Balancing of a rotating body

The skew cylinder is attached to the vertical rotary axis as in the figure. The balancing system is created by using two additional masses. They are joined to the rotary axis at joint A and B by weightless bars.

Given:

- The dimension of the cylinder h, r;
- Mass of the cylinder m;
- Skew angle φ
- The dimension of the axis l_{l}, l_{2};

Task:

Determine the additional masses m_{1}, m_{2}, the length of bars r_{1}, r_{2}, and the angles φ_{1}, φ_{2} to keep the system in static balance and dynamic balance.

Solution:

The total mass of the balanced system is:

$$
\begin{equation*}
m^{\prime}=m+m_{1}+m_{2} \tag{1}
\end{equation*}
$$

Condition of static balance :

$$
\begin{align*}
& S_{x y}^{\prime}=m z_{C}+m_{1} r_{1} \sin \varphi_{1}+m_{2} r_{2} \sin \varphi_{2}=0 \tag{1}\\
& S_{x z}^{\prime}=m y_{C}+m_{1} r_{1} \cos \varphi_{1}+m_{2} r_{2} \cos \varphi_{2}=0 \tag{2}
\end{align*}
$$

Condition of dynamic balance :

$$
\begin{align*}
& D_{x y}^{\prime}=D_{x y}+m_{1} l_{1} r_{1} \cos \varphi_{1}-m_{2} l_{2} r_{2} \cos \varphi_{2}=0 \tag{3}\\
& D_{x z}^{\prime}=D_{x z}+m_{1} l_{1} r_{1} \sin \varphi_{1}-m_{2} l_{2} r_{2} \sin \varphi_{2}=0 \tag{4}
\end{align*}
$$

where $D_{x y}, D_{x z}$ are products of inertia of the cylinder in the coordinate system O, x_{1}, y_{1}, z_{1}.

We already know that

$$
\begin{align*}
& y_{C}=z_{C}=0 \tag{5}\\
& D_{x y}=0 ; D_{x z}=\frac{m}{4} \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right) \tag{6}
\end{align*}
$$

Substitute (5),(6) into (1), (2), (3), (4), we get:

$$
\begin{align*}
& m_{1} r_{1} \sin \varphi_{1}+m_{2} r_{2} \sin \varphi_{2}=0 \tag{7}\\
& m_{1} r_{1} \cos \varphi_{1}+m_{2} r_{2} \cos \varphi_{2}=0 \tag{8}\\
& m_{1} l_{1} r_{1} \cos \varphi_{1}-m_{2} l_{2} r_{2} \cos \varphi_{2}=0 \tag{9}\\
& \frac{m}{4} \cos \varphi \sin \varphi\left(-r^{2}+\frac{h^{2}}{3}\right)+m_{1} l_{1} r_{1} \sin \varphi_{1}-m_{2} l_{2} r_{2} \sin \varphi_{2}=0 \tag{10}
\end{align*}
$$

Combine (8) and (9), we have:

$$
\begin{equation*}
m_{1} r_{1} \cos \varphi_{1}=m_{2} r_{2} \cos \varphi_{2}=0 \tag{11}
\end{equation*}
$$

Then we can choose

$$
\begin{equation*}
\varphi_{1}=\frac{\pi}{2} ; \varphi_{2}=-\frac{\pi}{2} \tag{12}
\end{equation*}
$$

Substitute (12) into (7), we have:

$$
\begin{equation*}
m_{1} r_{1}=m_{2} r_{2} \tag{13}
\end{equation*}
$$

Substitute (12), (13) into (10), we have:

$$
\begin{equation*}
\frac{m}{4}\left(r^{2}-\frac{h^{2}}{3}\right) \sin \varphi \cos \varphi+m_{1} r_{1}\left(l_{1}+l_{2}\right)=0 \tag{14}
\end{equation*}
$$

So we get:

$$
\begin{equation*}
r_{1}=\frac{\frac{m}{4}\left(r^{2}-\frac{h^{2}}{3}\right) \sin \varphi \cos \varphi}{m_{1}\left(l_{1}+l_{2}\right)} \tag{15}
\end{equation*}
$$

We can choose $m_{1}=m_{2}$ then we get:

$$
\begin{equation*}
r_{2}=r_{1} \tag{16}
\end{equation*}
$$

