Textilní nanomateriály

Parametry ovlivňující elektrické zvlákňování Procesní podmínky

Opakování

Materiálové podmínky:

- Typ polymeru
- Molekulová hmotnost a její distribuce
- Koncentrace
- Rozpouštědlový systém
- Elektrická vodivost
- Viskozita
- Povrchové napětí
- Aditiva

Podmínky ovlivňující elektrické zvlákňování

Procesní podmínky x materiálové podmínky

Procesní podmínky

- Uspořádání spinneru
- Elektrické napětí
- Vzdálenost kolektoru od elektrody
- Dávkování roztoku
- Kolektor
- Podkladový materiál
- Teplota
- Vlhkost

- Uspořádání ovlivňuje elektrické napětí a elektrické pole během procesu zvlákňování, dále uspořádání ovlivňuje průměry vláken a výrobnost celého procesu
- Typ elektrody:
 - Jehlové zvlákňování *x* Bezjehlové zvlákňování
- Konfigurace zařízení:
 - Elektroda: nabitá / uzemněná
 - Kolektor: nabitý / uzemněný

 Počet elektrod ovlivňuje rozložení elektrického pole a tím i ukládání vzniklých vláken

The geometry of the DC electrospinning system (a) and a detail of the corresponding electrostatic field (b).

Průměr jehel

a.		
b.		
c.	A CONTRACTOR OF CONTRACTOR	
d.		

Sample	Needle Gauge		
No.	(Needle Diameter)	Ν	Mean
S 1	22G (0.70mm)	100	149.778
S2	20G (0.90mm)	100	155.336
S 3	19G (1.06mm)	100	162.438
S4	18G (1.25mm)	100	171.464

Descriptives for nanowebs produced from 18wt% SF solution

SEM images of samples a.S1; b.S2; c.S3; d.S4

- Rozdíl elektrických potenciálů mezi dvěma body
 U [*V*]
- Rozlišujeme: stejnosměrné napětí x střídavé napětí
- Nejdůležitější faktor elektrického zvlákňování
 - Ovlivňuje vznik Taylorova kužele a morfologii vrstvy
- Zvýšením napětí dochází k tvorbě homogenních vláken, tedy dochází k odstranění perliček

Images of the electrospinning polymer jet length before the bending instability begins and the area of deposited random fibers on Al foil for poly(methyl methacrylate) (PMMA)+ (a,c) and PMMA- (b,d), respectively.

Images of jet movement for (a) spinneret charging system, (b) collector charging system, at electrospinning conditions: applied voltage: 20 kV, working distance: 18 cm, flow rate: 0.008 mL/min, RH%: 40%

 Změnou napětí ovlivníme především produktivitu procesu

SEM images of electrospun PAN nanofibers from different applied voltages: (A) 50 kV, (B) 55 kV, (C) 60 kV, (D) 65 kV, (E) 70 kV. Insert images: the distribution of nanofiber. (F) The productivity and diameters of nanofibers with different applied voltages.

Vzdálenost od kolektoru

- Vzdálenost elektrody od kolektoru ovlivňuje morfologii vrstvy
- Příliš malá vzdálenost elektrody od kolektoru vede k nedostatečnému odpaření rozpouštědla a vzniku spojených vláken

Dávkování

- Změna dávkování platí pro jehlový i bezjehlový spinner
- Dávkování ovlivňuje průměry vláken a strukturu výsledné vrstvy

ROLLER ELECTORPSINNING SYSTEM

Dávkování

Příliš velké dávkování vede k tvorbě defektů

SEM images of electrospun nanofibers a) flow rate of 10 ml/h, 30-60 nm fiber diameter, 300 nm bead diameter, b) flow rate of 6ml/h, 50-100 nm fiber diameter, 440 nm bead diameter, c) flow rate of 1.6 ml/h, 170-220 nm fiber diameter, non-beaded structure d) flow rate of 1.1 ml/h, 230-476 nm fiber diameter, non-beaded structure.

- Vlhkost okolního prostředí velmi ovlivňuje proces elektrického zvlákňování
- Okolní vlhkost má vliv na průměry vláken, defekty, ale také na velikost pórů ve vláknech
- Optimální vlhkost okolního prostředí je nutné určit pro každý zvlákňovaný polymer

 V případě zvlákňování PEG vede vyšší vlhkost k tvorbě defektní struktury

Scanning electron micrographs of poly(ethylene glycol) (PEG) electrospun at relative humidity (RH) ranging from 5% to 75%.

 V případě zvlákňování P(L)LA vede vyšší vlhkost k odstranění perliček

Effect of relative humidity on P(L)LA beaded fibre SEM micrographs of PLLA fibres electrospun at a) RH = 30%, b) RH = 40%, c) RH = 50% and d) RH = 60%. Scale bar = 10 μ m.

- Zvýšením vlhkosti je možné vytvořit porézní vlákna
- Vyšší okolní vlhkost vede k větším pórům ve vláknech

Scanning electron micrographs of polycaprolactone (PCL) electrospun at relative humidity ranging from 5% to 75%.

- Vyrobená nanovlákna je nutné nějakým způsobem zachytit pro další zpracování
- Záchytné zařízení kolektor je zkonstruován podle požadavků na výsledný výrobek
- Tvar a struktura kolektoru má výrazný vliv na strukturu výsledného nanovlákenného výrobku

 Použitím speciálních kolektorů můžeme vytvářet orientované vlákenné struktury, nebo vlákenné struktury s reliéfem kolektoru

 Využitím strukturovaného kolektoru lze získat nanovlákennou vrstvu se stejnou strukturou

 Orientace vláken může probíhat pomocí rotačního bubnu, nebo třeba pomocí tištěných spojů

0 rpm

2000 rpm

SEM images and their respective fiber diameter distribution, showing the effect of rotational speed on the characteristics of fibers collected on the rotating drum.

Detail rotačního diskového kolektoru se čtyřmi hroty.

Photos and SEM images of PGA non-woven mat prepared by traditional system (a) and spongiform PGA fabric with solvent system (b).

Scanning electron images of electrospun materials: PCL fibers (from chloroform/ethanol 9:1 solution) wet electrospun into different liquid collectors described above each image.

Děkuji za pozornost!

TEST

- Jaké materiálové podmínky ovlivňují proces zvlákňování?
- Jaké procesní podmínky ovlivňují proces zvlákňování?
- Jaký je vztah mezi elektrickým napětím a vzdáleností od kolektoru?
- Jak okolní vlhkost ovlivňuje proces elektrického zvlákňování?