

The Essential Guide
to Processing for
Flash Developers

Ira J. Greenberg

THE ESSENTIAL GUIDE TO PROCESSING FOR FLASH DEVELOPERS

Copyright © 2009 by Ira J. Greenberg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1979-8

ISBN-13 (electronic): 978-1-4302-1980-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,

or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

Credits

President and Publisher:
Paul Manning

Lead Editor:
Ben Renow-Clarke

Technical Reviewer:
Ian Piper

Editorial Board:
Clay Andres, Steve Anglin, Mark Beckner, Ewan

Buckingham, Gary Cornell, Jonathan Gennick, Jonathan
Hassell, Michelle Lowman, Matthew Moodie, Duncan

Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas
Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt

Wade, Tom Welsh

Coordinating Editor:
Fran Parnell

Copy Editor:
Mary Ann Fugate

Compositor:
Mary Sudul

Indexer:
BIM Indexing & Proofreading Services

Cover Image Designer:
Corné van Dooren

Cover Designer:
Kurt Krames

331

Chapter 7

Hacking Life

I suspect, if you’re like me, that you find the idea of modeling aspects of the natural world a bit more
interesting than, say, creating an accounting program (no disrespect to accountants intended). I first got
excited by programming precisely because I (finally) made the connection between math and life and
glimpsed the potential of code to actually model this relationship. As a painter I used to look at nature and
try to deconstruct it visually: what colors could I see in the leaves; how did the horizon recede into the
distance; what made highlights and shadows appear. When I moved to code I asked many of the same
questions, but could now go much deeper, beneath the surface to the very forces that created what I was
looking at: what determined a tree’s branch structure; how do migrating birds organize themselves into a
V; what causes the patterns in tree bark, marble, clouds, etc. And when I first began to be able to code
small examples of some of these things, it was incredibly exciting—like discovering a magic box of paints. I
continue to be awed and inspired by this potential of code to literally hack life.

Emergence and Complexity
One of the most interesting aspects of coding natural processes is that many seemingly organized,
complex structures are actually created by extremely simple rules. Using really basic math, we can quickly
glimpse how simple rules create vastly massive structures. For example, by beginning with the number 1
and simply doubling it 70 times, we reach the estimated number of stars in the universe, 1021 (according to
Astrophysicist Laura Whitlock of NASA’s Goddard Space Flight Center). Using some code and a few
simple rules you can simulate colonies of insects organizing their surroundings, flocking and swarming
behaviors, and all sorts of physical dynamic systems. The key to simulating these types of emergent
phenomena is iteration. When simple rules are allowed to be executed hundreds or even thousands of

CHAPTER 7

332

times, unpredictable complex structures can emerge. One classic mathematical model that reveals this
potential is Cellular Automata, which also lends itself quite well to programming.

Cellular Automata
Cellular Automata (plural of cellular automaton) or CA were first conceived of in the 1950s by mathematicians
John von Neumann and Stanislaw Ulam, when both men were working at Los Alamos National Laboratory,
New Mexico. At first, CA were more of a mathematical abstraction that held the promise of developing self-
replicating structures—theoretically even the fundamental structures of life itself. Von Neumann and Ulam’s
pioneering work didn’t really impact the wider scientific community until the 1970s, when their work was
expanded (and popularized), due in large part to advances in and increased accessibility to computation,
including the capability to more easily create computer-generated graphics.

In 1971 Princeton mathematician John Conway created arguably the most famous CA, “Conway’s Game
of Life,” which brought CA to the popular imagination through an article written about it in Scientific
American. A decade later, Steven Wolfram, founder of the Mathematica software package, continued the
CA charge, eventually publishing a massive tome related to the subject: A New Kind of Science. For a
wonderful history about CA, check out this article in the CellLab manual, by authors Rudy Rucker and
John Walker: http://www.fourmilab.ch/cellab/manual/chap5.html (June 23, 2009, 23:01).

In spite of the rather lofty aspirations of CA originators von Neumann and Ulam, the basic concepts behind
CA are quite simple:

Create a finite set of cells in a grid-like configuration, where each cell has a set of states
(most commonly two, for “on” or “off”) that is controlled by its surrounding cells (its
neighborhood) from the previous generation.

The simplest type of CA is one-dimensional (1D), meaning that a single cell’s state is controlled only by
neighboring cells along one axis. The classic 1D CA uses three contiguous cells, shown in Figure 7-1.

Figure 7-1. Cell with controlling contiguous cells

Since there are three cells—defined as the neighborhood—each with an on or off state, there is a total of
eight possible configurations (23), shown in Figure 7-2. In running a simulation, you apply very simple rules
that change the pixel values (turn them off or on) based on the neighborhood configuration. Figure 7-3
shows the previous figure updated with some simple rules. Please note these rules are arbitrary and can
thus be changed, as I’ll demonstrate later in the chapter.

Figure 7-2. Three cell (on/off) configurations

HACKING LIFE

333

Figure 7-3. CA visual rules table

Programming a simple 1D CA is fairly straightforward. As discussed earlier, each pixel’s state will be
determined by three contiguous pixels (itself and the pixels to its left and right). These new calculated pixel
values will, in a sense, represent pixel values in the next generation. Thus, in a programming
implementation it is helpful to use two separate arrays (named bits and pixels in the upcoming example)
representing the preset and future pixels. The initial simple 1D Cellular Automata program is listed next.

/**

 * Simple 1D Cellular Automata

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 *

 * Good CS article

 * http://www.generation5.org/content/2003/caIntro.asp

 */

// array for bit values

int[] bits;

/* CA rules, 4th val is new bit state

(0=off, 1 = 0n), based on each rule */

int[][] rules = {

 {0,0,0,0},

 {1,0,0,1},

 {0,1,0,1},

 {0,0,1,1},

 {1,1,0,1},

 {0,1,1,1},

 {1,0,1,1},

 {1,1,1,0}

};

CHAPTER 7

334

void setup(){

 size(400, 400);

 // map color values between 0-1.0

 colorMode(RGB, 1.0);

 // access pixels array of sketch window

 loadPixels();

 // instantiate bits array to size of sketch

 bits = new int[width*height];

 // initialize starting bit state

 initNeighborhood();

}

// create initial state

void initNeighborhood(){

 // turn bottom middle bit on

 bits[width*(height-1) + width/2] = 1;

}

// update bits based on CA rules

void createGeneration(){

 for(int i=0; i<height-1; i++){

 for(int j=0; j<width; j++){

 // 1st and last columns use each other as neighbors in calculation

 int firstCol = (j==0) ? width-1 : j-1;

 int endCol = (j>0 && j<width-1) ? j+1 : 0;

 // check rules

 for(int k=0; k<rules.length; k++){

 if (bits[width*(i+1)+firstCol] == rules[k][0] &&

 bits[width*(i+1)+j] == rules[k][1] &&

 bits[width*(i+1)+endCol] == rules[k][2]){

HACKING LIFE

335

 bits[width*i+j] = rules[k][3];

 }

 }

 }

 }

}

// paint screen pixels based on stored values in bits

void setCells(){

 for (int i=0; i<bits.length; i++){

 // casts int to color data type for pixel value

 pixels[i] = color(bits[i]);

 }

 // call whenever changing pixels array

 updatePixels();

}

void draw(){

 // calculates CA

 createGeneration();

 // copies bit values to PImage pixels[]

 setCells();

}

In this first CA example, I tried to create a very simple implementation, with the trade-off for the simplicity
being a lack of parameterization to easily customize the program. But don’t worry, in the CA examples to
follow, I’ll provide lots of opportunity for customization (with, of course, the requisite increased complexity).

In the simple 1D CA example, I used int arrays (bits[] and rules[][]) as the main data structures.
You’ll see shortly why this provided for both an efficient and simple solution. The basic program execution
proceeds with the creation of a single on/off state, followed by a rules analysis and then the creation of the
next generation. In this implementation the initial state is simply turning the bottom center pixel to “on”
(painted white), while all the other pixels are initialized to “off” (painted black). The main execution
happens repeatedly within draw(), which allows the CA to proceed across the entire screen, until a steady
state is reached. Later in the chapter, we’ll look at some two-dimensional CA examples that actually never
reach this type of (static) steady-state and continually show the genesis of later generations. If you haven’t
yet, try running the example. A screen-shot of the final steady-state of the CA is shown in Figure 7-4.

CHAPTER 7

336

Figure 7-4. Simple_1D_CA screen-shot

If you haven’t seen CA before, perhaps the order (and beauty) of the output surprised you. You’ll see
shortly that this example demonstrates just the very tip of the iceberg of what’s possible with CA.

Returning to the example code, I want to clarify why I chose to use int arrays. Processing structures its
color data type as a packed 32-bit integer, in the format aaaaaaaa rrrrrrrr gggggggg bbbbbbbb, with 8-bits
for alpha, red, green, and blue respectively. Because of this relationship between the int and color types
in Processing, it’s possible to cast a plain old integer into a specific pixel value, as I do in the setCells()
function, with the line

pixels[i] = color(bits[i]);

Casting again is the converting of one data type into another. There are specific rules about type casting,
and not all types can be converted to one another. I cover type casting in Processing in Chapter 2. The
simple_1D_CA example will only use an off or on state for each pixel, so I utilized a 0 and 1 to record
these two states respectively, which obviously fit well within the range of the int type.

