Dynamics of rotational motion of a body

The skew cylinder is attached to the vertical rotary axis as in the figure.

Given:

- Dimension of the cylinder h, r;
- Mass of the cylinder m;
- Skew angle φ
- Dimension of the axis l_{1}, l_{2};
- Driving moment to the rotary axis M_{E}

Task:

- Moment of inertia about the axis
- System of equations of motion

Solution:

The local coordinate system O, x_{0}, y_{0}, z_{0} is attached to the cylinder.

We know the matrix of inertia of the cylinder to the coordinate system O, x_{0}, y_{0}, z_{0} as following:

$$
I_{0}=\frac{1}{4} m\left[\begin{array}{ccc}
2 r^{2} & 0 & 0 \tag{1}\\
0 & r^{2}+\frac{h^{2}}{3} & 0 \\
0 & 0 & r^{2}+\frac{h^{2}}{3}
\end{array}\right]
$$

The second coordinate system O, x_{1}, y_{1}, z_{1} which has $y_{1} \equiv y_{0}$ is attached to the rotary axis.

Matrix of transformation from the coordinate system O, x_{0}, y_{0}, z_{0} to the coordinate system O, x_{1}, y_{1}, z_{1} :

$$
T_{1}=\left[\begin{array}{ccc}
\cos (-\varphi) & 0 & \sin (-\varphi) \tag{2}\\
0 & 1 & 0 \\
-\sin (-\varphi) & 0 & \cos (-\varphi)
\end{array}\right]=\left[\begin{array}{ccc}
\cos \varphi & 0 & -\sin \varphi \\
0 & 1 & 0 \\
\sin \varphi & 0 & \cos \varphi
\end{array}\right]
$$

Then we find the matrix of inertia of the cylinder in the coordinate system O, x_{1}, y_{1}, z_{1} is:

$$
\begin{equation*}
I_{1}=T_{1}^{T} I_{0} T_{1} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& I_{1}=\left[\begin{array}{ccc}
\cos \varphi & 0 & -\sin \varphi \\
0 & 1 & 0 \\
\sin \varphi & 0 & \cos \varphi
\end{array}\right] \frac{1}{4} m\left[\begin{array}{ccc}
2 r^{2} & 0 & 0 \\
0 & r^{2}+\frac{h^{2}}{3} & 0 \\
0 & 0 & r^{2}+\frac{h^{2}}{3}
\end{array}\right]\left[\begin{array}{ccc}
\cos \varphi & 0 & \sin \varphi \\
0 & 1 & 0 \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right] \tag{4}\\
& =\frac{1}{4} m\left[\begin{array}{ccc}
\left(r^{2}+\frac{h^{2}}{3}\right) \sin ^{2} \varphi+2 r^{2} \cos ^{2} \varphi & 0 & \left(-r^{2}+\frac{h^{2}}{3}\right) \sin \varphi \cos \varphi \\
0 & r^{2}+\frac{h^{2}}{3} & 0 \\
\left(-r^{2}+\frac{h^{2}}{3}\right) \sin \varphi \cos \varphi & 0 & \left(r^{2}+\frac{h^{2}}{3}\right) \cos ^{2} \varphi+2 r^{2} \sin ^{2} \varphi
\end{array}\right]
\end{align*}
$$

The global coordinate system O, x, y, z which has $x \equiv x_{1}$ is fixed on the space.
The rotary axis rotates about the x -axis with angle θ.
Matrix of transformation from the coordinate system O, x_{1}, y_{1}, z_{1} to the coordinate system O, x, y, z :

$$
T_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{5}\\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Then we find the matrix of inertia of the cylinder in the coordinate system O, x, y, z is:

$$
\begin{equation*}
I=T_{2}^{T} I_{1} T_{2} \tag{6}
\end{equation*}
$$

So we have moment of inertia with respect to the x -axis as follow:

$$
\begin{equation*}
J_{x}=\frac{m}{4}\left[\left(r^{2}+\frac{h^{2}}{3}\right) \sin ^{2} \varphi+2 r^{2} \cos ^{2} \varphi\right] \tag{7}
\end{equation*}
$$

And
$D_{x y}=\frac{m}{4} \sin \theta \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right)$
$D_{x z}=\frac{m}{4} \cos \theta \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right)$
Dynamics of rotational motion of the cylinder about the rotary axis:
The free body diagram:

