{d v_{s}}{d t}=0 \tag{6}\\
& a_{S n}=\frac{v_{S}^{2}}{r}=r \omega^{2} \tag{7}
\end{align*}
$$

Specification of D'Alembert forces:

$$
\begin{align*}
& D_{t}=m a_{S t}=0 \tag{8}\\
& D_{n}=m a_{S n}=m r \omega^{2} \tag{9}
\end{align*}
$$

From (1), (4) and (8), we have:

$$
\begin{align*}
& R_{B t}=m g \cos \varphi \tag{10}\\
& M(t)=r m g \cos \varphi \tag{11}
\end{align*}
$$

So

$$
M_{0} \cos (k t)=m r g \cos (\omega t)
$$

We can say that:

$$
\begin{aligned}
& M_{0}=m r g \\
& k=\omega
\end{aligned}
$$

Then we rewrite the equation (2) and (3):

$$
\begin{aligned}
& R_{A}+R_{B n}=m r \omega^{2}-m g \sin \varphi \\
& R_{A}(b \sin \varphi-c \cos \varphi)+R_{B n}(\mathrm{a} \sin \varphi-b \sin \varphi-c \cos \varphi) \\
& +m g \cos \varphi(\operatorname{acos} \varphi-b \cos \varphi-c \sin \varphi)=0
\end{aligned}
$$

Then solve the system of equation (12), (13), we get:

$$
\begin{align*}
& R_{B n}=\frac{m g\left(\mathrm{~b}-\operatorname{acos}^{2} \varphi\right)-m r \omega^{2}(\mathrm{~b} \sin \varphi-c \cos \varphi)}{(a-2 b) \sin \varphi} \tag{14}\\
& R_{A}=m r \omega^{2}-m g \sin \varphi-R_{B n} \tag{15}
\end{align*}
$$

In brief, we obtain the reaction forces of joints A and B from (10), (14) and (15).

