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One of the most important advantages of fibers is their flexibility, i.e. their ability to bent 

and form loops and knots with the radius compared to their diameter. 

This astonishing property of many materials which form fiber-like or beam shape, has 

drew attention of many great scientists: Galileo Galilei, Leonardo da Vinci, and Hooke.
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Advantages of fibers – výhody vláken
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Galileo Galilei made the first attempts at developing a theory of 

beams, but Galileo was held back by an incorrect assumption he 

made. 

Leonardo da Vinci was the first to make the crucial observations. Da 

Vinci lacked Hooke's law and calculus to complete the theory.
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History
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Euler–Bernoulli beam theory is a simplification of the linear theory of 

elasticity which provides a means of calculating the load-carrying and 

deflection characteristics of beams. 

It covers the case for small deflections of a beam which is subjected 

to lateral loads only. 

It was first enunciated circa 1750, but was not applied on a large scale 

until the development of the Eiffel Tower and the Ferris wheel in the 

late 19th century. Following these successful demonstrations, it 

quickly became a cornerstone of engineering and an enabler of the 

Second Industrial Revolution.
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Bernoulli-Euler beam theory
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A Ferris wheel is a nonbuilding structure consisting of a rotating upright wheel with 

passenger cars attached to the rim. The original Ferris Wheel was designed and 

constructed by George Washington Gale Ferris, Jr. as a landmark for the 1893 World's 

Columbian Exposition in Chicago.
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Leonhard Euler and Daniel Bernoulli were the first to put together a 

useful theory circa 1750. 

At the time, science and engineering were generally seen as very 

distinct fields, and there was considerable doubt that a mathematical 

product of academia could be trusted for practical safety applications. 

Bridges and buildings continued to be designed by precedent until 

the late 19th century, when the Eiffel Tower and Ferris wheel 

demonstrated the validity of the theory on large scales.
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Leonhard Euler and Daniel Bernoulli theory
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Gustave Eiffel, Maria Pia Bridge, 

Porto, Portugal, [1877]

http://www.columbia.edu/cu/gsapp/BT/ST

RUCTI/WEEK1/structures1.html

Gustave Eiffel
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1. The material is isotropic

and obeys the linear 

Hooke’s law of elasticity. 

These properties remain 

unchanged during the 

deformations;

2. The flat transverse planes

of element in the unloaded 

beam will still be flat in the 

bent beam.

compression

tension

Neutral axis

d

flat flat
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Two basic assumptions underlie the beam theory
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These assumptions are adequate for metals and glasses but hardly 

applicable for many high performance polymer and carbon fibers, 

even if the fibers deform linearly. 

Internal structure of these fibers is highly anisotropic and still poorly 

understood. 

However, the beam theory is proven suitable for description of many, 

even anisotropic, fibers. 
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Two basic assumptions underlie the beam theory
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Fig.1: The loop of a bended fiber lies in the xy-plane. 

Fig.1a: Schematic of curved fiber, R>> fiber diameter.

We assume that bending moments M are applied to the fiber ends and 

we would like to find a relation between the bending moments M and 

the loop radius R.
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A fiber bent in a radius R

y
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http://en.wikipedia.org/wiki/Bending
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Ohybový moment je statická veličina. Jde o moment síly způsobující ohyb prvku (trámu, desky apod). 

Značí se M a základní jednotka je Newton na metr. 

Tato veličina se používá k dimenzování nosných konstrukcí jak ve stavebnictví, tak i ve strojírenství.

FrM




r
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Mechanická rovnováha :

Stav, kdy výslednice sil 

a momentů sil působící 

na fyzikální soustavu, 

například na hmotné 

těleso, je nulová.

Conditions of static equilibrium

0M
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Bending has stretched the upper parts of the beam and compressed 

the lower parts. 

Since the strain is proportional to the tensile stress, the distribution 

of tensile stress across the fiber must be as shown in Fig.1b) . 

Fig.1b
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Stretched and compressed parts of a beam
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Stress distribution about the 

neutral axis

compression

tension

Neutral axis

flat flat

y

R

y

-y



compression

tension

There is an intermediate filament in the fiber (or a layer if the fiber 

has rectangular cross-section) which is neither extended or 

compressed. It is called neutral axis (or surface). 
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Neutral axis does not change its length
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Stresses in a loop of radius R 

and produce the stress:

compression

tension

Neutral axis

flat flat

y

R

Neutral axis does not 

change its length: 2R

Other filaments change its length: (2R  2y)- 2R=  2y,

and suffer the strain:
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(7.2)
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This relation holds true for any point along the fiber, even if it is 

bent in a more complicated shape, provided that R=R(s), i.e. the 

local radius depends on the arc length s. 

