

Rozvoj lidských zdrojů TUL pro zvyšování relevance, kvality a přístupu ke vzdělání v podmínkách Průmyslu 4.0

Vybrané statě z KOLORISTIKY

Lektor: Doc. Ing. Michal Vik, Ph.D.

Datum konání: LCAM KMI, ZU5 a ZU 6, budova B, TU Liberec

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

CZ.02.2.69/0.0/0.0/16_015/0002329

Historie LCAM TUL

Rok založení: 1999

výzkumná činnost se zaměřuje na:

- průmyslové posudky barevných rozdílů
- barevný vzhled výrobků pod různým osvětlením
- konstrukce speciálních měřících přístrojů
- senzorické textilie
- kamuflážní textilie
- hodnocení bělosti

ZÁKLADNÍ POJMY

Barva I

- Barva je to první, co vnímáme, pak teprve vnímáme tvary, detaily,... Je pro nás často jednodušší si vybavit barvu předmětu než například jeho tvar.
- Kdybychom neviděli barevně, byl by náš vnitřní svět mnohem chudší.

Barva II

 Barva je ta vlastnost zrakového počitku, kterou se odlišují dvě bezstrukturní části zorného pole stejného tvaru a rozměru.

•Bezstrukturní částí je zbytek vjemu po odečtení dojmu prostorového rozložení, rozměrů a časové proměnnosti od zrakového počitku.

 Rozdíl mezi uvedenými dvěma částmi zorného pole je zpravidla dán rozdílem ve spektrálním složení záření.

 Výjimkou jsou metamerní barvy, které i při rozdílném spektrálním složení vzbuzují stejný počitek barvy.

Aditivní a subtraktivní míchání barev

Spektrum

Proč je barva tak důležitá?

Barva prodává!!!

- Význam pro obchod
 - První je
 Barva…potom…
 - Design, Tvar,
 Textura, Pocit...*
- Socialní postavení
 - Svatba, Obchod, Pohřeb,
 - Móda
- Subjektivní element

Ukázka sezónních módních trendů z hlediska barevnosti

Preference barev

Je nutné mít také na paměti, že zákazníci kladou velký důraz na barevný vzhled výrobku: Zákazník nemá rád překvapení!!!

automotive color popularity, europe

automotive color popularity. asia

Vznik aperturní barvy

Charakteristika barvy

- Barevný tón kvalitativní odlišnost vjemu jednotlivých spektrálních barev. Vyjadřuje se názvy červená, zelená…
- Sytost barvy udává podíl čisté spektrální či purpurové barvy v dané barvě na celkovém barevném počitku.
- Světlost udává intenzitu vjemu světelného toku nebo jasu.
- Poznámka: Barvy se dělí na pestré a nepestré.
 Pestrá barva představuje takový vjem barvy, který má barevný tón.
 Nepestré barvy jsou vjemy barev, které nemají barevný tón – rozdíl pouze ve světlosti.

Člověk s bezdefektním vnímáním barev, bez zkušeností z kolorimetrie, přirozeně rozdělí jednotlivé barvy do logických skupin.

Komunikace v oblasti barev

Komunikace v oblasti barev

Jaký název by jste vybrali?

- Oranžovo-červená
- Modro-červená
- Červená
- Marlboro červená
- Ferari červená
- Římská červená

Atlasy a číselníky barev

- základním požadavkem je jejich reprodukovatelnost - jinak není možná komunikace
- vizuální hodnocení, resp. výběr vzorku je nutno provádět při standardizovaném osvětlení

Historický přehled

Albert Henry Munsell

* 6. ledna 1858 † 28. června 1918 1905 – A Color Notation 1915 – The Munsell Atlas of Color 1918 – A.H. Munsell Color Company

Uspořádání Munsellova atlasu

Maxwellův kolorimetr

Hue (odstín)

V současnosti 40 odstínových karet

Value (světlost)

Hodnoty Value mohou být v rozsahu 0-10

Chroma (čistota)

Hodnoty Chroma mohou být teoreticky v rozsahu 0-50.

Popis barevného vjemu

Současné edice Munsellova atlasu

Unlock the full potential of color choices with the Munsell Books of Color, available in both matte and glossy finishes. These collections of all the basic Munsell color standards are used worldwide for color quality control. Also available is the Nearly NeutralsTM collection offering an expanded scale of hues in the pale color range allowing users to specify pastels more accurately. These Munsell books are used in artrooms, design studios and quality control labs to select and communicate color precisely.

Munsell

Of Color

Books

Matte Collection 1270 vzorků Glossy Collection 1564 vzorků Nearly Neutrals Collection 1100 vzorků

Chromatické plochy Munsellova atlasu barev a zobrazení na CRT monitoru

Natural color system

Hans Irtel: Color Vision Demonstrations (1998)

Karl Ewald Konstantin Hering (1834-1918)

NCS - systém přirozeného uspořádání barev?

Základní členění NCS

Natural Colour System I

Munsell versus NCS

PANTONE

Pantone I

Pantone II

-90 -80 -70 -60 -50 -40 -30 -20 -10 10 20 - 30 50 40 L 10 20 30 -90 -80 -70 -60 -50 -40 -30 -20 -10 40 50 60 70 b a

-60

Pantone III

KEY COLORS FALL /WINTER 2007/8

RAL I

Fyziologie vnímání barev

Příklady vizuálních iluzí: Vliv barvy pozadí l

Jsou tyto kruhy barevně shodné?

Příklady vizuálních iluzí: Vliv barvy pozadí II

Jsou tyto kruhy barevně shodné?

Příklady vizuálních iluzí: Vliv barvy pozadí III

Jsou tyto kruhy barevně shodné?

Achromatický simultánní kontrast

Barevná asimilace I

Vizuální iluze – kinezie

Zrak

Součásti vizuálního systému

Oko jako receptor záření

 obsahuje dva druhy fotoreceptorů : cca 120 miliónů tyčinek, citlivost : 1725 lm W⁻¹ cca 6 miliónů čípků, citlivost : 673 lm W⁻¹

 vnímá elektromagnetické záření přibližně v oblasti od 380 do 760 nm.

je schopno se adaptovat na široké rozmezí jasu od

10⁻⁶ do 10⁸ cd.m⁻²

 je schopno rozeznat přibližně 7500 individuálních odstínů

 je schopno rozeznat přibližně 2-3 milióny odstínů při párovém srovnání.

Sítnice I

sítnice obsahuje světločivné buňky

- čípky pro barevné vidění
- tyčinky pro černobílé vidění
- ty jsou světlem excitovány, signál se přenese dalšími neurony sítnice do vláken optického nervu
- optický nerv vede signál do kůry
- čípky a tyčinky, bipolární, horizontální, amakrinní, gangliové neurony, glie - světlo tím vším prochází
- v oblasti žluté skvrny jsou vrstvy sítnice jakoby odtažené do stran

Sítnice III

Tyčinky - větší konvergence, větší citlivost - menší schopnost přenášet prostorové informace, ve fovea centralis žádná konvergence

Aktivace fotoreceptorů při různých světelných intenzitách

Fig1b. Scanning electron micrograph of the rods and cones of the primate retina. Image adapted from one by Ralph C. Eagle/Photo Researchers, Inc.

Tyčinky

vnější segment tyčinek obsahuje zrakový pigment rodopsin (proteinová složka skotopsin + karotenový pigment retinal) retinal je ve formě 11-cis

v principu stejná situace je i u čípků, pouze zrakové pigmenty zde mají trochu jinou stavbu - (jiné absorpční maximum), nazývají se čípkové pigmenty

Čípky I

- princip zcela shodný s tyčinkami, nižší senzitivita
- retinal zcela shodný, rozdíl v proteinové složce pigmentu
- 3 typy s různými absorpčními maximy: modrý (445 nm), zelený (535 nm) a červený (570 nm)
 - rodopsin 505 nm

Rozložení čípků a tyčinek v sítnici oka

foveal slope

Čípky II

Čípky III

- Pozor! čípky nevnímají jednotlivé vlnové délky odděleně
- různě intenzivní podněty mohou vyvolat shodnou odezvu v závislosti na vlnové délce podnětu a spektrální citlivosti čípku

Modely vnímání barev

Model oponentního zpracování signálů

Popis zpracování signálů v případě Makaka

Barevná deficience - vady rozlišování barev

<u>červeno</u>-<u>zelená</u>:

- protanopie (chybí výskyt červených čípků),
- deuteranopie (chybí výskyt zelených čípků)
- zelená, žlutá, oranžová, červená
- dědičné, na X chromozómu

• <u>modrá:</u>

- tritanopie (chybí výskyt modrých čípků),
 - vzácná vada
- Těmito vadami trpí více jak 8% obyvatelstva, z toho větší procento populace (7%) zatížené těmito vadami je mužského pohlaví

Další faktory ovlivňující vnímání barev

- Únava: obvykle denní doba, kdy je vizuální hodnocení prováděno
- Věk: stárnutí se projevuje zažloutnutím čočky a rohovky
- Stres: Hypertense (vysoký krevní tlak)
- Hlad: Vizuální hodnocení je ovlivňováno hladem (obvykle uvažujeme pouze inverzní situaci, např. modrá hlad potlačuje a zklidňuje)
- Léčiva: Viagra a Digitalis ovlivňují vnímání modrých barev
- Nemoci: Diabetes, Retina Pigmentosis a Katarakty (zákaly)
- UV: dlouhodobá expozice může poškodit sítnici a způsobuje žloutnutí čočky a rohovky