HACKING LIFE

337

It might seem more efficient to try to utilize a smaller data structure than a 32-bit integer
to record 1 bit of information, such as Processing’s char type, which is 16 bits; or byte,
which is only 8 bits; or best of all perhaps Processing’s Boolean type, which presumably
would be a 1-bit data structure, only needing to account for true or false. Because
Processing (really Java) has an internal memory management scheme in conjunction
with a virtual machine, it turns out these seemingly smaller data types internally utilize
more memory than assumed, and in some cases would also require additional casting to
work as a valid color type.

Returning to the simple_1D_CA example, the rules[][] array (shown again next)

int[][] rules = {

 {0,0,0,0},

 {1,0,0,1},

 {0,1,0,1},

 {0,0,1,1},

 {1,1,0,1},

 {0,1,1,1},

 {1,0,1,1},

 {1,1,1,0}

};

functions as a look-up table of the CA rules. rules[][] is a 2D array, or an array of arrays, with an overall
length of eight, with each internal array having a length of four. The first three values in the internal arrays
account for the neighborhood states I discussed earlier, and the fourth value has the rule for that state. For
example, when one is looking at the first internal array, {0,0,0,0}, if the neighborhood is all off (all 0’s),
then the pixel being evaluated will be turned/remain off. In the second array {1,0,0,1}, if the pixel on the
left is on and the next two pixels to its right are off, then the pixel being evaluated will be turned/remain on.
The reason I wrote “turned/remain” is because the evaluation will occur on the pixel row directly below the
pixel affected, so the affected pixel could either be on or off. Please note also the rule (the fourth value in
each array) is hard-coded in this initial example, but in later examples in the chapter, you’ll be able to pass
arguments to create variations to the rules, and thus output.

The main work in the example is handled by the createGeneration() function, listed again next:

void createGeneration(){

 for(int i=0; i<height-1; i++){

 for(int j=0; j<width; j++){

 // 1st and last columns use each other as neighbors in calculation

 int firstCol = (j==0) ? width-1 : j-1;

 int endCol = (j>0 && j<width-1) ? j+1 : 0;

CHAPTER 7

338

 // check rules

 for(int k=0; k<rules.length; k++){

 if (bits[width*(i+1)+firstCol] == rules[k][0] &&

 bits[width*(i+1)+j] == rules[k][1] &&

 bits[width*(i+1)+endCol] == rules[k][2]){

 bits[width*i+j] = rules[k][3];

 }

 }

 }

 }

}

Using nested for loops, the function moves through the bits[] array, where each value in the array
represents a specific pixel in the sketch window. The actual pixels are stored in another array aptly named
“pixels.”

Please remember that to access the sketch window’s global pixels array, you need to
first call Processing’s loadPixels() function, which I did up in the setup() function.

The actual CA rules evaluation occurs within the conditional block, within the nested for loops. In regard to
program flow, createGeneration() is called from within draw(), which executes at Processing’s default
frame rate (60 FPS). Each draw cycle, the nested for loops process the entire bits array checking for
matches against the rules. As I mentioned earlier the analysis occurs on the row directly beneath the
actual bit (ultimately pixel) affected. You can think of the rows as representing different generations
(present and future respectively).

Nesting three for loops is bit confusing at first glance (alright, even on later glances),
and in truth is not terribly efficient, performance-wise speaking. You could conceivably
use at least one less loop and treat the bits and pixels arrays as single-dimensional
arrays (which of course they really are). However, I personally find it easier to think
about (and process) arrays that represent 2D data (a table structure) using a procedure
that accounts for rows and columns, which is what the extra loop provides.

With regard to the rules table, within the nested conditional block when all three statements evaluate to
true, then the rule (the fourth value in the same nested array) is applied. Since the rules look-up table
accounts for all possible neighborhood configurations, every pixel’s state is accounted for this way. A final
point about this function refers to the two rather ugly lines

int firstCol = (j==0) ? width-1 : j-1;

int endCol = (j>0 && j<width-1) ? j+1 : 0;

If you’re not familiar with this syntax, it uses the ternary operator ?: (The same one exists in ActionScript.)
I have to admit to not really being a big fan of it, but in this case it seemed to keep the function from getting
too pudgy. The ternary operator allows you to do terse if/else expressions, but, some would say, with

HACKING LIFE

339

decreased readability—until (I guess) you get really used to it. If it isn’t obvious, the ternary operation is
(Boolean condition) ? (stuff to do if true) : (stuff to do if false). The reason I included these
two expressions in the first place was to account for the first and last pixel in each column. Since the CA
neighborhood in this example includes three contiguous pixels (used to evaluate every pixel) there will be
an edge problem (a missing third pixel) on the first and last pixel in each row. To account for this I wrap the
window pixels, by using the pixels on the opposite edge of the sketch window as the third pixel. In other
words, when a right column edge pixel is evaluated, the pixel to its left and the first pixel on the left side of
the screen are used for the rules evaluation. (If you’re wondering, I didn’t invent this idea, but saw it
implemented in numerous other CA implementations.)

Again, this initial sketch was intended to give you a down-and-dirty look at CA; more interesting variations
are coming. However, if you simply can’t wait for the next example, you can create some variation in this
example by altering the initial starting state in the initNeighborhood() function. For example, Figure 7-5
shows a screen-shot created using the following starting position: bits[width*(height-1) + width/8] =
1. You can also easily adjust the rules by changing which conditions result in on or off pixels—just be
prepared for some funky results.

Figure 7-5. Simple_1D_CA screen-shot based on altered initial state

CHAPTER 7

340

In considering a more robust and creative application of CA, it will help to create a well-structured program,
so I’ll utilize an OOP approach. (I hope you feel refreshed after the brief procedural respite.) The next
example will function as both a framework for extended 1D and 2D CA development, as well as a small
showcase of their creative potential.

1D CA Framework
There were a number of issues I tried to address in this example. I wanted users to be able to

• customize the CA, including altering color
• zoom-in to see the CA at different pixel resolutions
• use the CA as part of a larger image
• create their own CA subclasses

To follow along with the example, create a new sketch named whatever you like, and then add a new tab
to the sketch named “Shape.” Here’s the Shape class code.

/**

 * Cellular Automata

 * Shape class - convenience class

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class Shape {

 // instance properties

 PVector loc = new PVector();

 float w;

 float h;

 // default constructor

 Shape(){

 }

HACKING LIFE

341

 Shape(float w, float h){

 this.w = w;

 this.h = h;

 }

 // constructor

 Shape(float x, float y, float w, float h){

 loc.x = x;

 loc.y = y;

 this.w = w;

 this.h = h;

 }

 // setters

 void setLoc(float x, float y){

 loc.x = x;

 loc.y = y;

 }

 void setLoc(PVector loc){

 this.loc = loc;

 }

 void setSize(float w, float h){

 this.w = w;

 this.h = h;

 }

}

This Shape class is very straightforward with concepts I’ve covered throughout the book. It will serve as a
base class, encapsulating a location and size, which other classes will extend. Next, create a tab named
“Cell,” including the following code:

CHAPTER 7

342

/**

 * Cellular Automata

 * Cell class

 * - encapsulates drawing to pixel buffer

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class Cell extends Shape{

 color c;

 // reference to CA obj

 CA ca;

 Cell(float x, float y, float w, float h, CA ca){

 super(x, y, w, h);

 this.ca = ca;

 }

 void setColor(color c){

 this.c = c;

 }

 // draw to pixels buffer

 void create(){

 float origin = int(loc.y) * ca.w + int(loc.x);

 for (int i=0; i<w; i++){

 for (int j=0; j<h; j++){

 // - pretty nasty pixls[index] expression

 ca.p.pixels[int(min(origin + j*ca.w + i, ca.w*ca.h))] = c;

 }

 }

 }

}

HACKING LIFE

343

The Cell class, which you’ll notice extended Shape, will function primarily as a utility class that allows
pixels to be grouped into a larger block or cell. The class is also straightforward, with the exception of its
create() method, which converts the cell construct, from a higher-level 2D component, to specific index
values in a pixel buffer. I’ll return to this method later in the chapter.