R

E

y
zz 

 (7.2)

R=R(s)

More complicated fiber shape
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Due to the second assumption, if the transverse planes are to remain 

plane, the total force acting on this cross-section should be zero. 
2. The flat transverse planes of element in the unloaded beam will still be flat in the bent beam.

Total force acting on this cross-section should be zero
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Therefore, the force distribution shown in Fig. 1 should give no resultant force. Since the tensile force acting on the 

infinitesimal slice with the cross sectional area dA is written as

dF = zz dA, (7.3)

the total force is zero

dF = zz dA = 0 ,

or, using (7.2) , we have

(7.2)

(7.4)

This equation serves for specification of the neutral axis (surface) 

and the quantity Iy= ydA is called the first moment of inertia. 

R
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First moment of inertia
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dA

Centroid?

y

Take a strip of area dA positioned at 

the distance y from AN and || to it. The 

total force in the strip is 

dF =zzdA 

The total force F acting on the cross 

section must be zero 
A N

This is the first moment Iy of inertia (with respect to x-axis). This 

equation is identical to the condition that the neutral axis passes 

through the center of gravity of this cross-section.

  00 dAydAF

A

zz

19R

Ey
zz 

Neutral axis

Iy= ydA
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We are in position to find the bending moment M as a function of the loop radius R. Consider the 

force moment as a resultant of the stress distribution (7.2). In any fiber cross-section perpendicular to 

the loop plane and neutral axis, the force moment is written as

dM=yzzdA. (7.6)

Substituting (7.2), we have dM=Ey2dA/R. Integrating this relation, we come to the Bernoulli-Euler 

result:

(7.7)

where I is the second moment of inertia  

I= y2dA. (7.8)

As you see, the bending moment has the right dimension

[M] = [Nm-2] [m4] / [m] =  [N*m]

The product EI is called flexural rigidity and shows the fiber ability to resist 

bending. 

R
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y
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(7.2)
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Iy= ydA
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Bending moment: M=EI/R

flat

Force in elementary strip: 

dA

y

dF =zzdA

Moment of force about AN: 

A N

dM =yzzdA

Since zz= ytens/ytens

Moment on strip: dM = (comp/ycomp )y2dA = (tens/ytens )y2dA 

M = (comp/ycomp )  y2dA = (tens/ytens )y2dA =EI/R 

I=y2dA

Second moment of inertia

compression

tension

Neutral axis

flat flat

y

R
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We have a fiber with a rectangular cross-section, h x H, and place 

the origin of coordinates at its center (x = 0, y = 0).
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Example 2: 
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We have a fiber with a circular cross-section with the radius R and 

place the origin of coordinates at its center (x = 0, y = 0).
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Example 3:
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zz = My/ I = E y /R

Units:

Second 

moment 

of inertia

axial 

stress

Bending 

moment

24

Summary of the Euler-Bernulli theory 

R

EI
M 

  mN
m

m
m

N

M 

4

2
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E = Young’s modulus, material parameter

EI = flexural rigidity (≈ resistance of beam to bending),

i.e., material parameter x shape factor 

1/R = curvature, visible reaction

Flexibility f– the ability of a fiber to be bent, i.e. the 

inverse of the product, 

would be the criterion of fiber flexibility.

M  0, R 0  (we can make loops, knots, can weave, coil,…)

 f  
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EIEIR

R

MR
f

11


Flexibility
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As a measure of fiber flexibility it is convenient to choose f

In this definition, the smaller the fiber reaction on applied bending 

moment the greater the flexibility. 

Also, the smaller the loop which this fiber can form, the greater its 

flexibility. 

Hence, this complex f reflects our understanding of flexibility.

EIMR
f

11


Fiber flexibility
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The flexibility of cylindrical fibers is inversely proportional to the 

Young’s modulus of the material and the fiber diameter to the fourth.

It is expected therefore, that the nanometer thick fibers will have the 

greatest flexibility possible among other fibers.

