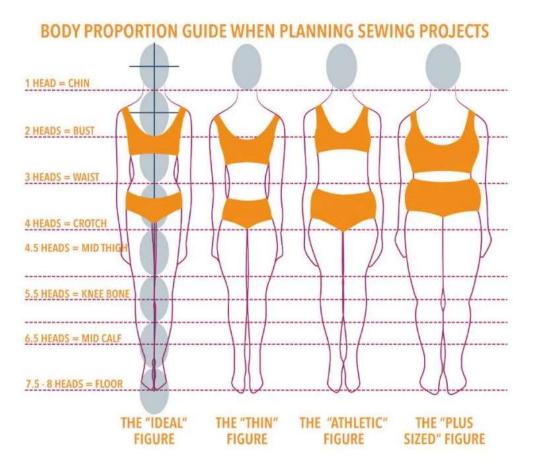
FACULTY OF TEXTILE ENGINEERING TUL

DEPARTMENT OF CLOTHING TECHNOLOGY

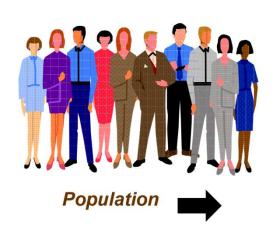
Body proportion



Why do clothing sizes differ from one brand to another, although their sizing guides typically follow the same sets of measurements?

It depends on a relatively high degree of our knowledge of the relations existing between body dimensions of the population, so-called body proportions.

The value of one body dimension is calculated as a percentage of another dimension. Clothes will always fit differently from person to person.

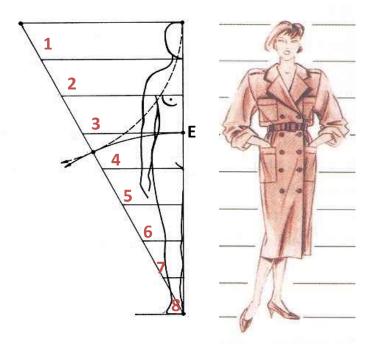


How we can characterised proportion?

The relationship of one body part to a whole or to other body parts.

Two concepts which are useful in representing human body proportions:

Division into Eighths



Ideal proportion for clothing [1]

The Golden Section (Golden Mean)

Construction of the golden section:

- 1. The perpendicular BC is erected at B, with BC = ½ AB
- 2. C is joined to A
- 3. D is marked on CA so that $CD = CB = \frac{1}{2}AB4$.
- 4. E is marked on AB so that AE = AD
- 5. E divides AB according to golden section.

$$\frac{(a+b)}{a} = \frac{a}{b} = \varphi$$
 (golden number) = 1.6180339887

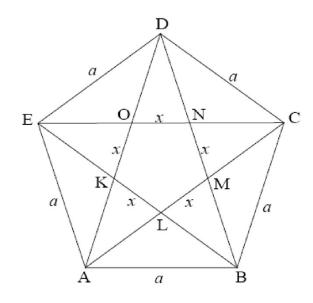
Principle:

The whole line (a+b) is to the larger section (a) Major as larger section (a) is to the shorter section (b) Minor

Regular pentagon

Ε

Five-pointed star in a pentagon

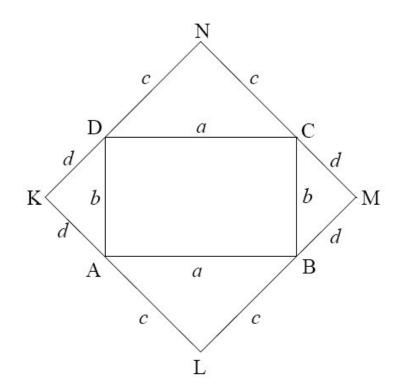


The ratio of the lengths of the diagonal to the side of the pentagon is gold ϕ

Golden rectangle

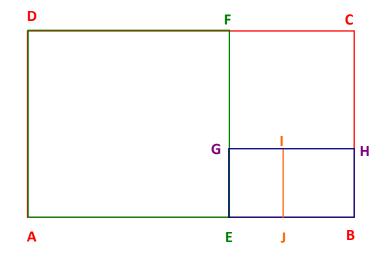
Golden rectangle

 \Rightarrow a rectangle whose sides are in a ratio φ can be inscribed in a square so that all its vertices are divided by the sides of the square in a gold ratio



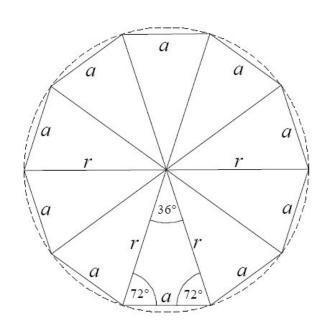
Golden rectangle inscribed in a square

ABCD square AEFD, the remainder will again be a golden rectangle; if from a rectangle EBCF we separate the square GHCF will be the rest EBHG again a golden rectangle, etc.

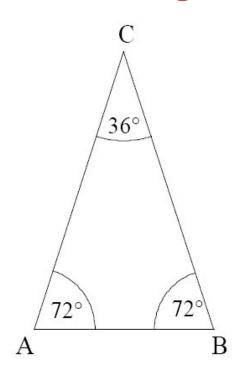


Golden decagon

Golden triangle



$$\frac{r}{a} = \varphi$$



$$cos(\alpha) = \frac{\frac{1}{2}}{\frac{1+\sqrt{5}}{2}} = \frac{1}{1+\sqrt{5}},$$
 thus $\alpha = 72^{\circ}$

Golden number

Leonardo Fibonacci

Leonardo Fibonacci discovered the sequence which converges on φ (phi).

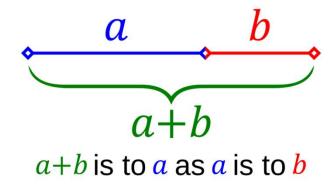
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

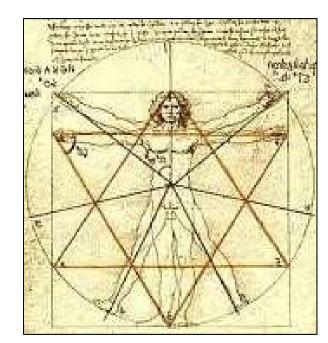
Each new number in the sequence is simply the sum of the

two before it. [2]

Golden Ratio in Art and Architecture

$$\frac{(a+b)}{a} = \frac{a}{b} = \varphi$$
 (golden number) = 1.6180339887





The Vitruvian Man ("The Man in Action") by Leonardo Da Vinci

Reference

- [1] EBERLE, H. *Clothing technology*. Europa Lehrmittel Verlag, 2008. ISBN 13: 978-38085622.
- [2] Tokens, E. Understanding Body Proportions. In: The Creative Curator [online]. 7.7.2022 [cit. 14.4.2023]. Dostupné z: https://www.thecreativecurator.com/understanding-body-proportions/