Vady barvocitu I

aus: www.gesundheit-heute.de

Vady barvocitu II

Bezdefektní vnímání barev

Protanopie

Deuteranopie

Vady barvocitu III

Vady barvocitu IV

Závislost průhlednosti čočky na věku

Fotoreceptory živočichů I

Fotoreceptory živočichů II

Měření barev

Spektrální vlastnosti objektů

Odraz světla

Ukázka odrazu světla od předmětu různých barev

Barva objektů vzniká různými mechanismy - odraz, interference, luminiscence, difrakce...

převzato z: http://upload.wikimedia.org/wikipedia/commons/0/06/Dieselrainbow.jpg

Barva objektů vzniká různými mechanismy - opalescence

Základní rozdělení objektů podle interakce se světlem

Zrcadlový

odraz

Objekty průhledné - podíl difúzního odrazu nebo transmise $\rightarrow 0$

Rozdělení měřících systémů v kolorimetrii

Vizuální kolorimetrie

Kolorimetry

Kalibrace monitorů

Contrast Inspection / Adjustment

Photo shows Universal Measuring Probe

Spektrofotometry

Současné doporučení CIE pro měření odrazivosti

CIE 15.3 (2007) Colorimetry 3-rd edition

- $(\mathbf{r}_{45^{\circ}}^{\mathbf{n}})$
- 1) Diffuse: eight-degree geometry, specular component included (di:8°)
- 2) Diffuse: eight-degree geometry, specular component excluded (de:8°)
- *3)* Eight degree: diffuse geometry, specular component included (8°:di)
- 4) Eight degree: diffuse geometry, specular component excluded (8°:de)
- 5) Diffuse / diffuse geometry (d:d)
- 6) Alternative diffuse geometry (d:0°)
- 7) Forty-five degree annular / normal geometry (45°a:0°)
- 8) Normal / forty-five degree annular geometry (0°:45°a)
- 9) Forty-five degree directional / normal geometry (45°x: 0°)
- 10) Normal / forty-five degree directional geometry (0°:45°x)

Proč tolik geometrií?

Hardyho spektrofotometry I

1928 Hardy Recording Photoelectric Color Analyzer

Arthur Cobb Hardy (1895-1977)

Když A.C. Hardy sestrojil první spektrofotometr zjistil, že textura u vzorků způsobuje problémy s reprodukovatelností měření!!!

Měření spektrálního činitele rozptylného odrazu

Odraz světla na různých površích

Hardyho spektrofotometry II

1935 – US patent No. 1,987,441

Měření celkového spektrálního činitele odrazu

SCI – di:8° Specular component included (včetně zrcadlové složky odrazu) SCE – de:8° Specular component excluded (bez zrcadlové složky odrazu)

převzato z: firemních materiálů firmy HunterLab

Geometrie 0°/45°

ΔL*Δa*Δb*SCE1.4-1.5-1.2(bez zrcadlové složky odrazu)

Měřící geometrie d:8°

ΔL*Δa*Δb*SCI0.00.1-0.0(včetně zrcadlové složky odrazu)-0.9SCE -1.8-1.6-0.9(bez zrcadlové složky odrazu)

Měřící geometrie D/8° – problém měření v módu SCE

Vliv textury na měření barevných rozdílů

Sphere Geometry

Specular Included Specular Excluded	ΔL* 0.1 2.0	∆a* -0.1 0.5	Δb* 0.1 1.0
<u>0°/45°</u>	Geom	etry	
∆L* Specular Excluded	∆a* 5.2	∆b* 1.8	2.5

Obrazová analýza I

Obrazová analýza II

Aby bylo možné zjistit barvu, a tím vytvořit plnobarevný pixel obrazu, pomáhají si fotoaparáty malým trikem založeným na tzv. Bayerově masce.

Bayerova maska je soustava tristimulárních filtrů umístěných před senzorem - každá buňka senzoru je pak citlivá pouze světlo určité barvy.

Obrazová analýza III

Adopted from Technical Report "Imaging at the National Gallery of Art, Washington D.C."

Systémy obrazové analýzy

Million and State States

Ukázka vybraných geometrií

A)

Komerční skenery

Skenery - jsou obvykle konstruovány jako lineární snímače

pokud použijeme profesionální programy pro skening jako
VueScan apod. můžeme získat i z běžného skeneru velmi
zajímavé informace

 - je nutno brát v úvahu rozdíl ve spektrální účinnosti lidského oka a příslušného senzoru

RGB, GREY a NIR obraz

GREY 16B

NIR 16B

RGB a NIR obraz

My password is: secret

RGB

NIR

Materiály

Ideální vzorek pro měření

- Plochý
- Hladký
- Barevně jednotný
- Isotropní
- Neprůsvitný nebo průhledný

Termochromism

MIN	dE CIE	DE CMC
0.00	0.00	0.00
1.00	0.11	0.15
2.00	0.24	0.22
3.00	0.38	0.26
4.00	0.61	0.30
5.00	0.74	0.32
6.00	0.88	0.33
7.00	0.95	0.35
8.00	1.01	0.37
9.00	1.03	0.36

$$\Delta T = 10^{\circ}C$$

Příprava vzorku a měření

- Vyberte reprezentativní vzorek z měřeného materiálu.
- Připravte vzorek pro měření tak, aby se svým charakterem co nejvíce blížil ideálnímu vzorku.
- Vždy dodržujte postup přípravy a odběru vzorku.
- Umístěte vzorek na měřící otvor přístroje tak, aby měřená plocha charakterizovala měřený vzorek.
- Provádějte vícenásobné měření a kontrolujte odchylky naměřených hodnot.
- Klimatizujte měřené vzorky (například dle BS EN ISO 139:2005)

Osvětlení

Vizuální triplet

Vliv spektrální charakteristiky osvětlení l

Bílý papír není bílý. Přejímá barvu světla, které na něj svítí

Vliv spektrální charakteristiky osvětlení II

Bílé denní světlo

Zelené světlo

Vliv spektrální charakteristiky osvětlení III

Vliv spektrální charakteristiky osvětlení IV

Vizuální část spektra

Sluneční svit

Denní světlo

Absolutní spektrální složení

Poměrné spektrální složení

Teplota chromatičnosti I

Teplota chromatičnosti II

Correlated colour temperature (CCT)	Colour appearance
< 3300K	Warm
3300 - 5300K	Intermediate
> 5300K	Cool
1000К 3000К 5	5000K 8000K

Light Source	Illuminant	Color Temperature
Daylight	D65	6500 Kelvin
Average Daylight	D50	5000 Kelvin
Daylight Old std.	С	6774 Kelvin
Incandescent	А	2856 Kelvin
Direct Sun	В	4874 Kelvin

Světelné zdroje

Denní světlo

Žárovkové osvětlení l

Žárovkové osvětlení II

Zářivky

Zářivkové osvětlení - CWF

Zářivkové osvětlení WWF – Warm White

Vysokotlaké výbojky

POWERSTAR HQI®-TS 1000/2000 W/D/S

POWERSTAR HQI®-TS 1000 W/NDL/S

POWERSTAR HQI®-TS 2000 W/N/L

Light Emitting Diode - LED

vlastnosti LED: spektrum optického záření s min. UV a IR miniaturní rozměry usměrněný světelný tok možnost stmívání vysoká životnost

současné nedostatky tepelné ztráty na stabil. členech cena teplotní závislost

CIE standardní osvětlení l

CIE standardní osvětlení II

CIE osvětlení D

Osvětlení D může být na intervalu 4000-25000K

Simulátory denního světla

CRI – index podání barev I

Light source	Color rendering index	
Sunlight	100	(a)
Quartz halogen W filament incandescent light	100	(b)
W filament incandescent light	100	(b)
Fluorescent light	60 to 85	(b)
Trichromatic white light LED	60 to 85	(b, c)
Phosphor-based white LED	55 to 85	(b, c)
Broadened dichromatic white light LED	10 to 60	(b, c)
Hg vapor light coated with phosphor	50	(b)
Hg vapor light	33	(b)
Low and high-pressure Na vapor light	10 and 22	(b)
Green monochromatic light	- 50	(c)

Poměrná světelná účinnost různých světelných zdrojů

CRI – index podání barev II

Výpočet indexu podání barev

Stabilita odstínu (color constancy) I

Stabilita odstínu (color constancy) II

$S_{abilita} = C_{abilita} =$

I.CAM

Stabilita odstínu (color constancy) IV

Metamerie

Hodnocení metamerie I

$$X_1^{D65} = X_2^{D65}$$
$$Y_1^{D65} = Y_2^{D65}$$
$$Z_1^{D65} = Z_2^{D65}$$

Kolorimetrické soustavy

Spektrální luminósní funkce V_λ (poměrná spektrální citlivost normálního pozorovatele)

Osvětlenost

Purkyňův jev

[podle J.E.Purkyně], posun citlivosti vnímáni jednotlivých barev okem; při adaptaci na tmu se citlivost posunuje ke kratším vlnovým délkám, při adaptaci na světlo k delším vlnovým délkám světla.

Stars

0.2 lx

100,000lx 10,000 lx

500 lx

100 lx

50 lx

10 lx

) Ix

0.5 lx

Light	Illuminance (Lux)
BRIGHT SUN	619,520 77,440
HAZY SUN	
BRIGHT CLOUDY	9,680
DULL CLOUDY	
	4,840
	2,420
	2,000
	605
	303
SUNSET	151
DUSK	
	76
THURST	27
IWILIGHT	9.58
MOONLIGHT	0.5987
moonelan	0.1497
	0.0374
DARKNESS	0.0094
	0.0047

Mezopické křivky absolutní a poměrné světelné účinnosti

$$V_{\rm mes}(\lambda) = \frac{1}{M(m)} [mV(\lambda) + (1-m)V'(\lambda)]$$

Young-Helmholtzův model vnímání barev

Thomas Young 1773-1829

Hermann von Helmholtz 1821-1894

Lze použít matematiku pro popis barvy?

