Obsahy roviných ploch

1) Explikace zadání

\[f \text{ spoj. na } (a, b) \]
\[f \geq 0 \]
\[P = \int_a^b f(x) \, dx \]

\[f \leq 0 \]
\[P = -\int_a^b f(x) \, dx \]

\[f - g \geq 0 \]
\[P = \int_a^b (f(x) - g(x)) \, dx \]

2) Parametrické zadání

\[f \geq 0 \]
\[x = x(t), \quad t \in (a, b) \]
\[y = y(t) \]
\[x(t) \text{ má na } (a, b) \text{ dan. } x'(t) \neq 0 \text{ spoj.} \]

\[\text{Rozm.} \]
\[x(t) \text{ rostoucí } \Rightarrow x'(t) > 0 \]
\[\alpha = x^-1(a), \quad \alpha < \beta \]
\[\beta = x^-1(b) \]
\[x(t) \text{ klesající } \Rightarrow x'(t) < 0 \]
\[\alpha = x^-1(a), \quad \alpha > \beta \]
\[\beta = x^-1(b) \]

\[P = \int_a^b f(x(t)) \cdot x'(t) \, dt \]
Zadání polárními souřadnicemi

\[r(\varphi) \geq 0 \text{ vždy} \]
\[r(\varphi) \text{ spojí } \alpha \text{ s } \beta \]

\[dP = \frac{\pi r^2}{2\pi} \cdot dy = \frac{r^2}{2} \cdot dy \]

\[\lim_{d\varphi \to 0} \sum_{n=0}^{\infty} \frac{r^2}{2} \cdot dy \quad \Rightarrow \quad P = \int_{\alpha}^{\beta} \frac{r^2}{2} \cdot dy \]

Součet nekonečně mnoha elementů \(dP \) = myšlenka Riemannova int.

Délka křivky

1. expl. zadaňi
 \[f, f' \text{ spoj. na } [a, b] \]
 \[dl = \sqrt{dx^2 + dy^2} = \sqrt{1 + y'^2} \cdot dx \]
 \[l = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + y'^2} \cdot dx = \int_{a}^{b} \sqrt{1 + y'^2} \cdot dx \]

2. param. zadaňi
 \[x = x(t), y = y(t) \text{ spoj. na } [a, b] \]
 \[dx = x'(t) \cdot dt, \quad dy = y'(t) \cdot dt \]
 \[dl = \sqrt{x'^2 + y'^2} \cdot dt \]
 \[l = \int_{a}^{b} \sqrt{x'^2 + y'^2} \cdot dt \]

3. polární souřadnice
 \[r(\phi), r'(\phi) \text{ spoj. na } [a, b] \]
 \[x = r \cos \phi, \quad y = r \sin \phi \]
 \[dx = r' \cos \phi - r \sin \phi, \quad dy = r' \sin \phi + r \cos \phi \]
 \[dl = \int_{a}^{b} \sqrt{r'^2 + r^2} \cdot d\phi \]
OBJEM ROTAČNÍHO TĚLES

\[f \geq 0 \]

- rotace kolem osy \(x \)

\[dV = \pi y^2 \, dx \sim \text{zhruba} \]

\[V = \int_{a}^{b} \pi y^2 \, dx = \pi \int_{a}^{b} f(x) \, dx \]

rotace kolem osy \(y \) \(x = x(y) \geq 0 \)

\[dV = \pi x^2 \, dy, \quad c \leq y \leq d \quad \text{příp.} \quad dV = 2\pi x y \, dx (\text{je} \ a \leq x \leq b) \]

\[V = 2\pi \int_{a}^{b} x y \, dx \]

viz str. 248

2. par. zadání

rotace kolem osy \(x \)

jen dosaz.

\[a \leq x \leq b \]

neboť:

\[x = x(t), \quad dx = \dot{x}(t) \, dt \quad x^{-1}(a) = \alpha \]

\[y = y(t), \quad dy = \dot{y}(t) \, dt \quad x^{-1}(b) = \beta \]
rotace kolem polární ose y:

v pol souř.

\[dV = -\pi x^3 \sin^3 y \, dy \]

\[V = -\int_{\alpha}^{\beta} \pi x^3 \sin^3 y \, dy = \int_{\alpha}^{\beta} \pi x^3 \sin^3 y \, dy \]