644
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great flexibility of nanometer thick fibers

d
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The effect of fiber diameter is dominant!  nanofibers

Carbon nanotubes
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The pictures taken from Ref. (Cohen, A. E. , Mahadevan, L. Kinks, Rings, and 

rackets in filamentous structures, PNAS 100(21) 12141-12146), shows carbon 

nanotubes which are spontaneously coiled and looped in tennis rocket form. This is 

a manifestation of potential instability of their straight configuration. 

spontaneously coiled nanotubes
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Nanoyarns
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Some examples of real fibers are collected in Table 7.1. The fiber 

characteristics are taken from 

Chawla’s book on “High Performance Composites” 

and from 

Feghelman’s book on “Mechanical Properties and Structure of 

Alpha-Keratin Fibers: Wool, Human Hair and Related Fibres”. 

As you see, human hair gives sufficiently high flexibility! 

Flexibility of real fibers
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E-glass 14x10-6 m 70 E +9 Pa 7.5E+9 N-1 m-2

PAN-based 

carbon, HM

10x10-6 m 390 E +9 Pa 5.2E+9 N-1 m-2

PAN-based 

carbon, HS

8x10-6 m 250 E +9 Pa 1.9E+10 N-1 m-2

Kevlar 49 12x10-6 m 125 E +9 Pa 7.8E+9 N-1 m-2

Boron 100x10-6

m

385 E +9 Pa 5E+5 N-1 m-2

Hair 70x10-6 m 2 E +9 Pa 4.2E+8 N-1 m-2

Diameter d
Young’s 

modulus E
Flexibility f
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Table 7.1

Flexibility of real fibers
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One interesting application of the Bernoulli-Euler beam theory has 

been suggested by Nikolas Rashevsky (Mathematical biophysics; 

physicomathematical foundations of biology Volume 2, p.251-255). 

He was challenged by seeing that the longer the branch in a tree is 

growing, the farther it reaches out to the side, away from the trunk. 

But this trend continues only up to some critical length. There is a 

limit in branch length which controls how far it reaches out of the 

trunk and thus out of the shade of the highest branches. 

Since the branch is elastic, and in a first approximation it can be 

modeled as a beam, Rashevsky provided some scaling estimates of 

this critical length when the branch can support itself without falling 

like branches in willows.

Rashevsky’s law
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2/3ld 
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Consider a branch of length l having a diameter d and apply 

Bernoulli-Euler formula 

M=EI/R

to this branch. The bending moment on the branch tip is 

M=Fl, 

and if we assume that the weight is concentrated at the tip, we can put 

F = gd2l/4, 

where  is the wood density. 

The radius of curvature R which the branch can produce scales as

1/R~y/l2

(Remember the formula for curvature 1/R  ~ d2Y/dX2 .)

The sag (=průhyb) is denoted as y

R

EI
l

lgd
M 

4

2

Rashevsky’s law
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Hence, the sag (=průhyb) y gives an order of magnitude estimate for 

the beam deflection Y , and the branch length gives the order of 

magnitude estimate for X). 

1/R  ~ d2Y/dX2~y/l2

Thus, 

y ~ Fl 3/EI ~ Fl 3/Ed4. 

This gives the sag per branch length T, that is konstant.

T = y/l ~ gl 3/Ed2 !

EI

Fl

RR

EI
FlM 

1

64

4d
I




F ~ gd2l

2/3ld 2

3

d

l
T 

Rashevsky’s law
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This elegant derivation was so attractive to biologists that they took a 

challenge and measured several whole trees including white oak with 

more than 3000 segments linking to various branch points!

McMahon & Bonner reported that local diameter was proportional to 

the 3/2 power of length to the tip as predicted by Rashevsky!

Rashevsky’s law
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Rashevsky’s law

M=EI/R   M ~ Pl, R ~ y/l2  y ~ Pl 3/EI ~ Pl 3/Ed4

y

l

Since the branch bends under its own weight, P ~ g d2 l

y ~gl 4/Ed2  sag per branch length T ~ gl 3/Ed2

 E for wood is proportional to density, E ~   T ~ l 3/d2

McMahon&

Bonner, “On 

size and 

life”, 1983 37

TEORIE NETKANÝCH TEXTILIÍ



38

Homework:

1. Měřením na stromech, keřích a rostlinách ověřte Rashevskeho

zákon.

l

d

2.  Jakou flexibilitu by 

měl vlas o průměru 

100 nm?

TEORIE NETKANÝCH TEXTILIÍ