Next, create a new tab named “CA,” which will be the base class for 1D (and some 2D) CA. Add the
following code to the CA tab:

/**

 * Cellular Automata

 * CA class (base class)

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

abstract class CA extends Shape{

 // instance properties, including default values

 int cellScale = 3;

 int rows = 10, cols = 10;

 float rowSpan, colSpan;

 Cell[][] cells;

 PImage p;

 color[] pixls;

 color[] nextPixls;

 int[] state;

 // default start colors

 color onC = 0xff000000;

 color offC = 0xffffffff;

 // default constructor

 CA(){

 super(200.0, 200.0);

 initCA();

 }

CHAPTER 7

344

 // constructor

 CA(float w, float h, int cellScale){

 super(w, h);

 this.cellScale = cellScale;

 rows = ceil(h/cellScale);

 cols = ceil(w/cellScale);

 initCA();

 }

 // initialize

 void initCA(){

 pixls = new color[rows*cols];

 nextPixls = new color[rows*cols];

 // record current pixel on/off state as integer array

 state = new int[pixls.length];

 colSpan = w/cols;

 rowSpan = h/rows;

 cells = new Cell[rows][cols];

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 // instantiate cells

 cells[i][j] = new Cell(colSpan*j, rowSpan*i, colSpan, rowSpan, this);

 }

 }

 p = createImage(int(w), int(h), RGB);

 }

 // set starting state (single pixel)

 void setInitState(int id){

 resetState();

 // turn initial pixel on

 pixls[id] = onC;

 recordState();

HACKING LIFE

345

 paintInitState();

 }

 // set starting state (array of pixels)

 void setInitState(int[] ids){

 resetState();

 for (int i=0; i<ids.length; i++){

 pixls[ids[i]] = onC;

 }

 recordState();

 paintInitState();

 }

 // set starting state (single pixel using 2D coord)

 void setInitState(int row, int col){

 resetState();

 pixls[row*(cols-1) + (col-1)] = onC;

 recordState();

 paintInitState();

 }

 // record pixel state in integer array (1 = on, 0 = off)

 void recordState(){

 for (int i=0; i<pixls.length; i++){

 if (pixls[i] == onC){

 state[i] = 1;

 }

 else {

 state[i] = 0;

 }

 }

 }

 // update pixels based on state integer array

CHAPTER 7

346

 void updateState(){

 for (int i=0; i<state.length; i++){

 if (state[i] == 1){

 pixls[i] = onC;

 }

 else {

 pixls[i] = offC;

 }

 }

 }

 // ensure starting pixel state is rendered

 void paintInitState(){

 arrayCopy(pixls, nextPixls);

 paint();

 }

 // reset all pixels to off

 void resetState(){

 for (int i=0; i<pixls.length; i++){

 pixls[i] = offC;

 }

 }

 // paint "dem perty" cells

 void paint(){

 p.loadPixels();

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 cells[i][j].setColor(nextPixls[cols*i + j]);

 cells[i][j].create();

 }

 }

 p.updatePixels();

HACKING LIFE

347

 image(p, -w/2+loc.x, -h/2+loc.y);

 arrayCopy(nextPixls, pixls);

 }

 // must be implemented in subclass (or subclass will be abstract)

 abstract void init();

 abstract void createGeneration();

}

CA is an abstract class, meaning that it can’t be instantiated directly. Abstract classes can include
properties and methods like in a standard class, as well as abstract method stubs, or unimplemented
methods such as

abstract void init();

abstract void createGeneration();

These methods are declared with the abstract keyword and do not include a method block (are
unimplemented).

Abstract methods must be implemented in any class that extends the abstract class, or
the subclass automatically becomes abstract as well.

One of the main benefits of an abstract class is an enforced common interface. For example, it is safe to
assume that any (non-abstract) class that extends CA will include implemented init() and
createGeneration() methods. Each CA subclass can implement these methods to suit its own needs. In
other words, the method interfaces will be common (between CA subclasses) but the implementation of the
methods will not. Abstract classes help enforce good black-box design, where the interface to the box, not
what happens inside the box, is what’s known (accessible).

Even though abstract classes can’t be directly instantiated, they can still contain constructors that are
invoked by subclass constructors. This provides the same benefit of a standard superclass in regard to
being able to efficiently initialize an object though chained constructors. The CA subclasses we’ll create will
use the CA constructor for this purpose.

Next we’ll look at the instance property arrays (cells, pixls, nextPixls, state) in CA declared at the top of
the class,

• cells references the higher level component constructs I mentioned earlier. The number and size
of the Cell objects will be based on the overall size of the CA object and the cellScale property;
larger scale values will create fewer but larger cells.

• pixls and nextPixls will directly reference the CA object’s pixel buffer—present and next
generation respectively.

CHAPTER 7

348

• state will help with bookkeeping of a sort, keeping track of the pixel on/off state, without having to
worry about the specific pixel color values (since the pixels will not only be black and white as
with the previous example).

The initCA() method initializes the arrays and instantiates the Cell objects. Notice in the instantiation call
I pass a reference to the CA object, as the last argument

cells[i][j] = new Cell(colSpan*j, rowSpan*i, colSpan, rowSpan, this);

Finally, with line p = createImage(int(w), int(h), RGB); I create an off-screen image that contains a
pixel buffer (pixels array). Unlike the simple_1D_CA example, I will not write directly to the sketch window
pixels array. Instead, I’ll write to the pixel array of the off-screen image; then when I want to render the
CA to the screen, I’ll draw the off-screen image using image(p, x, y). Also, remember that Processing
includes both a pixels array global variable and a PImage pixels array instance property (this was one of
the reasons I chose to name my color array pixls in the example.)

In the simple_1D_CA example, the starting state was limited to a single pixel. Here, we can also use an
array of pixels. The overloaded setInitState() methods provide a public interface for initiating the
neighborhood state. There are also a number of component utility methods, including recordState(),
updateState(), paintInitState(), and resetState(). These will allow us to both run the CA in real time,
as well as to step through each generation, using, for example, a mouse event.

Finally the paint() method, included again next, coordinates the drawing of the pixels to the screen. This
is a bit more involved than perhaps at initial glance, so I’ll walk through the process.

// paint "dem perty" cells

 void paint(){

 p.loadPixels();

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 cells[i][j].setColor(nextPixls[cols*i + j]);

 cells[i][j].create();

 }

 }

 p.updatePixels();

 image(p, -w/2+loc.x, -h/2+loc.y);

 arrayCopy(nextPixls, pixls);

 }

The first step is to “safely” load the p.pixels array using the p.loadPixels() call. Honestly, I find this step
a bit of a clunky implementation and inconsistent with standard OOP. And in truth, it may even be possible

HACKING LIFE

349

to access the PImage pixels array without this call. However, it is strongly advised in the language
reference that this call always be used to ensure the array is properly created/loaded. Here’s what the
reference has to say about it:

“Certain renderers may or may not seem to require loadPixels() or updatePixels().
However, the rule is that any time you want to manipulate the pixels[] array, you must
first call loadPixels(), and after changes have been made, call updatePixels(). Even if the
renderer may not seem to use this function in the current Processing release, this will
always be subject to change.”

Next in paint(), within the for loops, the cells’ colors are updated based on the nextPixls array, and
then the cells.create() method is invoked. To see again what happens in the create() method, click on
the Cell tab. I’ve copied the method again next:

// From Cell.pde

// draw to pixels buffer

 void create(){

 float origin = int(loc.y) * ca.w + int(loc.x);

 for (int i=0; i<w; i++){

 for (int j=0; j<h; j++){

 // - pretty nasty pixls[index] expression

 ca.p.pixels[int(min(origin + j*ca.w + i, ca.w*ca.h))] = c;

 }

 }

 }

The create() method draws a block of pixels, based on the width and height specified for the Cell object.
This block is drawn directly into the p.pixels array, which, you’ll remember, was instantiated back in CA;
this was the reason I needed to pass a reference to CA when I instantiated the Cell objects. Drawing the
block of pixels in the right place in the p.pixels array was tricky, especially since the pixels arrays in
Processing are one-dimensional. The full-length expression I needed for targeting each pixel in the correct
order based on the nested for loops was

ca.p.pixels[int(min(int(loc.y) * ca.w + int(loc.x) + j*ca.w + i, ca.w*ca.h))] = c;

That is one scary-looking line of code that should make your head hurt; it really did mine while I was trying
to figure it out. The int() casting and min() calls are needed to ensure rounding errors do not allow the
index value to go out of (array length) bounds. In the create() method, you’ll notice, I broke the
expression into two lines to make it a bit more comprehensible.

Returning to the paint() method in CA, after p.pixels is written to, I call p.updatePixels() to ensure the
pixels array is properly updated, and then I draw the image to the sketch window with image(p, -w/2+loc.x,

CHAPTER 7

350

-h/2+loc.y). The last step, arrayCopy(nextPixls, pixls) copies the nextPixls array values to pixls,
updating the pixel state (previous generation) to current generation values. arrayCopy() is an efficient
Processing function for copying the contents (or part of the contents) of one array into another. You can read
more about the function at http://processing.org/reference/arrayCopy_.html.

To use CA, we need to create a subclass that extends it. The first I’ll show will build upon what we looked at
in the simple_1D_CA example, with added parameterization; then we’ll look at an interesting variation on
the 1D CA.