Barva není skalární veličina, ale vektor !!!

(A+B) = (A) + (B)

Grassmannovy zákony

Experimenty barevného vyrovnání

Wright - Guildův experiment I

Úkolem bylo změřit spektrální citlivost člověka

- Pozorovatel hodnotil dvoudílné zorné pole na jehož jednu polovinu dopadalo monochromatické záření o určité vlnové délce λ a intenzitě Uλ.
- Na druhou polovinu dopadalo monochromatické záření třech základních barev λR = 645 nm, λG = 526 nm, λB = 444 nm

Wright - Guildův experiment II

Primagias Gradaaastekimeited for Real Observer

480 nm + Red

480 nm

Kolorimetrická soustava CIE XYZ -1931 I

E_λ je činitel poměrného spektrálního složení světelného zdroje, podle vlnové délky

R_A je spektrální činitel odrazu, podle vlnové délky

 $\overline{x}_{\lambda}, \overline{y}_{\lambda}, \overline{z}_{\lambda}$

jsou hodnoty trichromatických členitelů

k je normalizační faktor, který je dán rovnicí :

$$Z = k \int_{\lambda} E_{\lambda} R_{\lambda} \bar{z}_{\lambda} d\lambda$$

 $X = k \int_{\lambda} E_{\lambda} R_{\lambda} \overline{x}_{\lambda} d\lambda$

 $Y = k \int E_{\lambda} R_{\lambda} \overline{y}_{\lambda} d\lambda$

$$X = \sum E_{\lambda} R_{\lambda} \overline{x}_{\lambda} \Delta \lambda$$

 $k = 100 / \int_{\lambda} E_{\lambda} \overline{y}_{\lambda} d\lambda$

$$Y = \sum E_{\lambda} R_{\lambda} \overline{y}_{\lambda} \Delta \lambda$$

 $Z = \sum E_{\lambda} R_{\lambda} \overline{z}_{\lambda} \Delta \lambda$

Kolorimetrický trojúhelník CIE x,y

Kolorimetrický trojúhelník CIE x,y

Který je správný?

Barevné rozdíly v CIE x,y kolorimetrickém trojúhelníku l

Obr. č. 3 Juddovy vizuálně jednotné elipsy v CIE xy diagramu

0,8

Barevné rozdíly v CIE x,y kolorimetrickém trojúhelníku II

Jak udělat vizuálně rovnoměrně odstupňovanou soustavu ?

Vizuálně rovnoměrná kolorimetrická soustava - UCS

Kolorimetrická soustava CIE L*u*v*

$$u^* = 13L^*(u'-u_0); v^* = 13L^*(v'-v_0)$$

Kolorimetrická soustava CIE L*u*v*

2º pozorovatel

10° pozorovatel

Teorie oponentního vnímání barev -1923

Mozek $\check{C}Z=(L+S)-M$ $\check{Z}M=(L+M)-S$ $\check{C}B=L+M+S$

+

+

+

+

+

Μ

Elliot Quincy Adams Sep 13, 1888 - Mar 12, 1971

Zónově fluktuační model - 1930

Müller 1930, Judd 1949

Kolorimetrická soustava CIELAB II

Kolorimetrická soustava CIELAB III

Těleso všech reálných barev barevných povrchů v kolorimetrických soustavách Luv a Lab

Soustava založená na MacAdamových měřeních Soustava založená na Munsellovu atlasu barev

L*u*v* Colour Difference

Vyjadřování barevných rozdílů

CIELCH – cylindrický prostor

CIELAB a CIELCH – problém výpočtu celkového barevného rozdílu dE* l

$$\Delta E^{*} = \sqrt{(\Delta L^{*})^{2} + (\Delta a^{*})^{2} + (\Delta b^{*})^{2}}$$

$$\Delta L^{*} = L_{2(vzorku)}^{*} - L_{1(predlohy)}^{*}, \qquad \Delta L^{*} = L_{2(vzorku)}^{*} - L_{1(predlohy)}^{*}, \qquad \Delta L^{*} = L_{2(vzorku)}^{*} - L_{1(predlohy)}^{*}, \qquad \Delta C^{*} = C_{2(vzorku)}^{*} - C_{1(predlohy)}^{*}, \qquad \Delta b^{*} = b_{2(vzorku)}^{*} - b_{1(predlohy)}^{*}, \qquad \Delta H^{*} = \sqrt{(\Delta E^{*})^{2} - (\Delta C^{*})^{2} - (\Delta L^{*})^{2}}$$

CIELAB a CIELCH – problém výpočtu celkového barevného rozdílu dE* II

Protože je výsledek výpočtu druhé odmocniny vždy kladný je nutno určit znaménko odstínové odchylky pomocí směru, kterým se odchylka pohybuje.

CIELAB – problém odchylky ve vnímání psychometrického odstínu a měrného odstínu

BAREVNÉ ROZDÍLY

Poznáte tuto barvu ?

Která to je?

Vizuální hodnocení barevných rozdílů I

- Hodnocení barevného vzhledu
- Hodnocení barevné shody
- Vzorek a jeden standard
- Vzorek a více standardů

Vizuální hodnocení barevných rozdílů II

Vizuální hodnocení barevných rozdílů III

Co je nutno dodržovat při vizuálním hodnocení

» 5 Vikových P

- Pozorovatel (bezdefektní vnímání barev, klid a pohoda při hodnocení)
- Podmínky osvětlování (spektrální složení blízké CIE standardními osvětlení)
- Podmínky pozorovaní (hodnocení při konstantním úhlu pozorování, bez rušivého okolního světla)
- Poloha hodnocených vzorků (vzorky těsně u sebe, shodná orientace a fixní poloha, optimální velikost 7x14 cm)
- Pracovní plocha (achromatická, bez přítomnosti rušivých vlivů vzorky…)

Vizuální hodnocení s použitím vícenásobných standardů

- Standard + dalších šest odstínů představují hranice přijatelnosti vzorku
- Hranice jsou nezávislé na kolorimetrické soustavě
- Barva a toleranční hranice jsou stanoveny odběratelem

Průmyslové posudky barevných rozdílů

Vliv lokálního kontrastu

Průmyslové posudky barevných rozdílů

Color-Difference Formula

 $\Delta E = f(X1,Y1,Z1,X2,Y2,Z2, atd.)$

MacAdamovy hraniční tolerance pro hodnocení barevných rozdílů

Funkce maximální pravděpodobnosti

$$L = \sum_{i=1}^{N} {n \choose r_i} P_i^{r_i} (1 - P_i)^{n-r_i} \qquad \longleftarrow \qquad \text{maximum}$$

$$-\ln L = \sum_{i=1}^{N} \left[r_i \ln P_i + (n - r_i) \ln(1 - P_i) \right] \quad ----- \quad \text{minimum}$$

Zobrazení Munsellových dat v kolorimetrických soustavách – velké barevné rozdíly

Barevné rozdíly v kolorimetrické soustavě CIELAB (1976)

Barevné rozdíly v kolorimetrické soustavě CIELAB (1976)

$DE^* = 1$

CIELAB - problém konjugace jednotlivých barevných rozdílů a vizuálně rovnoměrného odstupňování

$$\Delta E^*_{ab} = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$

Srovnání celkového barevného rozdílu v XYZ a Lab

	ΔE_{xyz}	=1,	2
--	------------------	-----	---

 ΔE_{xyz} =4,3

∆E*_{ab}=20

 $\Delta E^*_{ab}=20$

Vizuálně nestejnoměrné odstupňování kolorimetrické soustavy CIELAB I

Vizuálně nestejnoměrné odstupňování kolorimetrické soustavy CIELAB II

Vizuálně nestejnoměrné odstupňování kolorimetrické soustavy CIELAB III

Vizuálně nestejnoměrné odstupňování kolorimetrické soustavy CIELAB IV

Tvar tolerančního útvaru

CMC (*l:c*) (1984)

$$\Delta E_{CMC(l:c)} = \sqrt{\left(\frac{\Delta L^*}{l \cdot S_L}\right)^2 + \left(\frac{\Delta C^*}{c \cdot S_C}\right)^2 + \left(\frac{\Delta H^*}{S_H}\right)^2}$$

$$= \frac{0,040975 \cdot L^{*}}{1+0,01765L^{*}} \qquad L^{*} \le 16 \qquad S_{L} = 0,511$$

$$= \frac{0,0638 \cdot C^{*}}{1+0,0131C^{*}} + 0,638 \qquad f = \sqrt{\frac{(C^{*})^{4}}{(C^{*})^{4} + 1900}}$$

$$= S_{C} \cdot (T \cdot f + 1 - f)$$

CMC (I:c) (1984)

Problém orientace hlavní osy tolerančních elipsoidů v modré oblasti

$$\Delta E_{00} = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'_{ab}}{k_C S_C}\right)^2 + \left(\frac{\Delta H'_{ab}}{k_H S_H}\right)^2 + R_T \left(\frac{\Delta C'_{ab}}{k_C S_C}\right) \left(\frac{\Delta H'_{ab}}{k_H S_H}\right)}$$

CIE2000 I

Macro-prostor (a* vs b*)

Micro-prostor ($\Delta C^* \vee s \Delta H^*$)

1

Crispening

Funkce adjustace tolerance v měrné světlosti

$$= \left[\left(\Delta L' \right)^2 \left(\Delta C'_{,i} \right)^2 \left(\Delta H'_{,i} \right)^2 = \left(\Delta C'_{,i} \Delta H'_{,i} \right)^{1/2} \right]^{1/2}$$

Nastavení rovnic pro výpočty barevných rozdílů l (komerční faktor cf)

Komerční faktor cf je hodnotou tolerované ΔE

Nastavení rovnic pro výpočty barevných rozdílů II (poměr světlost/čistota = I/c)

Analýza trendových dat

Většina dat je nad *cf*=0,5 →

Změna *cf* představuje velké riziko !!!

