Dynamics of rotational motion of a body

The rotor of an electric motor with a given moment of inertia to the axis of rotation. It works under the driving torque characterized by the given moment characteristic.

Given:

- Moment of inertia J_{0};
- The given moment characteristic:

$$
M=M_{0}\left(1-\frac{\omega}{\omega_{0}}\right)\left[8\left(\frac{\omega}{\omega_{0}}\right)^{2}+\frac{\omega}{\omega_{0}}+1\right]
$$

- The constants $\mathrm{M}_{0}, \omega_{0}$;
- The initial condition: $\omega(0)=0$

Task:

- Determine the dependence of the angular velocity ω of the rotor on the position angle φ

Solution:

Because the rotor is dynamically balanced so we just need to concern to d'Alembert moment in the equation below:

$$
M+M_{D}=0
$$

Where: $M_{D}=-J_{0} \alpha$
So we have:

$$
\begin{equation*}
J_{0} \alpha=M \tag{1}
\end{equation*}
$$

The angular acceleration can be rewritten in the form:

$$
\begin{equation*}
\alpha=\frac{d \omega}{d t}=\frac{d \omega}{d \varphi} \cdot \frac{d \varphi}{d t}=\omega \frac{d \omega}{d \varphi} \tag{2}
\end{equation*}
$$

Substitute (2) to (1) and combine with the expression of given applied moment, we have:

$$
\begin{equation*}
J_{0} \omega \frac{d \omega}{d \varphi}=M_{0}\left(1-\frac{\omega}{\omega_{0}}\right)\left[8\left(\frac{\omega}{\omega_{0}}\right)^{2}+\frac{\omega}{\omega_{0}}+1\right] \tag{3}
\end{equation*}
$$

For convenient of solving, we denote $x=\frac{\omega}{\omega_{0}}$;
Then we can rewrite the equation (3) as follows:

$$
\begin{equation*}
J_{0} \omega_{0}^{2} \frac{d x}{d \varphi}=M_{0}(1-x)\left[8 x^{2}+x+1\right] \tag{4}
\end{equation*}
$$

Separate the variables, we obtain:

$$
\begin{equation*}
\frac{x d x}{(1-x)\left(8 x^{2}+x+1\right)}=\frac{M_{0}}{J_{0} \omega_{0}^{2}} d \varphi \tag{5}
\end{equation*}
$$

When $\omega(0)=0$, we have $x(0)=0$ proportionally.
So we make the integration:

$$
\begin{equation*}
\int_{0}^{x(\varphi)} \frac{x d x}{(1-x)\left(8 x^{2}+x+1\right)}=\frac{M_{0}}{J_{0} \omega_{0}^{2}} \int_{0}^{\varphi} d \varphi \tag{6}
\end{equation*}
$$

Assume that we can make the realization:

$$
\begin{equation*}
\frac{x}{(1-x)\left(8 x^{2}+x+1\right)}=\frac{A}{1-x}+\frac{B x+C}{8 x^{2}+x+1} \tag{7}
\end{equation*}
$$

So:

$$
\begin{aligned}
& x=A\left(8 x^{2}+x+1\right)+(B x+C)(1-x) \\
& x=A 8 x^{2}+A x+A+B x+C-B x^{2}-C x \\
& (8 A-B) x^{2}+(A+B-C) x+(A+C)=x
\end{aligned}
$$

So it is easy to get:

$$
\begin{aligned}
& 8 A-B=0 \\
& A+B-C=1 \\
& A+C=0
\end{aligned}
$$

We get:

$$
A=\frac{1}{10}, B=\frac{8}{10}, C=-\frac{1}{10}
$$

Let's consider the left side of (6), we make the analyzation as follow:

$$
\begin{align*}
& \int_{0}^{x} \frac{x d x}{(1-x)\left(8 x^{2}+x+1\right)}=\int_{0}^{x} \frac{A}{1-x} d x+\int_{0}^{x} \frac{B x+C}{8 x^{2}+x+1} d x \tag{8}\\
& \int_{0}^{x} \frac{A}{1-x} d x=-\frac{1}{10} \int_{0}^{x} \frac{1}{1-x} d x=-\frac{1}{10} \ln |x-1| \tag{9}
\end{align*}
$$

$$
\begin{align*}
& \int_{0}^{x} \frac{B x+C}{8 x^{2}+x+1} d x=\int_{0}^{x}\left[\frac{B}{16} \frac{16 x+1}{8 x^{2}+x+1}+\left(C-\frac{B}{16}\right) \frac{1}{8 x^{2}+x+1}\right] d x \tag{10}\\
& =\frac{1}{20} \int_{0}^{x} \frac{16 x+1}{8 x^{2}+x+1} d x-\frac{3}{20} \int_{0}^{x} \frac{1}{8 x^{2}+x+1} d x \\
& =\frac{1}{20} \ln \left(8 x^{2}+x+1\right)-\frac{3}{20} \frac{2}{\sqrt{4.8-1}}\left[\operatorname{arctg} \frac{16 x+1}{\sqrt{4.8-1}}\right]_{0}^{x} \\
& =\frac{1}{20} \ln \left(8 x^{2}+x+1\right)-\frac{3}{20} \frac{2}{\sqrt{31}}\left(\operatorname{arctg} \frac{16 x+1}{\sqrt{31}}-\operatorname{arctg} \frac{1}{\sqrt{31}}\right)
\end{align*}
$$

Substitute (9), (10) to (2), we have:

$$
\begin{equation*}
\varphi=\frac{J_{0} \omega_{0}^{2}}{10 M_{0}}\left[\frac{1}{2} \ln \left(8 x^{2}+x+1\right)-\ln |x-1|-\frac{3}{\sqrt{31}}\left(\operatorname{arctg} \frac{16 x+1}{\sqrt{31}}-\operatorname{arctg} \frac{1}{\sqrt{31}}\right)\right] \tag{11}
\end{equation*}
$$

Function (11) is for the rotary angle $\varphi=\varphi(x)$ so the inverse function is $x=x(\varphi)$ or $\omega=\omega(\varphi)$