Create a new tab named “CA_1D” and copy the following code into it:

/**

 * Cellular Automata

 * CA_1D class

 * neighborhood: | ? |

 * * | * | *

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class CA_1D extends CA{

 // instance properties

 // CA rules

 boolean[] rules = new boolean[8];

 color[][] table = new color[8][4];

 // default constructor

 CA_1D(){

 super();

 init();

 }

 // constructor

 CA_1D(int w, int h, int cellScale){

 super(w, h, cellScale);

 init();

HACKING LIFE

351

 }

 // REQUIRED implementation – initializes stuff

 void init(){

 // initialize 1D rules

 initRules();

 // build rules table

 buildTable();

 //set default pixel starting state - bottom center pixel set to on

 int middleBottomCell = (rows-1)*(cols) + (cols)/2;

 setInitState(middleBottomCell);

 // record pixel on/off state in integer state table

 }

 // initialize rules

 void initRules(){

 rules[0] = false;

 rules[1] = true;

 rules[2] = true;

 rules[3] = true;

 rules[4] = true;

 rules[5] = true;

 rules[6] = true;

 rules[7] = false;

 }

 // build rules table

 void buildTable() {

 table[0][0] = offC;

 table[0][1] = offC;

 table[0][2] = offC;

 table[0][3] = rules[0] ? onC : offC;

 table[1][0] = offC;

 table[1][1] = offC;

 table[1][2] = onC;

CHAPTER 7

352

 table[1][3] = rules[1] ? onC : offC;

 table[2][0] = offC;

 table[2][1] = onC;

 table[2][2] = offC;

 table[2][3] = rules[2] ? onC : offC;

 table[3][0] = offC;

 table[3][1] = onC;

 table[3][2] = onC;

 table[3][3] = rules[3] ? onC : offC;

 table[4][0] = onC;

 table[4][1] = offC;

 table[4][2] = offC;

 table[4][3] = rules[4] ? onC : offC;

 table[5][0] = onC;

 table[5][1] = offC;

 table[5][2] = onC;

 table[5][3] = rules[5] ? onC : offC;

 table[6][0] = onC;

 table[6][1] = onC;

 table[6][2] = offC;

 table[6][3] = rules[6] ? onC : offC;

 table[7][0] = onC;

 table[7][1] = onC;

 table[7][2] = onC;

 table[7][3] = rules[7] ? onC : offC;

 }

 // REQUIRED implementation

 void createGeneration(){

 for (int i=0; i<rows-1; i++){

 for (int j=0; j<cols; j++){

 for (int k=0; k<rules.length; k++){

 // 1st and last columns use each other as neighbors in calculation

 int firstCol = (j==0) ? cols-1 : j-1;

 int endCol = (j>0 && j<cols-1) ? j+1 : 0;

HACKING LIFE

353

 // rules determined by binary table: 0 = offCol, 1 = onC.

 // [111][110][101][100][011][010][001][000]

 if (pixls[cols*(i+1) + firstCol] == table[k][0] &&

 pixls[cols*(i+1) + j] == table[k][1] &&

 pixls[cols*(i+1) + endCol] == table[k][2]){

 nextPixls[(cols)*i + j] = table[k][3];

 }

 }

 }

 }

 // paint pixels on screen

 paint();

 }

 // update rules - requires 8 boolean values

 void setRules(boolean[] rules) {

 this.rules = rules;

 buildTable();

 }

 void setOnColor(color onC){

 this.onC = onC;

 buildTable();

 updateState();

 paintInitState();

 }

 void setOffColor(color offC){

 this.offC = offC;

 buildTable();

 updateState();

 paintInitState();

 }

}

CHAPTER 7

354

Although this example will follow rules similar to those of the simple_1D_CA example, the implementation
will be different. Rather than using int arrays to store 0’s and 1’s only, I used color[] arrays, to refer to
actual pixel values; I did this to allow for display of a full range of color.

The CA_1D constructors, as discussed earlier, call the CA constructors for initialization. In addition, the
subclass has its own initialization routine, init(), which, you’ll remember, must be implemented since the
method was declared abstract in CA. The init() implementation includes the call
setInitState(middleBottomCell), for setting a default starting on/off state (the first generation).

Reading through the rest of the class, I split the rules table into two methods, initRules() and
buildTable(), to allow users to be able to set custom rules, which I’ll demonstrate shortly. The
createGeneration() method, like init(), was required to be implemented since it was also declared
abstract in CA. Its implementation is quite similar to the same named function in the simple_1D_CA example.
However, now the conditional block is comparing actual pixel color values, instead of just 0’s and 1’s. This
method also includes a call to paint(), defined in CA. The rest of the class code consists of setter methods,
which I’ll assume are self-explanatory. Next, we’ll generate some sample CA, using the new classes.

In the main tab, which should still be blank if you’ve been following along, add the following code and run
the sketch:

/**

 * Cellular Automata Main Tab - 01

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_1D ca;

void setup(){

 size(600, 600);

 background(255);

 ca = new CA_1D(600, 600, 1);

}

void draw(){

 translate(ca.w/2, ca.h/2);

 ca.createGeneration();

}

HACKING LIFE

355

If the sketch ran successfully you should see output, shown in Figure 7-6, similar to the simple_1D_CA
example, only with the black and white colors reversed.

Figure 7-6. 1D Cellular Automata screen-shot, stage 1

Obviously if all we wanted to do was this, the simple-1D-CA implementation would have sufficed. In the
next step we’ll change the colors of the cells as well as the scale. Here’s the updated main tab code, with
the changes in bold.

CHAPTER 7

356

/**

 * Cellular Automata Main Tab - 02

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_1D ca;

color onC = 0xff22ee33;

color offC = 0xff772299;

void setup(){

 size(600, 600);

 background(255);

 ca = new CA_1D(600, 600, 5);

 ca.setOnColor(onC);

 ca.setOffColor(offC);

}

void draw(){

 translate(ca.w/2, ca.h/2);

 ca.createGeneration();

}

HACKING LIFE

357

Figure 7-7. 1D Cellular Automata screen-shot, stage 2

Notice in the purple and green output how the larger scale factor turns each pixel into a block, creating, in
a sense, a magnified bitmap of the image. In this implementation, save for memory limitations, there is no
maximum limit for the scale factor.

As we briefly looked at earlier, you can change the initial on/off start state to influence the final output. In
this implementation you can specify a single cell as we did earlier, or an array of cells, which I’ll
demonstrate next, shown in Figure 7-8; again the new code is bold.

CHAPTER 7

358

/**

 * Cellular Automata Main Tab - 03

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_1D ca;

color onC = 0xff221166;

color offC = 0xffffff00;

void setup(){

 size(600, 600);

 background(255);

 ca = new CA_1D(600, 600, 12);

 ca.setOnColor(onC);

 ca.setOffColor(offC);

 //add multiple starting states

 int seedCount = 50;

 int[] cells = new int[seedCount];

 for (int i=0; i<seedCount; i++){

 cells[i] = int((ca.rows-1) * (ca.cols) + random(ca.cols));

 }

 ca.setInitState(cells);

}

void draw(){

 translate(ca.w/2, ca.h/2);

 ca.createGeneration();

}

HACKING LIFE

359

Figure 7-8. 1D Cellular Automata screen-shot, stage 3

The next variation, shown in Figures 7-9 and 7-10, demonstrates how changing the rules affects the
output. The example creates a table of 16 CA, each with a different rule set. Replace your main tab code
with the following to run the example:

/**

 * Cellular Automata Main Tab - 04

 * By Ira Greenberg

CHAPTER 7

360

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_1D[] cas = new CA_1D[16];

boolean[] rules = new boolean[8];

color onC = 0xff000000;

color offC = 0xff111111;

void setup(){

 size(800, 800);

 background(255);

 for (int i=0; i<cas.length; i++){

 cas[i] = new CA_1D(200, 200, 2);

 // calculate random rules

 for (int j=0; j<8; j++){

 rules[j] = boolean(round(random(1)));

 }

 cas[i].setRules(rules);

 }

}

void draw(){

 translate(cas[0].w/2, cas[0].h/2);

 int step = cas.length/4;

 for (int i=0; i<step; i++){

 for (int j=0; j<step; j++){

 pushMatrix();

 translate(cas[step*i + j].w*i, cas[step*i + j].h*j);

 cas[step*i + j].createGeneration();

 popMatrix();

 }

 }

}

HACKING LIFE

361

Figure 7-9. 1D Cellular Automata screen-shot, stage 4, screenshot 1

CHAPTER 7

362

Figure 7-10. 1D Cellular Automata screen-shot, stage 4, screenshot 2, (cellScale = 10)

HACKING LIFE

363

You may want to run this example a number of times to see the range of potential output. You can also be
more selective in specifying the rules—not making them all random. I randomized the rules using the
expression rules[j] = boolean(round(random(1))).

Although the boolean type in Processing evaluates to the constants true or false, it is
possible to cast a 1 and 0 to these respective constants; this also works the other way
around (e.g., int(true) evaluates to 1).

Finally, I include one more variation that puts all the aspects discussed thus far together and adds random
rotation as well (see Figures 7-11 and 7-12). The new code is in bold.