Stejný postup lze použít i v případě dalších parametrů Praktický výsledek měření barevných rozdílů l problém chyby měření – naměřené hodnoty nejsou absolutní !!!

Je nutno snížit chybu měření pod 0,1 ΔE

Praktický výsledek měření barevných rozdílů II

Průmyslová tolerance

Verbální hodnocení barevných rozdílů :

- Vzorek je přijatelný PASS
- Vzorek je ke zvážení WARN
- Vzorek je nepřijatelný FAIL

Marginální pásmo Oblast hodnot ΔE, které je nutno překontrolovat <0.9 ; 1.1>

Praktický výsledek měření barevných rozdílů III

V případě, že jednotlivé provozní standardy jsou vyráběny s určitou tolerancí, dochází k rozšiřování výrobní tolerance. Tento problém lze řešit výrobou dostatečně velkého počtu primárních standardů.

Nejistota měření

pozor na chyby obsluhy!!!

Indexy a odstínové třídění

Rozdíl mezi průmyslovou tolerancí a hraniční citlivostí - řešení je pomocí odstínového třídění

Vizuální třídění

Vizuální třídění je velmi náročné a provádí se na prohlížecích stolech nebo v koloristických skříních.

Systém 555 (1961 – Prof. Simon) I

 $S = 100.N_L + 10.N_C + N_H$,

$$N_L = Integer\left[\frac{\Delta L^*}{T_L} + 5, 5\right],$$

$$N_C = Integer\left[\frac{\Delta C^*}{T_C} + 5, 5\right],$$

$$N_{H} = Integer\left[\frac{\Delta H^{\bullet}}{T_{H}} + 5, 5\right],$$

Systém 555 (1961 – Prof. Simon) II

Nevýhoda: vzniklo 10 ! skupin

555 vs. vizuální třídění

Klástrové třídění

Bělost

R457 I (TAPPI 525, ISO 2470)

Figure 1. Schematic geometry of reflectance measurements of paper⁷ in two perpendicular cross sec tions: A - sample, B - internal standard, S - screen, L - lamp, Ph - detector.

T525

$$F_{400} + F_{410} + F_{\lambda} + F_{500}$$

600

λínr

300 UV 400 457 500

R457 II

From: Puebla, Claudio, "Reviewing the concept of paper brightness", Axiphos GmbH Marketing, Trading and Consulting, August 2001

R457 III

$B_{ISO} = 87.4$

 $B_{ISO} = 84.2$

Brightness (R457) vs. různý podíl UV záření

Stupně běli založené na trichromatických složkách

Hunter, 1942
$$WI = 100 - \{ [220 (G - B)/(G + 0.242B)]^2 + [(100 - G)/2]^2 \}^{1/2}$$

Hunter, 1960 $WI = L - 3b = 10 (Y - 21)^{1/2} (Y - 0.847Z)/Y^{1/2}$

Stensby WI = L - 3b + 3a

Taube WI = 3.388 Z - 3 Y,

Berger

WI = Y + 3.108Z - 3.831X(For the CIE 2° Standard Observer/Illuminant C)

Ganz-Griesserova kalibrace I

Ganz-Griesser kalibrace II

12/95

Stupeň běli Ganz-Griesser

WI GANZ = DY + Px + Qy + C for D65/10 $^{\circ}$

RWL 470 nm

4

.2

х

.8

.6

Stupeň běli CIE

$W = Y + 800 (x_n - x) + 1700 (y_n - y)$

Odstínový nádech CIE

$$T = Tx (x_n - x) - 650 (y_n - y)$$

Value	C/2°	D50/2°	D65/2°	C/10°	D50/10°	D65/10°
$T_{\rm x}$	1000	1000	1000	900	900	900
$\mathbf{x}_{\mathbf{n}}$	0.3101	0.3457	0.3127	0.3104	0.3477	0.3138
Уn	0.3161	0.3585	0.3290	0.3191	0.3595	0.3310

Odstínový nádech Ganz-Griesser

Tint GANZ =
$$mx + ny + k$$

$$m = \frac{-\cos(\alpha)}{BW} = -937.588$$

$$n = \frac{\sin(\alpha)}{BW} = 826.697$$

 $k = -m\bar{x} - n\bar{y} = 21.352$

Alternativní výpočet stupně běli CIE

$W_{CIE} \approx 2.41L^* - 4.45b^*(1 - 0.009(L^* - 96)) - 141.4$

převzato z: E. Ganz and H. K. A. Pauli, Applied Optics 34, 2998–2999 (1995)

TRIPLET efekt u fluorescenčních materiálů

Vedle nastavení světelného zdroje na osvětlení D65 (popř. C - některé aplikace z papírenské oblasti), je nutno počítat také s tzv. TRIPLET efektem.

K tomuto jevu dochází u lehkého zboží vlivem pulsních výbojek, kdy světelná energie vede vedle singletní také na tripletní excitaci, která má delší dobu dosvitu a projeví se na křivce měřené odrazivosti fluorescenčních materiálů. Řešení spočívá v použití tzv. soft záblesků, kdy je světelná energie pulsní výbojky redukována na cca 70%.

OZP jako součást vzorování

F11

Žlutost

 $YI = 100(C_X X - C_Z Z)/Y$ ASTM E313-05

TABLE 1 Coefficients of the Equations for Yellowness Index

Quantity	CIE Standard Illuminant and Standard Observer				
Quantity	<i>C</i> , 1931	D ₆₅ , 1931	<i>C</i> , 1964	D ₆₅ , 1964	
X _n	98.074	95.047	97.285	94.811	
Y _n	100.000	100.000	100.000	100.000	
Zn	118.232	108.883	116.145	107.304	
F _A	0.7987	0.8105	0.7987	0.8103	
F _B	0.2013	0.1895	0.2013	0.1897	
C_X	1.2769	1.2985	1.2871	1.3013	
CZ	1.0592	1.1335	1.0781	1.1498	
Residual error	-0.0006	-0.0004	-0.0004	-0.0006	

Old methods are defined for C/2

Yellowness after BASF:

Yellowness TM-1925 and DIN 6167:

Yellowness ASTM-E 313-73:

$$G_{B} = \frac{X}{0.7831} + 0.833 \cdot Z \qquad YI = \frac{1.2750 \cdot X - 1.0584 \cdot Z}{Y}$$

$$YI = 100 \cdot \left(1 - 0.847 \cdot \frac{Z}{Y}\right)$$

Správa barev

Přenos barevné a obrazové informace l

Barevný vzorovací prostor – Gamut

•Každé zařízení je schopno zobrazit nebo vidět jen omezený rozsah barev.

 Výstupní zařízení tedy není schopno přesně zobrazit to co je ve vstupním zařízení, je schopné se tomuto obrazu pouze přiblížit.

Otevřený systém správy barev - ICC Workflow I

Otevřený systém správy barev - ICC Workflow II

 Profil zařízení je datový soubor, který charakterizuje dané zařízení. Dříve než lze chování daného zařízení popsat je nutné jej uvést do stabilizovaného stavu – tj. provést kalibraci.

Kalibrace a charakterizace zobrazovacích systémů

- Nástroje pro kalibraci a charakterizaci:
 - Subjektivní metody
 založeny na subjektivním vyhodnocování jednoduchých situací pozorovatelem

- speciální příslušenství pro LCD monitory

Nastavení monitorů

- Jas bílého bodu (cd/m²)
- Barva bílého bodu (K)
- Hodnota gamma
- Jas černého bodu (cd/m²)

- CRT 85–95 cd/m²; LCD 110–140 cd/m²
- $\ Laptop \ 90 \ cd/m^2$

definuje, jak tmavá bude černá barva

- charakterizuje křivku reprodukce tónů
- ovlivňuje zejména, jak světlé budou střední tóny
- nevhodné nastavení → posterizace (nerovnoměrný přechod mezi tóny)

Na co pamatovat při vytváření profilů zobrazovacích systémů

- zahřívací doba cca 30 min
- vypnout spořiče obrazovky
- umístit kurzor na okraj displeje
- změna polohy OSD
- vyčistit nečistoty na povrchu monitoru
- nastavit požadované rozlišení, obnovovací frekvenci, geometrii monitoru (změna těchto hodnot může ovlivnit jas)
- nastavit max. kontrast a min jas
- vliv okolních světelných podmínek (ambient light)
- zabezpečit ovládací prvky monitoru proti nechtěné změně hodnot

Správa barev l

Relativní kolorimetrická

 ponechává barvy zobrazitelné v cílovém prostoru nezměněny, ale ostatní barvy jsou převedeny na hodnoty k nejbližšímu sousedu se stejnou světlostí v cílovém prostoru s tím, že je upravena sytost. U relativního převodu gamutu se namapuje bílá (resp. nejbělejší barva v gamutu) původního prostoru na bílou cílového prostoru.

Absolutní kolorimetrická

- ponechává barvy zobrazitelné v cílovém prostoru nezměněny, ostatní barvy jsou převedeny na okrajové hodnoty cílového prostoru směrem do středu k nejbližšímu sousedu v sRGB. U absolutního převodu gamutu se bílá původního prostoru zachová. Pak ovšem nemusí být v cílovém prostoru bílá (resp. nejbělejší barvou cílového prostoru).
- Poznámka: V obou případech je možno použít chromatickou adaptaci.