Objem koule poloměru R:

\[x = R - \sqrt{R^2 - y^2} \]

\[V = \pi \int_{-R}^{R} (R^2 - x^2) \, dx = \pi \left[R^2 x - \frac{x^3}{3} \right]_{-R}^{R} = \frac{4}{3} \pi R^3 \]

rotace kolem ose x

\[x = \sqrt{R^2 - y^2} \]

\[V = 2\pi \int_{0}^{R} (R^2 - y^2) \, dy = 2\pi \left[R^2 y - \frac{y^3}{3} \right]_{0}^{R} = \frac{4}{3} \pi R^3 \]

\[V = 2\pi \int_{0}^{\frac{\pi}{2}} R^2 \sin^2 y \cdot (-R \sin y) \, dy = 2\pi \int_{0}^{\frac{\pi}{2}} R^3 \sin^3 y \, dy = 2\pi R^3 \frac{2\pi^2}{3} = \frac{4}{3} \pi R^3 \]

\[r(y) = \text{konst.} = R \]

\[V = 2\pi \int_{0}^{\frac{\pi}{2}} R^3 \sin^3 y \, dy = 2\pi R^3 \int_{0}^{\frac{\pi}{2}} \sin^3 y \, dy = \frac{2\pi R^3}{3} \]

\[x = 0 \Rightarrow y = \frac{\pi}{2} \]

\[x = R \Rightarrow y = 0 \]

\[\int_{0}^{\frac{\pi}{2}} \sin^3 y \, dy = \int_{0}^{\frac{\pi}{2}} \sin y (1 - \cos^2 y) \, dy = \frac{\pi}{4} \]

\[V = 2\pi \int_{0}^{\frac{\pi}{2}} R^3 \sin^3 y \, dy = 2\pi R^3 \frac{2\pi^2}{3} = \frac{4}{3} \pi R^3 \]
OBSAH ROTACNI PLOCHY

1. expl.
\[f \geq 0 \]
\[dS = 2\pi f(x) \cdot dl = 2\pi y \sqrt{1 + y'^2} \, dx \]

\[S = 2\pi \int_a^b y \sqrt{1 + y'^2} \, dx \]
rotace kolem osy \(x \)

2.
Při rotaci kolem osy \(y \) nutno pøipø. \(a \geq 0 \)
opø. „pøek“ polomer \(x \)
\[dS = 2\pi x \cdot dl = 2\pi x \sqrt{1 + y'^2} \, dx \]
\[S = 2\pi \int_a^b x \sqrt{1 + y'^2} \, dx \]

3. param.
\[f \geq 0 \], rotace kolem osy \(x \)
\[x = x(t) \]
\[y = y(t) \]

dosazením
\[S = 2\pi \int_{\alpha}^{\beta} y \sqrt{x'^2 + y'^2} \, dt \]
\(\alpha = \beta \)

4. rotace kolem polární osy
\[0 \leq \alpha \leq \varphi \leq \beta \leq \pi \]

\[dS = 2\pi r \cdot \sin \varphi \cdot dl = 2\pi r \cdot \sin \varphi \sqrt{r'^2 + r''^2} \, dy \]
\[S = 2\pi \int_{\alpha}^{\beta} r \sqrt{r'^2 + r''^2} \sin \varphi \, dy \]

Práce proměnné síly

síla $f(x)$ působí po úsečce od a do b

\[\delta A = \frac{f(x)}{b-a} \cdot dx \]

\[A = \int_a^b f(x) \, dx \]

Hmotnost tyče (úsečky) (délky $l = b-a$)

délková hustota $f(x)$ - zanedbáme 3. rozměr

\[\delta m = f(x) \, dx \]

\[m = \int_a^b f(x) \, dx \]

Statický moment a těžiště plochy

\[S_x = m \cdot y \]

\[S_y = m \cdot x \]

\[dS_x = \delta m \cdot \frac{y}{2} \]

\[dS_y = \delta m \cdot x \]

Příp. li plošnou hustotu ($P=1$) $\Rightarrow m = P$ (číselně!)

\[\delta m = P \, dx \cdot y \]

\[dS_x = \frac{y^2}{2} \, dx \]

\[S_x = \int_a^b \frac{y^2}{2} \, dx \]

\[dS_y = xy \, dx \]

\[S_y = \int_a^b xy \, dx \]

Těžiště $T[x_T, y_T]$

\[x_T \cdot m = S_y \Rightarrow x_T = \frac{S_y}{m} \]

\[y_T \cdot m = S_x \Rightarrow y_T = \frac{S_x}{m} \]

\[x_T = \frac{\int_a^b x \cdot y \, dx}{\int_a^b y \, dx} \]

\[y_T = \frac{\frac{1}{2} \int_a^b y^2 \, dx}{\int_a^b y \, dx} \]

(příp. $P=1$)
I. Guldinův věta
Obsah rotační plochy je součinem délky rotující křivky a délky kružnice, kterou při rotaci opíše těžiště křivky.

\[S = 2\pi y_T \cdot l \]

![Diagram](image1)

rotace kolem osy \(x \)

II. Guldinova věta
Objem rotačního tělesa je součinem obsahu \(P \) a délky kružnice, kterou při rotaci opíše těžiště plochy.

\[V = 2\pi y_T \cdot P \]

![Diagram](image2)