/**

 * Cellular Automata Main Tab - 05

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_1D[] cas = new CA_1D[16];

boolean[] rules = new boolean[8];

// for random rotation

float[] rots = new float[cas.length];

void setup(){

 size(800, 800);

 background(255);

 for (int i=0; i<cas.length; i++){

 cas[i] = new CA_1D(200, 200, round(random(1, 20)));

 // calculate random rules

 for (int j=0; j<8; j++){

 rules[j] = boolean(round(random(1)));

 }

 cas[i].setRules(rules);

 // calculate random color

 cas[i].setOnColor(color(random(255), random(255), random(255)));

 cas[i].setOffColor(color(random(255), random(255), random(255)));

CHAPTER 7

364

 // calculate random rotation

 rots[i] = HALF_PI*round(random(1, 3));

 }

}

void draw(){

 translate(cas[0].w/2, cas[0].h/2);

 int step = cas.length/4;

 for (int i=0; i<step; i++){

 for (int j=0; j<step; j++){

 pushMatrix();

 translate(cas[step*i + j].w*i, cas[step*i + j].h*j);

 rotate(rots[i]);

 cas[step*i + j].createGeneration();

 popMatrix();

 }

 }

}

HACKING LIFE

365

Figure 7-11. 1D Cellular Automata screen-shot, stage 5, screenshot 1

CHAPTER 7

366

Figure 7-12. 1D Cellular Automata screen-shot, stage 5, screenshot 2

Using very simple rules, the CA_1D class allowed you to create somewhat complex patterns based on
discrete on/off cell states. You saw by changing the rules you could create some interesting variations. It
would, of course, also be possible to change the evaluation neighborhood and rules structure further to
create other variations. However, one of the limiting factors in this approach is the use of discrete cell
states, either being on or off. In the next example, I’ll extend our discussion of one-dimensional CA using a
continuous (versus discrete) method of cell genesis.

HACKING LIFE

367

(Almost) Continuous CA
Rather than flipping cells on or off, the continuous CA will average the actual color values of cells in its
neighborhood to determine the cell’s color in the next generation. However, averaging alone is not enough
to create something very interesting. Figure 7-13 illustrates a CA output using just the averaging process.

Figure 7-13. 1D Continuous Cellular Automata screenshot

CHAPTER 7

368

To get more interesting results, we need to introduce some chaos into the process. This will involve a two-
stage process. First, I’ll introduce a constant value that will be added to each averaged color component (r,
g, b). Second, I’ll introduce a threshold, or maximum, that I’ll use as a constraint for each component
value. Here’s an example of the process using pseudo code with cells C1, C2, and C3 representing the
neighborhood and CN as the new cell.

// pseudo code

c = constant

t = threshold

CN.r = (C1.r + C2.r + C3.r)/3 + c

CN.g = (C1.g + C2.g + C3.g)/3 + c

CN.b = (C1.b + C2.b + C3.b)/3 + c

if (CN.r > t) then CN.r -= t

if (CN.g > t) then CN.g -= t

if (CN.b > t) then CN.b -= t

Create next generation using CN

In truth, my Continuous CA implementation will not be technically continuous. This has not only to do with
my pathological inability to follow directions (even my own), but also the results I’ll generate, which will be
essentially indistinguishable from a “real” continuous CA. The term continuous perhaps evokes real
numbers for you. (Yes, you probably are a geek if this is true.) In a continuous system, pretty much every
value can be represented using the range 0.0 to 1.0. Most continuous CA examples that I’ve seen do in
fact use this range. However, my system will be a little simpler and based on integers in the range of 0–
255. Next is a Continuous CA class.

Using the existing sketch, add a new tab named “CA_1DC” and add the following class code to it:

/**

 * Cellular Automata

 * CA_1DC class

 * neighborhood: | ? |

 * * | * | *

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class CA_1DC extends CA{

HACKING LIFE

369

 //instance properties

 float[] consts = {

 23, 23, 23 };

 float[] thresholds = {

 255, 255, 255 };

 // default constructor

 CA_1DC(){

 super();

 init();

 }

 // constructor

 CA_1DC(int w, int h, int cellScale){

 super(w, h, cellScale);

 init();

 }

 void init(){

 int middleBottomCell = (rows-1)*cols + cols/2;

 setInitState(middleBottomCell, onC);

 }

 // set starting state (single pixel)

 void setInitState(int id, color c){

 resetState();

 pixls[id] = c;

 paintInitState();

 }

 // set starting state (array of pixels)

 void setInitState(int[] ids, color[] c){

CHAPTER 7

370

 // reset();

 resetState();

 for (int i=0; i<ids.length; i++){

 pixls[ids[i]] = c[i];

 }

 paintInitState();

 }

 // set starting state

 void setInitState(int row, int col, color c){

 // reset pixels

 resetState();

 pixls[row*(cols-1) + (col-1)] = c;

 paintInitState();

 }

 /* rules:

 1. average 3 neighboring colors, e.g. (c[j-1] + c[j] + c[j+1])/3

 2. add a constant, e.g. c + const

 3. if color components > 255 subtract 255 */

 void createGeneration(){

 for (int i=0; i<rows-1; i++){

 for (int j=0; j<cols; j++){

 // use 1st colum as j+1, for end pixel in each column

 int firstCol = (j==0) ? cols-1 : j-1;

 int endCol = (j>0 && j<cols-1) ? j+1 : 0;

 int row = cols*(i+1);

 float r = ((pixls[row + firstCol] >> 16 & 0xFF) + (pixls[row + j] >> �

 16 & 0xFF) + (pixls[row + endCol] >> 16 & 0xFF))/3 + consts[0];

 float g = ((pixls[row + firstCol] >> 8 & 0xFF) + (pixls[row + j] >> �

 8 & 0xFF) + (pixls[row + endCol] >> 8 & 0xFF))/3 + consts[1];

HACKING LIFE

371

 float b = ((pixls[row + firstCol] & 0xFF) + (pixls[row + j] & 0xFF) + �

 (pixls[row + endCol] & 0xFF))/3 + consts[2];

 if (r>thresholds[0]){

 r-=thresholds[0];

 }

 if (g>thresholds[1]){

 g-=thresholds[1];

 }

 if (b>thresholds[2]){

 b-=thresholds[2];

 }

 nextPixls[(cols)*i + j] = int(r) << 16 | int(g) << 8 | int(b);

 }

 }

 // paint pixels on screen

 paint();

 }

 // pass custom rules

 void setconsts(float[] consts) {

 this.consts = consts;

 }

 void setThresholds(float[] thresholds) {

 this.thresholds = thresholds;

 }

}

CHAPTER 7

372

Since the class extends CA it follows a structure very similar to CA_1D. Again, one of the nice things about a
consistent framework is that it allows you to almost intuit how to work with a class. Thus, I’ll assume you
can make your way through most of this source code on you own. Where I think I can offer some
clarification is in the createGeneration() method. You’ll remember as a CA subclass, both init() and
createGeneration() need to be implemented. Next is the snippet of code in the function again that
handles the main CA calculation.

float r = ((pixls[row + firstCol] >> 16 & 0xFF) + (pixls[row + j] >> �

 16 & 0xFF) + (pixls[row + endCol] >> 16 & 0xFF))/3 + consts[0];

float g = ((pixls[row + firstCol] >> 8 & 0xFF) + (pixls[row + j] >> �

 8 & 0xFF) + (pixls[row + endCol] >> 8 & 0xFF))/3 + consts[1];

float b = ((pixls[row + firstCol] & 0xFF) + (pixls[row + j] & 0xFF) + �

 (pixls[row + endCol] & 0xFF))/3 + consts[2];

 if (r>thresholds[0]){

r-=thresholds[0];

}

 if (g>thresholds[1]){

 g-=thresholds[1];

}

if (b>thresholds[2]){

 b-=thresholds[2];

}

nextPixls[(cols)*i + j] = int(r) << 16 | int(g) << 8 | int(b);

I chose to use bitwise operators to work with the components, as they are substantially faster than using
Processing’s red(), green(), blue(), and color() functions; to see this for yourself try substituting
Processing’s color component functions in the expressions. For example, the red expression would look
like this:

float r = (red(pixls[row + firstCol]) + red(pixls[row + j]) + red(pixls[row + endCol]))/3 +
consts[0];

I covered bitwise operations in Chapter 2 and more extensively in Processing Creative Coding and
Computational Art, Appendix B.

HACKING LIFE

373

To allow for more variation in the CA I created three constants, as well as three threshold values. Again,
the constants are simply added to each averaged color component, and then the new component value is
reduced to the amount greater than the threshold (or if the value is less than the threshold it remains
unchanged). Finally, the color is put back together. To try out the new CA_1DC class, enter the following
code in the main tab:

/**

 * Continuous Cellular Automata Main Tab - 01

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

// global variables

CA_1DC cca;

void setup(){

 size(600, 600);

 cca = new CA_1DC(600, 600, 1);

}

void draw(){

 translate(cca.w/2, cca.h/2);

 cca.createGeneration();

}

This first example, shown in Figure 7-14, is grayscale as the three constants are all the same values, and
the onC and offC colors are black and white by default. Notice, though, the interesting pattern that’s
generated.