Správa barev II

Perceptual

 Provádí přepočet každé barvy dovnitř cílového prostoru, přičemž mezní hodnoty na hranici gamutu nebo v jeho blízkosti cílového prostoru zpravidla zůstávají nevyužity. Záměr perceptuální metody přepočtu je udržet relativní vzdálenosti mezi barvami v barevném prostoru. Díky zmíněnému zachování barevných poměrů má rozpínavost barevnosti obrazu své pevné hranice.

Saturation

Přepočítává každou barevnou hodnotu do cílového prostoru. Přepočtem umocňuje sytost barev, přičemž barevný odstín zůstává nezměněný.

Správa barev III

ORIGINÁL

Relativní kolorimetrická

Relativní kolorimetrická metoda nahradí barvy mimo gamut nejbližší možnou barvou. Část kresby se tedy může slít výměnou za stálosť barev uvnitř obou gamutů.

Menší prostor

Perceptuální metoda plynule srazí větší gamut do menšího. Žádná kresba se sice neztratí, všechny barvy se ale mírně změní.

Několik rad na závěr - digitalizace

Koloranty a Receptování

Koloranty

 Kolorant je obecný název pro barevné látky zahrnující jak barviva, tak pigmenty (v české odborné literatuře je často používán pojem barvivo i pro pigmenty).

Barviva - na substrátu jsou přítomna v monomolekulární formě (příp. ve formě jednoduchých asociátů). Při barvení se aplikují z kapalného prostředí, ve kterém jsou zcela nebo částečně rozpustná – nedochází k rozptylu světla.

 Pigmenty – na substrátu jsou přítomny ve formě částic, jsou nerozpustné jak ve vodě, tak i v organických rozpouštědlech – dochází k rozptylu světla. Kvalitativní teorie barevnosti organických látek

(Wittova teorie z roku 1876, v současnosti kvantová chemie)

 Je-li do bezbarvé organické sloučeniny zavedena nenasycená skupina (chromofor), např.:

- vznikne barevná sloučenina (chromogen), např. azobenzen nebo antrachinon, která však ještě není barvivem, neboť její barevnost je slabá.
- Teprve zavedení další skupiny (auxochromu), např. -OH, -NH2, -SH, barvu zintenzivní a molekula se stává barvivem.

Kvalitativní teorie barevnosti organických látek II

Každá molekula barviva má určitý obsah energie a je schopna absorbovat energetická kvanta světelné energie, tj. fotony. Pohlcení fotonů molekulou barviva však není libovolné. Pohlcuje se totiž vždy jen takové záření, jehož energie je shodná nebo velmi podobná energii molekuly barviva. Tento poznatek vysvětluje, proč barevný vjem vzniká právě selektivní absorpcí určité vlnové délky.

Excitační energie a dlouhovlnné absorpční pásy aromátu

Sloučenina	Vzorec	E [kJ.mol ⁻¹]	λ _{max} [nm]	Barva
benzen		471	255	bezbarvý
naftalen		383	311	bezbarvý
anthracen		324	370	bezbarvý

tetracen	261	460	oranžový
pentacen	207	580	fialový
hexacen	173	693	modro- zelený
Klasická barviva l

Klasická barviva II

H.W. Perkin objev mauveinu1856

Funkční barviva

Ionochromní látky – indikace iontů Hygro-chromní látky – indikace vlhkosti Solvato-chromní látky – indikace rozpouštění Chemo-chromní látky – indikace chemikálií (nebezpečné plyny, chemické bojové látky atd.) Elektro-chromní látky – indikace napětí Piezo-chromní látky – indikace tlaku Termo-chromní látky – indikace teploty Foto-chromní látky – indikace UV, VIS a NIR záření

Termochromismus

Day ve své práci definoval termochromismus jako znatelnou reversibilní barevnou změnu způsobenou bodem varu tekutiny, bodem varu rozpouštědla v případě roztoku nebo bodu tání u pevných látek.

po

před

Termochromní keramika

Hračky McDonalds

před

po

Receptování

Vizuální receptování

Vzorovací gamut

Jednoduché míchání a nuancování

Směs červeného a modrého pigmentu v poměru 1:1 vytváří tmavou hněď

Jednoduché míchání a nuancování

Názvy a typické odrazivostní křivky vybraných pigmentů

Názvy a typické odrazivostní křivky vybraných pigmentů

Míchání pigmentů - problém chromacity - vzdálené vs. blízké

Odhad receptury, která by odpovídala hledané předloze je v případě "vzdálených" odstínů (A-B) podstatně složitější než u "blízkých" odstínů (C-D). Důvodem je skutečnost, že výsledkem kombinací lineárních změn koncentrací pigmentů jsou nelineární změny kolorimetrických, potažmo vzhledových charakteristik výsledných směsí. V případě "blízkých" odstínů nejsou odchylky od linearity tak významné.

Vliv koncentrace na kolorimetrické souřadnice vybraných

Během zvyšování, nebo snižování koncentrace barviv či pigmentů dochází nejen ke změně excitační čistoty, ale také k odstínovým posunům.

U většiny pigmentů dochází s nárůstem koncentrace ke změně kolorimetrických souřadnic tak, že nejprve narůstá excitační čistota, pak následuje změna dominantní vlnové délky protisměru hodinových ručiček a nakonec se výsledný odstín opět zakaluje.

Weber-Fechnerův zákon

 $S = k \cdot \ln \frac{I}{I_0}$

- S intenzita subjektivního vjemu;
- *k* konstanta;

I – fyzikální intenzita podnětu působícího na receptor; I_0 – prahová intenzita, tedy absolutně nejnižší možná intenzita, jakou je schopný jedinec vnímat.

100g

110g

∆m=10<u>g</u>

∆m=20g

Barevná vydatnost a koncentrace

Azopigment- gelb 1 : 10	Ultramarin- blau 1 : 10	® Heliogen- Blau LBG 1 : 10	Eisenrot G 1 : 10	® Lithol- Scharlach BBM 1 : 10	Pigment- tiefschwarz A 1 : 10	Heliogen- grün GN 1 : 10

Pigmenty o stejné koncentraci nemají stejnou barevnou vydatnost, typickým problémem je měrná světlost:

		Pozor na vliv Helmholtz-Kohlrausch efektu Dva objekty se stejnou hodnotou Munsellova jasu – jeden chromatický a druhý achromatický se znatelně liší ve vnímané světlosti		
Azopigment-	Ultramarin-		Lithol-	Pigment-
gelb	blau		scharlach BBM	tiefschwarz A
1 : 1	1 : 50		1 : 500	1 : 100

Čistota a barevná vydatnost

Aby bylo dosaženo stejně vnímané čistoty nebo barevné vydatnosti je nutné používat různé koncentrace pigmentů.

Odhad receptury pomocí lineární škály

Geometrická řada s konstantím faktorem f4

Aritmetická řada s konstantím rozdílem Δ21

ÚBOK - PhDr. Hejzlar

ÚBOK - PhDr. Hejzlar

Vztah mezi barevnou vydatností a koncentrací je nelineární

Problém černobílých přechodů

Vizuálně rovnoměrné odstupňování není symetrické

Ostwaldův systém

	а	С	е	g	i	I	n	р
w in Prozent	89	56	35	22	14	8,9	5,6	3,5
s in Prozent	11	44	65	78	86	91,1	94,4	96,5

Farbprobe: **5 i a** mittleres Rot 14% Weiß, 11% Schwarz, 75% Vollfarbe

Farbprobe: **17 i e** mittleres Eisblau 14% Weiß, 65% Schwarz, 21% Vollfarbe

Vzorovací gamut

Receptování pomocí měřícího systému - remisních dat

Prostý odečet z remisních křivek

Odhady koncentrací jednotlivých barviv z fólií koncentračních řad

Remisní křivka předlohy

Receptování pomocí výpočetního systému

Koncentrační řady

Závislost remise na vlnové délce a koncentraci

Závislost remise na koncentraci

kde T je transmitance neboli propustnost a nabývá hodnot od 0 - 1 (0 - 100%).

I je intenzita propouštěná vzorkem

 I_o je intenzita světla dopadajícího na vzorek

pokud $T = 0 \rightarrow$ prostředí nepropouští světlo vůbec

pokud $T = 1 \rightarrow \text{prostředí propouští všechno světlo}$

d Bouguer-Lambertův/zákpn

 $-dI_{\lambda} = k_{\lambda}I_{0\lambda}dl$

 $\frac{-dI_{\lambda}}{I_{0\lambda}} = k_{\lambda}dl$

49

Beerův zákon

 $\frac{-dI_{\lambda}}{I_{0\lambda}} = k_{\lambda}^{'}dc$

Lambert-Beerův zákon

$$A = -logT$$
$$A = -log10^{-\varepsilon_0 cl}$$
$$A = \varepsilon_0 cl$$

A = absorbance

 ε_0 = molární absorpční koeficient pro danou vlnovou délku

- c = koncentrace roztoku
- *l* = délka optické dráhy (tj. tloušťka vrstvy roztoku)

Stanovení obsahu látky ve vzorku s použitím kalibračního grafu

Grafickým znázorněním Lambert-Beerova zákona je přímka, která prochází počátkem.

Hodnota koncentrace **c** se vynáší jako nezávisle proměnná na **osu x** a **absorbance A** jako závisle proměnná na **osu y**. Absorpční koeficient ε je směrnicí přímky.

Sestrojení kalibračního grafu

 připravit obvykle 5 – 7 standardních roztoků, které mají přesně známou koncentraci + roztok vzorku o neznámé koncentraci + slepý vzorek.

- změřit absorbance těchto roztoků při vhodné λ .
- sestrojit kalibrační křivku z naměřených hodnot.
- odečíst z této křivky koncentraci látky ve vzorku

Stanovení obsahu látky ve vzorku s použitím kalibračního grafu

Slepý vzorek je složen ze všech použitých rozpouštědel a činidel použitých při zpracování vzorku - chybí jen stanovovaná látka.