Equations are in vector form:

$$
\begin{align*}
& \sum \vec{F}_{i}^{E}+\vec{D}=\overrightarrow{0} \tag{8}\\
& \sum \vec{M}_{i}^{E}+\vec{M}_{D}=\overrightarrow{0} \tag{9}
\end{align*}
$$

where:
\vec{F}_{i}^{E} and \vec{M}_{i}^{E} are external force and external moment,
\vec{D} and \vec{M}_{D} are D'Alembert force and D'Alembert moment
For rotating body, we know:

$$
\begin{align*}
& \vec{D}=\vec{T}+\vec{O} \tag{10}\\
& \vec{T}=-m \vec{a}_{c t}=-m\left(\vec{\alpha} \times \vec{r}_{C}\right) \tag{11}\\
& \vec{O}=-m \vec{a}_{C n}=-m\left(\vec{\omega} \times \vec{v}_{C}\right) \tag{12}
\end{align*}
$$

Where:
\vec{T} and \vec{O} are vectors of tangent component and normal component of D^{\prime} Alembert force, $\vec{a}_{C t}$ and $\vec{a}_{C n}$ are vectors of tangent acceleration and normal acceleration in the coordinate system O, x_{1}, y_{1}, z_{1},
$\vec{\alpha}$ and $\vec{\omega}$ are vectors of angular acceleration and angular velocity of the cylinder in the coordinate system O, x_{1}, y_{1}, z_{1},
\vec{r}_{C} and \vec{v}_{C} are vectors of displacement and velocity of the center point of mass of the cylinder in the coordinate system O, x_{1}, y_{1}, z_{1}.

Because of $C \equiv O$, we have:

$$
\begin{align*}
& \vec{r}_{C}=\overrightarrow{0} \tag{13}\\
& \vec{v}_{C}=\overrightarrow{0}
\end{align*}
$$

So we get:

$$
\begin{equation*}
\vec{D}=\vec{T}=\vec{O}=\overrightarrow{0} \tag{14}
\end{equation*}
$$

The system of equations is given from the component equations of (6) and (7) as follows:

$$
\begin{align*}
& \left(x_{1}\right): \mathrm{R}_{A x}=0 \tag{15}\\
& \left(y_{1}\right): R_{A y}+R_{B y}=0 \tag{16}\\
& \left(z_{1}\right): R_{A z}+R_{B z}-G=0 \tag{17}\\
& \left(\widehat{M}_{x_{1}}\right): M_{E}+M_{D x}=0 \tag{18}\\
& \left(\widehat{M}_{y_{1}}\right): \mathrm{R}_{B z} l_{2}-\mathrm{R}_{A z} l_{1}+M_{D y}=0 \tag{19}\\
& \left(\widehat{M}_{z_{1}}\right): \mathrm{R}_{A y} l_{1}-\mathrm{R}_{B y} l_{2}+M_{D z}=0 \tag{20}
\end{align*}
$$

Where:

$$
\begin{align*}
& G=m g \tag{21}\\
& M_{D x}=-J_{x} \alpha ; \tag{22}\\
& M_{D y}=D_{x y} \alpha-D_{x z} \omega^{2}=\frac{m}{4} \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right)\left(\alpha \sin \theta-\omega^{2} \cos \theta\right) ; \tag{23}\\
& M_{D z}=D_{x z} \alpha+D_{x y} \omega^{2}=\frac{m}{4} \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right)\left(\omega^{2} \sin \theta+\alpha \cos \theta\right) . \tag{24}\\
& \alpha=\dot{\omega} \tag{25}
\end{align*}
$$

In which $J_{x}, D_{x y}, D_{x z}$ given from (5).

Solving the system of equations (16), (17), (18), (19), (20) with considering to (7), (21), (22), (23), (24),(25), we get:

$$
\alpha=\frac{M_{E}}{J_{x}}
$$

$$
\alpha=\dot{\omega}=\omega \frac{d \omega}{d \theta} \Rightarrow \alpha d \theta=\omega d \omega \Rightarrow 2 \alpha d \theta=d \omega^{2} \Rightarrow \omega^{2}=2 \alpha \theta
$$

$$
\mathrm{R}_{A y}=-\frac{D_{x z} \alpha+D_{x y} \omega^{2}}{\left(l_{1}+l_{2}\right)}, \mathrm{R}_{A z}=\frac{-D_{x y} \alpha+D_{x z} \omega^{2}+m g l_{1}}{l_{1}+l_{2}}
$$

$$
\mathrm{R}_{B y}=\frac{D_{x z} \alpha+D_{x y} \omega^{2}}{\left(l_{1}+l_{2}\right)}, \mathrm{R}_{B z}=\frac{D_{x y} \alpha-D_{x z} \omega^{2}+m g l_{2}}{l_{1}+l_{2}}
$$

Where θ is the rotated angle of the rotary axis ($0 \leq \theta \leq 2 \pi$)