CHAPTER 7

374

Figure 7-14. 1D Continuous Cellular Automata screen-shot, stage 1

In the next example, shown in Figures 7-15, 7-16, and 7-17, I’ll create a table of CA varying the constants
and thresholds in each CA, but keeping the three values in each array the same. Here’s the code:

HACKING LIFE

375

/**

 * Continuous Cellular Automata Main Tab - 02

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

// global variables

int rows = 4, cols = 4;

int rowSpan, colSpan;

int cellScale = 1;

float threshMin = 128, threshMax = 255;

float constMin = 2, constMax = 127;

// for random seed placement

int seedCount = 2;

// declare arrays

CA_1DC[] cacs;

int[] seeds;

color[] clrs;

void setup(){

 size(800, 800);

 initialize();

}

void initialize(){

 this.rows = rows;

 this.cols = cols;

 rowSpan = height/rows;

 colSpan = width/cols;

 cacs = new CA_1DC[rows*cols];

 seeds = new int[seedCount];

 clrs = new color[seedCount];

CHAPTER 7

376

 for (int i=0; i<cacs.length; i++){

 cacs[i] = new CA_1DC(colSpan, rowSpan, cellScale);

 for (int j=0; j<seedCount; j++){

 seeds[j] = int((cacs[i].rows-1)*(cacs[i].cols) + int(random(cacs[i].cols)));

 clrs[j] = color(random(255), random(255), random(255));

 }

 cacs[i].setInitState(seeds, clrs);

 float t = random(threshMin, threshMax);

 cacs[i].setThresholds(new float[] { t, t, t });

 float c = random(constMin, constMax);

 cacs[i].setconsts(new float[] { c, c, c });

 }

}

void draw(){

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 pushMatrix();

 // simplify stuff

 int index = cols*i + j;

 float x = cacs[index].w*j;

 float y = cacs[index].h*i;

 float w = cacs[index].w;

 float h = cacs[index].h;

 // move top left corner to 0,0

 translate(w/2, h/2);

 // move into position in table

 translate(x, y);

 // do CA magic

 cacs[index].createGeneration();

 popMatrix();

 }

 }

}

HACKING LIFE

377

Figure 7-15. 1D Continuous Cellular Automata screen-shot, stage 2

CHAPTER 7

378

Figure 7-16. 1D Continuous Cellular Automata screen-shot, stage 2 (cellScale = 3)

HACKING LIFE

379

Figure 7-17. 1D Continuous Cellular Automata screen-shot, stage 2 (1 row, 10 columns)

There is nothing really new in this code. I suggest messing around with the values a bit to see what’s
possible. I’m sure you’ll agree that the continuous approach yields much more interesting images than the
straight 1D discrete CA discussed earlier. You might also try creating your own CA rules, maybe using trig

CHAPTER 7

380

functions in the continuous calculations, for example; there is a lot of untapped aesthetic potential here.
Before I move on to 2D CA, I want to include one more interactive continuous CA example.

One of the benefits of being able to see a table of smaller CA is the increased rate of exploration.
However, the small images make it difficult to fully see all the detail (or perhaps output an image for a tee-
shirt). It would be nice if you could enlarge any image without sacrificing detail and/or resolution. In the last
continuous CA example, I’ll code interactivity to allow us to do this. I‘ll also add some additional
functionality to create even more variation, shown in Figures 7-18, 7-19, 7-20, and 7-21.
Additions/changes to the existing code are bold.

/**

 * Continuous Cellular Automata Main Tab - 03

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

// global variables

int rows = 8, cols = 8;

int rowSpan, colSpan;

int cellScale = 1;

float threshMin = 128, threshMax = 255;

float constMin = 2, constMax = 127;

// for random seed placement

int seedCount = 1;

// declare arrays

CA_1DC[] cacs;

float[][] thresholds;

float[][] consts;

int[][] seeds;

color[][] clrs;

// for interactivity

int overID = 0;

boolean iSFirstClick = true;

HACKING LIFE

381

void setup(){

 size(800, 800);

 initialize();

}

void initialize(){

 this.rows = rows;

 this.cols = cols;

 rowSpan = height/rows;

 colSpan = width/cols;

 cacs = new CA_1DC[rows*cols];

 thresholds = new float[cacs.length][3];

 consts = new float[cacs.length][3];

 seeds = new int[cacs.length][seedCount];

 clrs = new color[cacs.length][seedCount];

 for (int i=0; i<cacs.length; i++){

 cacs[i] = new CA_1DC(colSpan, rowSpan, cellScale);

 for (int j=0; j<seedCount; j++){

 seeds[i][j] = int((cacs[i].rows-1)*(cacs[i].cols) + int(random(cacs[i].cols)));

 clrs[i][j] = color(random(255), random(255), random(255));

 }

 cacs[i].setInitState(seeds[i], clrs[i]);

 for (int j=0; j<thresholds[0].length; j++){

 thresholds[i][j] = random(threshMin, threshMax);

 consts[i][j] = random(constMin, constMax);

 }

 cacs[i].setThresholds(thresholds[i]);

 cacs[i].setconsts(consts[i]);

 }

CHAPTER 7

382

}

// draw selected CA full screen with original values

void calcCA(int i){

 // factor to scale the initial pixel state

 float widthFctr = width/cacs[i].w;

 // get original rows and cols value before updated

 float oldRows = cacs[i].rows;

 float oldCols = cacs[i].cols;

 // new output will fill the sketch window

 rows = cols = 1;

 int scl = cacs[0].cellScale;

 // reinitialize cacs

 cacs = new CA_1DC[1];

 cacs[0] = new CA_1DC(width, height, scl);

 // updates initial seeds, if originally set

 for (int j=0; j<seedCount; j++){

 if (seeds[i][j] !=0){

 seeds[i][j] = int((cacs[0].rows-1)*cacs[0].cols + (seeds[i][j]- �

 (oldRows-1)*oldCols)*widthFctr);

 } else {

 // if default centered seed was used

 seeds[i][j] = (cacs[0].rows-1)*cacs[0].cols + cacs[0].cols/2;

 }

 }

 // set with original values

 cacs[0].setInitState(seeds[i], clrs[i]);

 cacs[0].setThresholds(thresholds[i]);

 cacs[0].setconsts(consts[i]);

}

HACKING LIFE

383

void draw(){

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 pushMatrix();

 // simplify stuff

 int index = cols*i + j;

 float x = cacs[index].w*j;

 float y = cacs[index].h*i;

 float w = cacs[index].w;

 float h = cacs[index].h;

 // move top left corner to 0,0

 translate(w/2, h/2);

 // move into position in table

 translate(x, y);

 // do CA magic

 cacs[index].createGeneration();

 popMatrix();

 // check which cell mouse is over

 if (mouseX > x && mouseX < x + w &&

 mouseY > y && mouseY < y + h){

 overID = index;

 }

 }

 }

}

// if the first time clicking on sketch, select CA to enlarge

void mouseClicked(){

 if (iSFirstClick){

 calcCA(overID);

 iSFirstClick = false;

 }

}

CHAPTER 7

384

Figure 7-18. 1D Continuous Cellular Automata screen-shot, stage 3

HACKING LIFE

385

Figure 7-19. 1D Continuous Cellular Automata screen-shot, stage 3

CHAPTER 7

386

Figure 7-20. 1D Continuous Cellular Automata screen-shot, stage 3

HACKING LIFE

387

Figure 7-21. 1D Continuous Cellular Automata screen-shot, stage 3

Looking at the code in the example, you’ll notice I added a bunch of 2D arrays. The main coding
challenges I had to deal with were retaining all the critical data for each thumbnail (i.e., colors, constants,
and threshold values) and coming up with an event detection method that would know which thumbnail
had been clicked on.

CHAPTER 7

388

I found it easiest to create the new calcCA() method to isolate the redrawing of the large image from the
initial drawing of the thumbnails. The calcCA() method is called from within the mouseClicked() function,
which is one of Processing’s built-in event functions. Each time calcCA(overID) is called an index value is
passed to the function representing the thumbnail clicked on. Within draw() notice the home-brewed
detection block:

if (mouseX > x && mouseX < x + w &&

 mouseY > y && mouseY < y + h){

 overID = index;

}

Admittedly this approach is neither elegant nor efficient, as the detection check happens every draw cycle,
and I needed to create the overID global variable. However, a more OOP’ish solution would have required
doing a bit of tinkering with the base CA class, which, at this point in the chapter, wasn’t going to happen.
Of course, adding detection to the CA class and rewiring this example (even adding interactivity to all the
previous examples) would be an excellent thing to try on your own. One other point that might be
confusing is the expression I used to scale the seeds in the original thumbnail to the larger image, the line

seeds[i][j] = int((cacs[0].rows-1)*cacs[0].cols + (seeds[i][j]-�

 (oldRows-1)*oldCols)*widthFctr);

This is a pretty ornery-looking line of code. Since the seeds are all on the bottom row of cells (which
you’ll remember are stored in a 1D array), it was simplest to only deal with the last row in calculating the
scaling. Thus, I simply added the scaled index positions to the rest of the array. To get a clearer sense
of why I handled it this way, try scaling a table and seeing how specific index values shift within the
table; it’s messy!