Co dělat v případě průsvitných materiálů?

Nanášení jednotlivých vrstev

Vliv tloušťky na optické parametry

Základní dva typy rozptylu

Rozptyl na povrchu - vliv nerovnosti

Rozptyl pod povrchem - vliv velikosti částic

Schusterův - Kubelka-Munkův model

Kubelka-Munkova funkce

Pro limitní případ tzv. polomasivu : d = ∞ je bg = 0 a b = $\beta \infty$. Platí :

$$\beta_{\infty} = a - \sqrt{a^2 - 1} = 1 + \frac{K}{S} - \sqrt{\frac{K^2}{S^2} + 2\frac{K}{S}}$$

resp. :

$$\frac{K}{S} = \frac{\left(1 - \beta_{\infty}\right)^2}{2\beta_{\infty}} = f(\beta_{\infty})$$

Jedno a dvoukonstantová K-M funkce

$$\frac{K}{S} = \frac{c_1 K_1 + c_2 K_2 + c_3 K_3 \dots c_j K_j + K_s}{c_1 S_1 + c_2 S_2 + c_3 S_3 \dots c_j S_j + S_s}$$
Model se dvěma
konstantami-
nátěry, plasty a inkousty

$$\frac{K}{S} = \frac{c_1 K_1 + c_2 K_2 + c_3 K_3 \dots c_j K_j + K_s}{S_s}$$

Model s jednou konstantou– textilie

resp. ve smyslu

$$\frac{K}{S} = A_j c_j + \left(\frac{K}{S}\right)_s \longrightarrow \frac{K}{S} - \left(\frac{K}{S}\right)_s = c_1 K_1 + c_2 K_2 + c_3 K_3 \dots c_j K_j$$

Závislost K/S na koncentraci jednokonstantová fce

Závislost K/S na koncentraci dvoukonstantová fce

Průběh zdánlivých koeficientů absorpce K a rozptylu S u pigmentů na bázi oxidů železa

1% Modrého barviva 1% Žlutého barviva

Zelený odstín, který obsahuje 1% Modrého a 1% Žlutého barviva

%R ₄₅₀	40.0		3.0	3.0	
K/S ₄₅₀	0.45	+	15.7	=	16.15

Příprava databáze

2%	black	+98% white
5%	black	+95% white
10%	black	+90% white
20%	black	+80% white
30%	black	+70% white
40%	black	+60% white
50%	black	+50% white
70%	black	+30% white
80%	black	+20% white

Kalibrační stupnice pro stanovení rozptylových koeficientů

2%	colorant	+98% white
5%	colorant	+95% white
10%	colorant	+90% white
20%	colorant	+80% white
30%	colorant	+70% white
40%	colorant	+60% white
50%	colorant	+50% white
70%	colorant	+30% white
80%	colorant	+20% white
97%	colorant	+3% black

Kalibrační stupnice pro anorganické i organické pigmenty

Příprava kontrolních vzorků

KNOWN #1	Inorganic or Organic Yellow	20%	KNOWN #6 - reproduce K#1
	Red Oxide	10%	
	Black	2%	
	White	68%	
			KNOWN #7 - reproduce K#2
KNOWN #2	Yellow Oxides	4.0%	
	Organic Blue	0.1%	
	Black	1%	
	White	94.9%	
			KNOWN #8 - reproduce K#3
KNOWN #3	Inorganic or Organic Yellow	40%	
	Organic Blue	8%	
	Black	2%	
	White	50%	KNOWN #9 - reproduce K#4
KNOWN #4	Yellow Oxide	20%	
	Red Oxide	5%	
	Organic Green	5%	
	White	70%	KNOWN #10 - reproduce K#5
KNOWN #5	Inorganic or Organic Yellow	45%	
	Red Oxide	45%	
	Black	3%	
	White	7%	

5 pravidel přípravy databáze

- » přesnost
- volba přesnosti dávkování (objemové či váhové jednotky)
- » stanovení maximálního a minimálního přídavku
- » vyšetření chyb (stanovení minimální úrovně chyb)
- » rovnoměrné vizuální odstupňování

Chyby při receptování

Chyby v laboratorní přípravě zdvojnásobují celkovou chybu !!

DATABÁZE

»Kvalita výsledného odhadu receptury vypočteného pomocí příslušného receptovacího programu je primárně závislá na kvalitě databáze !

Příprava databáze

Vkládání základních informací:

- » Název databáze
- » Doporučená tloušťka filmu a obvyklé jednotky
- » Doporučená velikost vzorku
- » Názvy kolorantů (barviv nebo pigmentů)
- » Technické parametry kolorantů
- » Ceny
- » atd.

Gamut reálných pigmentů I

Prostor dosažitelných barev u reálných pigmentů a barviv je oproti Roesh-MacAdamovým limitům (teoreticky dosažitelné těleso barev sekundárních zářičů) výrazně menší z hlediska čistoty

Gamut reálných pigmentů II

(a) a*-b* projection

(b) C_{ab}^* -L* projection

Gamut je rovněž závislý na použité povrchové úpravě. Čím vyšší lesk, tím větší je rovněž gamut - viz. C*L* diagram: číslo udává procentuálně plochu vztaženou k laku bez povrchové úpravy (krycího laku), který je 100%, následuje: 102 - mat, 127 - polomat, 150 - lesk

Příprava databáze

» Vizuální kontrola databáze

- » Změření jednotlivých vzorků databáze
 - » odrazivostní křivky umožňují kontrolu případné kontaminace vzorku
 - » K/S křivky umožňují kontrolu linearity, apod.

Koncentrační řady

Koncentrační řady

Je tento průběh remisních křivek artefakt nebo realita?

Příprava databáze

detailní informace:

- » Název databáze DEMO DATA
- » Tloušťka filmu 1.0 (pouze u inkoustů v mikronech)
- » Doporučený typ vzorku
 - » inkousty TRANSLUCENT
 - » nátěry OPAQUE
- » Navážky kolorantů na 3 desetinná místa
- » Váhové jednotky gramy

$$\overline{S} = \frac{1}{2(\beta_{\infty} - p)^{1/n}}$$
SAUNDERSONOVA
KOREKCE
$$\beta_{K} = \frac{\beta_{M}}{1 - r_{S} + r_{S}\beta_{M}}$$

 r_S je korekční koeficient povrchové reflexe, pro který nejlépe vyhovuje hodnota 0,4

Kubelka-Munkova funkce

Pro limitní případ tzv. polomasivu : d = ∞ je bg = 0 a b = $\beta \infty$. Platí :

$$\beta_{\infty} = a - \sqrt{a^2 - 1} = 1 + \frac{K}{S} - \sqrt{\frac{K^2}{S^2} + 2\frac{K}{S}}$$

resp. :

$$\frac{K}{S} = \frac{\left(1 - \beta_{\infty}\right)^2}{2\beta_{\infty}} = f(\beta_{\infty})$$

Účelem výpočtu je stanovení koncentrací jednotlivých barviv c_j , tak, aby byl minimalizován výraz:

 $\min_{c_i} G(\beta_{p_i}, \beta_i)$

kde β_{pi} jsou odrazivostní data předlohy a β_i jsou odrazivostní data odhadu receptury

Podle typu funkce G vede minimalizace předcházející rovnice na problém lineární nebo nelineární regrese. β_i Nejčastěji se provádí minimalizace(31) β_{pi}, β_i - (31)

a) Součtu čtverců odchylek funkcí $f(R_i)$, tedy vztahu:

b) Součtu čtverců $\sum_{i=400}^{700} \left[f(R_{i}) - f(R_{i}) \right]^{2} \text{ nu:}$ $\sum_{i=400}^{700} \left[R_{ni}^{i=400} \left[f(R_{pi}) - f(R_{i}) \right]^{2} \text{ nu:}$ $\sum_{i=400}^{700} \left[R_{ni}^{i} - R_{i} \right]^{2}$

c) Odchylek trichromatických složek:

$\Delta X, \Delta Y, \Delta Z$

d) Celkové barevné diference:

 ΔE

Průběh funkce f(Ri) je závislý na vlnové délce λ a koncentraci.

Při dané jakékoli koncentraci barviva **c** je možné vypočítat hodnot $\frac{70}{2}$ a užitím rovnice

$$\beta_{\infty} = a - \sqrt{a^2 - 1} = 1 + \frac{K}{S} - \sqrt{\frac{K^2}{S^2} + 2\frac{K}{S}}$$

remisní hodnoty vybarvení při kterékoli vlnové délce.

Naopak, s danou remisní hodnotou pro vybarvení provedené tímto barvivem je možné vypočítat hodnotu f(Ri) a následně vypočítat koncentraci barviva inverzí $govnice_{-\beta}$)²

$$\frac{\frac{\pi}{S} = \frac{(1 - \beta_{\infty})}{2\beta_{\infty}} = f(\beta_{\infty})}{\frac{f(R_{\lambda}) - f(R_{S,\lambda})}{\alpha_{\lambda}}}$$

$$c = \frac{a_{\lambda}}{\alpha_{\lambda}}$$

 $\sum_{i=400}^{700} [f$

Spektrofotometrický postup výpočtu

$$\begin{aligned} f(R_{\lambda_{1}}) &= f(R_{S,\lambda_{1}}) + a_{\lambda_{1},1}c_{1} + a_{\lambda_{1},2}c_{2} \\ f(R_{\lambda_{1}}) &= f(R_{S,\lambda_{1}}) + a_{\lambda_{1},1}c_{1} + a_{\lambda_{2},2}c_{2} \\ f(R_{\lambda_{1}}) &= f(R_{S,\lambda_{2}}) + a_{\lambda_{2},1}c_{1} + a_{\lambda_{2},2}c_{2} \\ f(R_{\lambda_{2}}) &= f(R_{S,\lambda_{2}}) + a_{\lambda_{2},1}c_{1} + a_{\lambda_{2},2}c_{2} \end{aligned}$$

(33) pro 2 kolopanty

$$\begin{split} & f(R_{\lambda_{1}}) = f(R_{S,\lambda_{1}}) + a_{\lambda_{1},1}c_{1} + a_{\lambda_{1},2}c_{2} + a_{\lambda_{1},3}c_{3} \\ & f(R_{\lambda_{2}}) = f(R_{S,\lambda_{1}}) + a_{\lambda_{2},1}c_{1} + a_{\lambda_{2},2}c_{2} + a_{\lambda_{2},3}c_{3} \\ & f(R_{\lambda_{2}}) = f(R_{S,\lambda_{2}}) + a_{\lambda_{2},1}c_{1} + a_{\lambda_{2},2}c_{2} + a_{\lambda_{2},3}c_{3} \\ & f(R_{\lambda_{2}}) = f(R_{S,\lambda_{3}}) + a_{\lambda_{2},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{S,\lambda_{3}}) + a_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{S,\lambda_{3}}) + a_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ & f(R_{\lambda_{3}}) = f(R_{\lambda_{3}}) - f(R_{\lambda_{3}}) -$$

$$f(R_{\lambda_{3}}) = f(R_{S,\lambda_{3}}) + a_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3}]$$
Spektrofotometrický postup
$$f(R_{\lambda_{1}}) = f(R_{S,\lambda_{1}}) + a_{\lambda_{1},1}c_{1} + u_{\lambda_{1},2}c_{2} + a_{\lambda_{1},3}f_{3}(R_{\lambda_{1}}) - f(R_{S,\lambda_{1}})]$$

$$f(R_{\lambda_{2}}) = f(R_{S,\lambda_{2}}) + a_{\lambda_{1},1}c_{1} + a_{\lambda_{1},2}c_{2} + a_{\lambda_{1},3}f_{3}(R_{\lambda_{1}}) - f(R_{S,\lambda_{1}})]$$

$$f(R_{\lambda_{2}}) = f(R_{S,\lambda_{3}}) + a_{\lambda_{3},1}c_{1} + a_{\lambda_{1},2}c_{2} + a_{\lambda_{2},3}f_{3}(R_{\lambda_{3}}) - f(R_{S,\lambda_{3}})]$$

$$G = \begin{bmatrix} g_{\lambda_{1}} \\ g_{\lambda_{2}} \\ g_{\lambda_{3}} \end{bmatrix} = \begin{bmatrix} f(R_{\lambda_{1}}) - f(R_{S,\lambda_{1}}) \\ f(R_{\lambda_{2}}) - f(R_{S,\lambda_{2}}) \\ f(R_{\lambda_{3}}) - f(R_{S,\lambda_{3}}) \end{bmatrix} A = \begin{bmatrix} a_{\lambda_{1},1} + a_{\lambda_{1},2} + a_{\lambda_{1},3} \\ a_{\lambda_{2},1} + a_{\lambda_{2},2} + a_{\lambda_{3},3} \end{bmatrix} C = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

$$Rak \begin{bmatrix} a_{\lambda_{1,1}}c_{1} + a_{\lambda_{2},2}c_{2} + a_{\lambda_{3},3}c_{3} \\ a_{\lambda_{2},1}c_{1} + a_{\lambda_{2},2}c_{2} + a_{\lambda_{2},3}c_{3} \\ a_{\lambda_{3},1}c_{1} + a_{\lambda_{3},2}c_{2} + a_{\lambda_{3},3}c_{3} \end{bmatrix} Acc = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

$$\begin{bmatrix} q_{\lambda_{1,1}} & q_{\lambda_{2},1} & q_{\lambda_{3},1} \end{bmatrix} C = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

Spektrofotometrický postup $\nabla \psi \rho | O \check{C} t C = A^{-1} G$ Pro hledané koncentrace barviv pak adekvátně platí: $\mathbf{G} = \mathbf{A}\mathbf{C}$ C = Pokud zavedeme: $\mathbf{Q} = \mathbf{A}^{-1} = \begin{bmatrix} q_{\lambda_{1},1} & q_{\lambda_{2},1} & q_{\lambda_{3},1} \\ q_{\lambda_{1},2} & q_{\lambda_{2},2} & q_{\lambda_{3},3} \end{bmatrix} \xrightarrow{\mathbf{C}_{1}} = \begin{pmatrix} q_{\lambda_{1}}g_{\lambda_{1}} + q_{\lambda_{2},1}g_{\lambda_{2}} + q_{\lambda_{3},1}g_{\lambda_{3}} \\ = q_{\lambda_{1},1}g_{\lambda_{1}} + q_{\lambda_{2},2}g_{\lambda_{2}} + q_{\lambda_{3},2}g_{\lambda_{3}} \\ = q_{\lambda_{1},3}g_{\lambda_{1}} + q_{\lambda_{2},3}g_{\lambda_{2}} + q_{\lambda_{3},3}g_{\lambda_{3}} \\ = q_{\lambda_{1},3}g_{\lambda_{1}} + q_{\lambda_{2},3}g_{\lambda_{2}} + q_{\lambda_{3},3}g_{\lambda_{3}} \end{bmatrix}$

 $c_{1} \operatorname{Fato}_{1} \operatorname{psetod}_{j \in 1} \operatorname{selm}_{j \in 1} \operatorname{selm}_$

Spektrofotometrický postup výpočtu

Tento postup je uplatněním metody multikomponentní analýzy známé z analytické chemie na případ remisních měření a barviv.

Na druhou stranu je nutno říci, že aplikovatelnost této metody se omezuje pouze na **isomerní** receptury a pro běžné případy praxe je prakticky *nepoužitelná*.

Důvodem je skutečnost, že obvykle nevíme jaká barviva byla použita pro vybarvení předlohy a je proto pravděpodobné, že receptura bude oproti předloze **metamerní.**

Obr. č. 8 Remisní křivky 3 barviv Drimaren

Kolorimetrický postup výpočtu

Na rozdíl od spektrofotometrického postup, kde je výpočet založen na minimalizaci rozdílů mezi spektrálními daty předlohy a receptury, v případě kolorimetrického postupu výpočtu receptury jde obvykle o minimalizaci rozdílů v trichromatických složkách ΔX , ΔY , ΔZ , popř. ΔE .

Reflectance Curves of a Metameric Pair

Kolorimetrický postup výpočtu

Obr č 9 Vývojový diagram výpočtu recentury

V prvním kroku jsou do počítače vkládány hodnoty XYZ nebo remisní křivka předlohy, společně s názvy tří vybraných barviv, tato kombinace může být vybrána počítačem nebo operátorem podle předem určených pravidel pro kombinaci vhodných barviv.

Při druhém kroku je vytvořen první odhad receptury tak, že je buď využit vhodný algoritmus beroucí v úvahu optickou vydatnost předlohy (tzv. Allenova metoda), nebo metoda, kdy jsou počáteční koncentrace barviv nastaveny fixně na určitou hodnotu. Pokud použijeme metodu fixních koncentrací (např. 2%), je zřejmé, že v případě pastelových odstínů bude nutno podstatně více iterací než u hlubokých odstínů a obráceně.
Kolorimetrický postup výpočtu

Jestliže dělíme změnu u trichromatické složky X změnou koncentrace barviva č.1, měli bychom získat gradient $\Delta X/\Delta c_1$, který můžeme považovat za lineární na malém úseku barevného prostoru, a který může být použit k předpovědi změny u X, vyplývající z jakékoli malé změny v koncentraci Δc_1 . Podobné vztahy mohou být odvozeny pro Y a Z:

$$\Delta X = \left(\frac{\partial X}{\partial c_1}\right) \Delta c_1$$
$$\Delta Y = \left(\frac{\partial Y}{\partial c_1}\right) \Delta c_1$$
$$\Delta Z = \left(\frac{\partial Z}{\partial c_1}\right) \Delta c_1$$

$$\Delta Y = \left(\frac{\partial r}{\partial c_1}\right) \Delta c_1$$
Koloring etrický postup výpočtu

Změníme-li koncentraci všech tří barviv o malé množství - Δc_1 , Δc_2 a Δc_3 změní se pochopitelně i složky *X*, *Y* a *Z* v závislosti na poloze a průběhu koncentračních řad jednotlivých barviv v barevném prostoru:

$$\Delta X = \left(\frac{\partial X}{\partial c_1}\right) \Delta c_1 + \left(\frac{\partial X}{\partial c_2}\right) \Delta c_2 + \left(\frac{\partial X}{\partial c_3}\right) \Delta c_3$$
$$\Delta Y = \left(\frac{\partial Y}{\partial c_1}\right) \Delta c_1 + \left(\frac{\partial Y}{\partial c_2}\right) \Delta c_2 + \left(\frac{\partial Y}{\partial c_3}\right) \Delta c_3$$
$$\Delta Z = \left(\frac{\partial Z}{\partial c_1}\right) \Delta c_1 + \left(\frac{\partial Z}{\partial c_2}\right) \Delta c_2 + \left(\frac{\partial Z}{\partial c_3}\right) \Delta c_3$$

Přestože výrazy v závorkách výše uvedené matice lze numericky aproximovat cca 1% změnami koncentrace každého barviva a determinovat vliv na X, Y a Z, jak bylo ukázáno pro barvivo 1, je výhodnější využití diferenciálního počtu.