One-dimensional CA offered a glimpse into how simple rules can lead to remarkable complexity. By
adding an additional dimension and generating two-dimensional CA, we can blow open the doors of this
fascinating potential. That said, 2D CA is a pretty large area of research (and this has already been a long
chapter), so I’ll just introduce the topic here and provide examples that both reveal interesting aspects of
this research area and also create the beginnings of a 2D CA framework for studying them further.

2D CA
Going from 1D to 2D CA is not very difficult. However, as I mentioned earlier, it opens up lots of new
possibilities; from a coding standpoint it’s simply a matter of incorporating a second axis in the rules
analysis. You can also create 3D CA by adding a third axis, which I won’t be covering here, but you can
learn more about here: http://risais.home.comcast.net/~risais/3dca/3dca.htm (November, 15, 2009
14:08). The examples to follow will be based on the most famous 2D CA, Game of Life (“Life”), developed
by John Conway in 1970.

HACKING LIFE

389

Conway developed Life based on the earlier work of John von Neumann, one of the originators of CA
mentioned at the beginning of the chapter. What is so interesting about Conway’s Life CA is the range of
output it’s capable of producing, In fact, Life “theoretically” has the capacity to function as a computer, or
more precisely the capacity to calculate any algorithm. You can read more theoretical information about
Life at http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life (August, 6, 2009 11:38 am).

In spite of Life’s computational power, it is pretty simple to code, which is perhaps the most fascinating
aspect of this whole area of research—from simple steps can emerge incredible complexity. As previously
mentioned, implementing Life will involve two axes (x and y), and each cell’s neighborhood will be defined
by its eight surrounding cells (see Figure 7-22).

Figure 7-22. 2D CA Game of Life neighborhood

The rules of Life are as follows (taken directly from the Wikipedia page previously referenced,
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life):

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.
2. Any live cell with more than three live neighbors dies, as if by overcrowding.
3. Any live cell with two or three live neighbors lives on to the next generation.
4. Any dead cell with exactly three live neighbors becomes a live cell.

The basic coding structure we’ll follow will be very similar to what we’ve done throughout the chapter. In
fact, we’ll use our current CA framework. To get started, create a new tab in the existing sketch used for
the continuous CA example, or you can use any sketch that includes the Shape, Cell, and CA classes.
Name the new tab “CA_2D” and enter the following code into the tab:

CHAPTER 7

390

/**

 * Cellular Automata

 * CA_2D class

 * neighborhood: * | * | *

 * * | ? | *

 * * | * | *

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class CA_2D extends CA{

 // instance properties

 // default constructor

 CA_2D(){

 super();

 init();

 }

 // constructor

 CA_2D(int w, int h, int cellScale){

 super(w, h, cellScale);

 init();

 }

 // REQUIRED implementation – initializes stuff

 void init(){

 // set default starting state

 /* R-pentomino pattern

 **

 **

 *

 */

HACKING LIFE

391

 int[] initState = {

 ((rows)/2-1)*(cols) + (cols-1)/2+1,

 ((rows)/2-1)*(cols) + (cols-1)/2,

 (rows)/2*(cols) + (cols-1)/2,

 (rows)/2*(cols) + (cols-1)/2-1,

 ((rows)/2+1)*(cols) + (cols-1)/2

 };

 setInitState(initState);

 }

 // set starting state (array of pixels)

 void setInitState(int[] ids){

 resetState();

 for (int i=0; i<ids.length; i++){

 pixls[ids[i]] = onC;

 }

 paintInitState();

 }

// set starting state (single pixel)

 void setInitState(int row, int col){

 resetState();

 pixls[row*(cols-1) + (col-1)] = onC;

 paintInitState();

 }

 // REQUIRED implementation

 void createGeneration(){

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

 // 1st and last columns use each other as neighbors in calculation

 int firstCol = (j==0) ? cols-1 : j-1;

 int endCol = (j>0 && j<cols-1) ? j+1 : 0;

 // 1st and last rows use each other as neighbors in calculation

CHAPTER 7

392

 int firstRow = (i==0) ? rows-1 : i-1;

 int endRow = (i>0 && i<rows-1) ? i+1 : 0;

 int sum = 0;

 if (pixls[cols*(firstRow) + firstCol] == onC){

 sum+=1;

 }

 if (pixls[cols*(firstRow) + j] == onC){

 sum+=1;

 }

 if (pixls[cols*(firstRow) + endCol] == onC){

 sum+=1;

 }

 if (pixls[cols*i + endCol] == onC){

 sum+=1;

 }

 if (pixls[cols*(endRow) + endCol] == onC){

 sum+=1;

 }

 if (pixls[cols*(endRow) + j] == onC){

 sum+=1;

 }

 if (pixls[cols*(endRow) + firstCol] == onC){

 sum+=1;

 }

 if (pixls[cols*i + firstCol] == onC){

 sum+=1;

 }

 if (pixls[cols*i + j] == onC){

HACKING LIFE

393

 if (sum < 2 || sum > 3){

 nextPixls[cols*i + j] = offC;

 }

 // if sum is 2 or 3

 else {

 nextPixls[cols*i + j] = onC;

 }

 }

 // if pixel is offC

 else {

 if (sum == 3){

 nextPixls[cols*i + j] = onC;

 }

 }

 }

 }

 // paint pixels on screen

 paint();

 }

 void setOnColor(color onC){

 this.onC = onC;

 }

 void setOffColor(color offC){

 this.offC = offC;

 }

}

The class is very similar to the CA_1D class, although the init() and createGeneration() methods are
implemented differently. The rules analysis in createGeneration() is a bit lengthier than in the 1D
examples, but it should still be pretty self-explanatory as it follows the Life rules enumerated earlier. Before
discussing the init() method, let’s try out the new code. In the main tab enter the following and then run
the sketch:

CHAPTER 7

394

/**

 * Cellular Automata 2D _ main tab – 01

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_2D ca2;

void setup(){

 size(600, 600);

 background(255);

 ca2 = new CA_2D(600, 600, 1);

}

void draw(){

 translate(ca2.w/2, ca2.h/2);

 ca2.createGeneration();

}

If the code ran okay, you should have seen a bunch of white pixels growing and moving about the sketch
window. Figure 7-23 shows the sketch after 1000 frames. To be more specific, albeit cryptic, the sketch
screenshot shows the R-pentomino pattern after 1000 generations following Life’s rules.

HACKING LIFE

395

Figure 7-23. 2D CA Game of Life R-pentomino pattern after 1000 frames

Returning to the CA_2D code, here’s the init() method again.

// REQUIRED implementation – initializes stuff

 void init(){

 // set default starting state

 /* R-pentomino pattern

 **

 **

CHAPTER 7

396

 *

 */

 int[] initState = {

 ((rows)/2-1)*(cols) + (cols-1)/2+1,

 ((rows)/2-1)*(cols) + (cols-1)/2,

 (rows)/2*(cols) + (cols-1)/2,

 (rows)/2*(cols) + (cols-1)/2-1,

 ((rows)/2+1)*(cols) + (cols-1)/2

 };

 setInitState(initState);

 }

This method creates a default starting on/off pixels state, which we’ve also done in earlier examples.
However, rather than beginning with a single pixel or random array of pixels, we’re beginning with a very
specific pixel pattern, in this case one named “R-pentomino” (also sometimes referred to as F-pentomino).
To better see this pattern, we’ll modify our example sketch, increasing the scale of the pixels and also
adding an interactive element. Replace the code in the main tab with the following:

/**

 * Cellular Automata 2D _ main tab – 02

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

CA_2D ca2;

void setup(){

 size(600, 600);

 background(255);

 ca2 = new CA_2D(600, 600, 20);

 translate(ca2.w/2, ca2.h/2);

 ca2.paint();

}

void draw(){

}

HACKING LIFE

397

void mousePressed(){

 translate(ca2.w/2, ca2.h/2);

 ca2.createGeneration();

}

When you run the sketch, click anywhere within the sketch window to iteratively move through the sketch one
iteration at a time. Figures 7-24, 7-25, and 7-26 show the sketch at iterations 0, 30, and 100 respectively.

Figure 7-24. 2D CA Game of Life R-pentomino pattern at start, cellScale = 20

CHAPTER 7

398

Figure 7-25. 2D CA Game of Life R-pentomino pattern after 30 frames, cellScale = 20

HACKING LIFE

399

Figure 7-26. 2D CA Game of Life R-pentomino pattern after 100 frames, cellScale = 20

A pentomino is simply a shape composed of five symmetrical squares that are all connected orthogonally.
You can read more about them at http://en.wikipedia.org/wiki/Pentomino (August, 6, 2009 14:00). Based
on Life’s rules, the R-pentomino pattern creates some unexpected results, which was indeed what Conway
discovered when he first tried inputting the pattern, by hand mind you! It turns out that the R-pentomino
pattern doesn’t reach a stable state until a little over 1100 iterations (certainly a lot of work to try to do by
hand). It also turns out that many of the sub-patterns created during these 1000 iterations of R-pentomino

CHAPTER 7

400

reveal many of the other classic patterns that Life produces, including ones formally classified as still-lifes,
gliders, oscillators, guns, and puffers among others. Here is a nice link that discusses some of these
interesting patterns: http://www.math.com/students/wonders/life/life.html (August, 6, 2009 14:12).