$\Delta Z = \left(\frac{\partial Z}{\partial c_1}\right) \Delta c_1 + \left(\frac{\partial Z}{\partial c_2}\right) \Delta c_2 + \left(\frac{\partial Z}{\partial c_3}\right) \Delta c_3 + \left(\frac{\partial Z}{\partial$

Zavedeme-li představu, že pro dvě barvy o velmi malém barevném rozdílu máme trichromatické slož X_1, X_2, Y_1, Y_2, Z_1 a Z_2 , pro než platí:

$$X_{1} = \sum_{380}^{760} E_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} X_{1} = \sum_{380}^{760} E_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda} R_{1,\lambda} B_{\lambda} \overline{x}_{\lambda} \overline{x}_{\lambda}$$

Pak, v případě že malou změnu v jednotlivých složkách vydělíme malou změnou koncentrace platí:

$$\frac{\partial X}{\partial c_i} = \sum_{380}^{760} E_{\lambda} \overline{x_{\lambda}} \frac{\partial X}{\partial c_i} \frac{\partial R_{60}}{\partial c_{380}} E_{\lambda} \overline{x}_{\lambda} \left(\frac{\partial R_{\lambda}}{\partial c_i}\right)$$

$$\frac{\partial Z}{\partial c_{i}} = \sum_{k=0}^{760} E_{\lambda} \overline{x}_{\lambda} \left(\frac{dR_{\lambda}}{d[f(R_{\lambda})]} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c_{i}} \right) \left(\frac{\partial [f(R_{\lambda})]}{\partial c$$

Kolorimetrický postup výpočtu $f(R_{\lambda}) = \frac{(1-R_{\lambda})}{2R_{\lambda}}$ Použijeme-li jako funkci remise $f(R_{\lambda})$ Kubelka-Munkovu funkci, pak můžeme psát: (41)

 ∂C_i

$$\left(\frac{d[f(R_{\lambda})]}{dR_{\lambda}}\right) = \frac{(1-R_{\lambda})^{2}}{2R_{\lambda}} \left(\frac{dR_{\lambda}}{d[f(R_{\lambda})]}\right) = \frac{2R_{\lambda}}{(1-R_{\lambda})^{2}}$$

Vzhledem k tomu, že vztah mezi funkcí remise $f(R_{\lambda})$ a remisí R_{λ} je nelineární, mění se hodnota d[f(R)]/dR v závislosti na absolutní hodnotě remise.

Hodnota d[f(R)]/dR se aplikuje na velmi malou řadu remisí, většinou se počítá z remisní křivky předlohy. Jsou-li k dispozici pouze hodnoty XYZ předlohy, musí být počítána z remisní křivky odpovídající koncentracím současného receptu na konci každé opakující se smyčky. Podobnými výpočty můžeme získat parciální derivace barviva 2 a 3.

Kolorimetrický postup výpočtu

Matice vlivu, která ukazuje, jak jsou změny XYZ ovlivněny změnami koncentrace barviva, není určena pro přímou aplikaci, ale používá se k určení "směru" korekční matice. K tomuto účelu se používá standardní algebraické matice k převedení matice vlivu :

$$\Delta c_{1} = \left(\frac{\delta c_{1}}{\delta X}\right) \Delta X + \left(\frac{\delta c_{1}}{\delta Y}\right) \Delta Y + \left(\frac{\delta c_{1}}{\delta Z}\right) \Delta Z$$
$$\Delta c_{2} = \left(\frac{\delta c_{2}}{\delta X}\right) \Delta X + \left(\frac{\delta c_{2}}{\delta Y}\right) \Delta Y + \left(\frac{\delta c_{2}}{\delta Z}\right) \Delta Z$$
$$\Delta c_{3} = \left(\frac{\delta c_{3}}{\delta X}\right) \Delta X + \left(\frac{\delta c_{3}}{\delta Y}\right) \Delta Y + \left(\frac{\delta c_{3}}{\delta Z}\right) \Delta Z$$

Nový opravený recept je pak :

Nové $c_1 = původní c_1 + \Delta c_1$ Nové $c_2 = původní c_2 + \Delta c_2$ Nové $c_3 = původní c_3 + \Delta c_3$

Receptování pomocí výpočetního systému

Koncentrační řady

Koncentrační řady

Je tento průběh remisních křivek artefakt nebo realita?

Koncetrační řada – vliv chyb přípravy

📓 DCIMatch - [V0003 L	EMON]											
<u> </u>	/indow	<u>H</u> elp											
] 🖷 🖝 🌉 🧱 🚺	-	s =	` 🤋 🛛	60 🖺	X								
Standard		V0003 L	EMON										
Quality/Style 100.00 [%]	Cotton knitted not mercerised												
Substrate (factor)	Cotton knitted blanc. n. merc (1.00)												
E.Process		Reactive Bezema Exhaust (1.00)											
Formula		CMC 2:1	[D65]										
dE D65	1	2.09	0.00	0.00	0.00	0.00	0.00	0.71					
Metamerism A	0.7	0.84	0.80	0.91	0.91	0.90	4.85	5.92					
Metamerism F11	0	2.15	1.95	2.07	2.05	2.05	4.67	6.00					
Price	0	56.63	76.18	77.05	77.09	77.14	117.99	148.37					
Total concentrationUnit [%]		1.87	2.53	2.55	2.55	2.55	3.82	4.79					
Trial 1			XX										
Trial 2			X										
Trial 3					X								
Dyestuff		5(2)	1(3)	3(3)	4(3)	2(3)	6(3)	7(2)					
Bezaktiv Yellow S-8G		1.1994	1.4509	1.5205	1.5210	1.5106	3.6266	4.7398					
Bezaktiv Yellow S-3R 150	%	0.6706	1.0696	1.0283	1.0287	1.0367	0.1590						
Bezaktiv Red S-3B 150%							0.0340	0.0514					
Bezaktiv Blue S-GN 150%						0.0060							
Bezaktiv Green S-4B			0.0052										
Bezaktiv Navy Blue S-BL					0.0044								
Bezaktiv Black S-GR				0.0040									
Recipe with D65													
Standard with D65													

Citlivost receptury I

Citlivost receptury II

1	Recipe	New Recipe	New Recipe	+Amount	Proposal		Original	Qurrent 🔺	Reset
Terasi Yelow 4G	0.171891	0,171891	0.173000 🌲	0.001109 🚑	0.169321 Set	Price	8.2771	8.3361	
Terasi Orange 2RL	0.098688	0.098688	0.100000	0.001312 📮	0.097556 set	dE D65	0.0051	0.7242	Save Cancel
Terasi Bril, Blue BGE 200%	0.002377	0.002377	0.002000	-0.000377 📮	0.002436 Set	dL	-0.0012	0.0839	Precision 0.01
ium	0.272956	0.272956	0.275000	0.002044		dC	-0.0030	0.5581	
itand: BAT 11						dH	-0.0040	-0.4538	
						da*	0.0024	0.6440	You seved:
						db*	-0.0044	0.3206	-0.71 %
						ME1	0.8560	0.9464 -1	

Laborrezept

Reze	pt	Ref	. Gr	een - 190	4-1100							Trial	1		
Reze	ezept ID 141-2						≤ 0.2	≤ 0.5	≤1	≤2	≤3	≤ 4	>4		
Vorlage Rec. Green :01 Artikel Cotton bleached						≤ 50	0	0.8	1.2	1.6	2	2.2	2.5		
Komb Verf. Reactive Bezema Exhaust					>50	0	0.8	1.2	1.6	2	2.2	2.5			
			Far	bstoffkoste	en	0.03	Hilfsm	ittelkost	en (0.13					
Bemerkung Dyeing															
CallOff	1 Volum					nen:	e n : 100.00 ml								
		Ten	nper	ature						60.0C	•				
	Be	emerk	αng		c	hemikalien zugeben									
WER4X	Meropan							1.50)00 gA		1.50 n	nl 1:10			
B IA 109		Biav	zin 10	09				0.30)00 <u>g</u> /	_	3.00 n	nl 1:100)		
насі		Con	nmoi	n Salt				70.00	000 g/		7.00	g			
	Sortiment Reactive Exhaust									Anteil	10	0.00			
	Färbe	proze	ss	Reactive e	xhaust 🛛					Faktol	r	1.00			
							yestuff								
18	Bezaktiv Yellow S-8G						3.31%	0.76	685 %		7.68 n	nl 1:100)		
4	Bezaktiv Green S-4B							2.43	817 %		2.43 n	nl 1:10			
17		Bez	aktiv	Black S-G	२			0.11	127 %		1.13 n	nl 1:100	0		
SoCar		Sod	lium	Carbonate				5.00	000 g/	l	0.50	g			
4a0+38		Cau	istic	Soda 39° B	é			(2.20	000 mlA		2.20 n	nl 1:10			

CIE Kolorimetrie 2006 (2015)

$$\bar{l}(\lambda) = \alpha_{i,l}(\lambda) \cdot 10^{\left[-D_{\tau,\max,macula} \cdot D_{macula,relative}(\lambda) - D_{\tau,ocul}(\lambda)\right]} \\
\overline{m}(\lambda) = \alpha_{i,m}(\lambda) \cdot 10^{\left[-D_{\tau,\max,macula} \cdot D_{macula,relative}(\lambda) - D_{\tau,ocul}(\lambda)\right]} \\
\bar{s}(\lambda) = \alpha_{i,s}(\lambda) \cdot 10^{\left[-D_{\tau,\max,macula} \cdot D_{macula,relative}(\lambda) - D_{\tau,ocul}(\lambda)\right]} \\
\bar{s}(\lambda) = \alpha_{i,s}(\lambda) \cdot 10^{\left[-D_{\tau,\max,macula} \cdot D_{macula,relative}(\lambda) - D_{\tau,ocul}(\lambda)\right]}$$