Although it would be interesting to try to create new patterns, there is already a treasure trove of them, with
many creative hybrid patterns that combine multiple sub-patterns; some of these can be very complex. For
example, Figure 7-27 shows a pattern called “c/3 long spaceships,” by Hartmut Holzwart and David Bell,
which is composed of about 40,000 characters.

Figure 7-27. “c/3 long spaceships” pattern, by Hartmut Holzwart and David Bell

You probably wouldn’t want to try to code the c/3 long spaceships pattern by hand; loading it (like you
would an image) would obviously be a much better solution. Fortunately, this loading problem has been
solved—well, sort of. There have been file formats created for storing Life patterns (see
http://psoup.math.wisc.edu/mcell/ca_files_formats.html#Life%201.05, August 6, 2009 14:56)
enabling people to load and distribute them. A common Life pattern format is “Life 1.05,” which uses the
.lif suffix (you’ll also see .life suffixes). It’s a very simple ASCII format that lists on/off pixels as a series of
*’s and .’s respectively; in addition, each block of characters is preceded by a point location, specifying
where on a Cartesian coordinate system to draw the block of pixels. For example, to draw the R-
pentomino pattern at coordinate 100, 100, the .lif file would look like this. (Please note the #D is for file
descriptions/comments. Some files also include a #N or #R for specifying rules, which we’ll ignore.)

HACKING LIFE

401

#Life 1.05

#D R-pentomino

#D Adapted by Ira Greenberg

#D The Essential Guide to Processing for Flash Developers

#D Friends of ED, 2009

#P 100 100

.**

**.

.*.

I mentioned earlier that the Life pattern format sort of solved the problem; the other part is being able to
parse the .lif file. As you might suspect, a Google search did not turn up a Processing .lif parser, so I
decided to write one. My parser takes a URL address argument (as a link to a .lif file), which can be local,
in the sketch’s data directory, or on the web. In my example, the URL will be on the web, within a freely
accessible Life patterns catalog.

If you’re running an example online (as an applet), and the .lif file is on the web, it
needs to reside on the same server as your applet or the applet must be signed; this is
for security reasons. To learn how to sign an applet, check out this Processing hack I
wrote a while back: http://processing.org/hacks/hacks:signapplet (August 7, 2009
15:05).

I’ve coded the parser as a Processing class that will work within our CA framework. In the existing CA
sketch (that includes the CA_2D class) create a new tab named “LIF_PARSER.” I’ll state in advance that
this class is pretty dense, BUT it will be our last example, so you’ll be able to rest your brain shortly. Also,
in the next chapter we’ll look at Processing’s XML implementation, so this final example will also be a good
data loading primer. Add the following to the LIF_PARSER tab:

/**

 * Cellular Automata

 * LIF_Parser class

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

class LIF_Parser{

 // stores symbols (. *)

 String[] symbs = {};

 // path to .lif file

CHAPTER 7

402

 String url;

 // stores all lines in .lif file

 String[] lines;

 // stores number of lines of symbols within each coord group

 int[] indices;

 // utility counter to increment coords[][] array

 int coordsCounter = 0;

 // stores origin in a sense of each symbol group

 int[][] coords;

 // bits buffer for pattern

 int[] bits;

 // bits array size (w, h)

 int w, h;

 // constructor

 LIF_Parser(String url){

 this.url = url;

 // load .lif file

 lines = loadStrings(url);

 // get numbers of lines within each coord group

 indices = getIndices();

 // instantiate coords array values of where to draw each part of pattern

 coords = new int[indices.length][2];

 // isolate coords and reformat as int[][]

 parseCoords();

 //shift coords to remove negative values and isolate symbols

 shiftCoords();

 // create bits array based on pattern

 calcBits();

 }

 /* parses initial line strings, creating

 int[][] of coord data and isolates symbols*/

HACKING LIFE

403

 void parseCoords(){

 for (int i=0; i<lines.length; i++){

 String tempStr = "";

 // detect coords

 if (lines[i].charAt(0) == '#' && lines[i].charAt(1) == 'P'){

 // collect coord locs

 for (int j = 2; j<lines[i].length(); j++){

 tempStr += lines[i].charAt(j);

 }

 String tempStr2 = "";

 for (int j=0; j<tempStr.length(); j++){

 if (j>0 && tempStr.charAt(j) == ' '){

 tempStr2 += ',';

 }

 else if (tempStr.charAt(j) != ' '){

 tempStr2 += tempStr.charAt(j);

 }

 }

 coords[coordsCounter][0] = int(split(tempStr2, ','))[0];

 coords[coordsCounter][1] = int(split(tempStr2, ','))[1];

 coordsCounter ++;

 }

 else {

 // collect symbols

 if (lines[i].charAt(0) != '#'){

 symbs = append(symbs, lines[i]);

 }

 }

 }

 }

 /* add offset to x and y coords, based on lowest

 values, to avoid negative values */

CHAPTER 7

404

 void shiftCoords(){

 int xMin = 0, yMin = 0;

 // get lowest values

 for (int i=0; i<coords.length; i++){

 if (coords[i][0] < xMin){

 xMin = coords[i][0];

 }

 if (coords[i][1] < yMin){

 yMin = coords[i][1];

 }

 }

 // shift all coords

 for (int i=0; i<coords.length; i++){

 coords[i][0] += abs(xMin);

 coords[i][1] += abs(yMin);

 }

 }

 /* structure of data

 * stores number of symbols within each group

 * delimited by #P coordX coordY in .lif file */

 int[] getIndices(){

 int j = 0;

 int[] indices = {};

 for (int i=0; i<lines.length; i++){

 if(lines[i].charAt(0) != '#'){

 j++;

 }

 else {

 if (j!= 0){

 indices = append(indices, j);

 }

 j = 0;

HACKING LIFE

405

 }

 }

 // get last group

 indices = append(indices, j);

 return indices;

 }

 // calculate bits

 void calcBits(){

 // counter

 int ctr = 0;

 for (int i=0; i<indices.length; i++){

 for (int j=0; j<indices[i]; j++){

 // calculate max horizontal dimension

 if (coords[i][0] + symbs[ctr].length() > w){

 w = coords[i][0] + symbs[ctr].length();

 }

 // calculate max vertical dimension

 if (coords[i][1] + indices[i] > h){

 h = coords[i][1] + indices[i];

 }

 ctr++;

 }

 }

 // instantiate bits array

 bits = new int[w*h];

 // reset counter

 ctr = 0;

 //fill bits array

 for (int i=0; i<indices.length; i++){

 for (int j=0; j<indices[i]; j++){

 for (int k=0; k<symbs[ctr].length(); k++){

 if (symbs[ctr].charAt(k) == '.'){

 bits[w*(coords[i][1] + j) + (coords[i][0]+k)] = 0;

CHAPTER 7

406

 }

 else if (symbs[ctr].charAt(k) == '*'){

 bits[w*(coords[i][1] + j) + (coords[i][0]+k)] = 1;

 }

 }

 ctr++;

 }

 }

 }

}

Rather than break down all this code in detail, I’ll discuss the class in a top-level way, which I think will
more quickly help demystify it; really it’s not that complicated (it just looks that way). Here’s the basic
algorithm:

1. Load the URL using Processing’s loadStrings() function. loadStrings() brings in an external
file as a String array, delimited by line breaks.

2. Calculate and store the number of lines of symbols within each coordinate group. It’s possible
that the file will contain only one coordinate group.

3. Isolate and store the coordinate values where to place each symbol group.
4. Shift the coordinate values so they are all positive.
5. Calculate and store an array of bits based on the symbols ‘*’ = 1 or ‘.’ = 0.

I strongly suggest going through the class to see how I coded each part of the algorithm. If you come
across a Processing function you haven’t seen before, be sure to highlight it and hit command+shift+f
(Mac) or control+shift+f (Win), to read about it in the Processing reference.

We’re almost ready to test out the new parser. First, though, we need to add one more method to the
CA_2D class. At the bottom of the class, add the following method (be sure to put it above the final closing
curly brace of the class):

// put pattern array into pixls as initial on/off state

 void setPattern(LIF_Parser lp){

 resetState();

 float deltaW = (cols - lp.w)/2.0;

 float deltaH = (rows - lp.h)/2.0;

 int ctr = 0;

 for (int i=0; i<rows; i++){

 for (int j=0; j<cols; j++){

HACKING LIFE

407

 if (i >= deltaH && i < lp.h+deltaH &&

 j >= deltaW && j < lp.w+deltaW){

 if (lp.bits[ctr] == 0){

 pixls[int(i*cols+j)] = offC;

 }

 else if (lp.bits[ctr] == 1){

 pixls[int(i*cols+j)] = onC;

 }

 // pixls[int(i*cols+j)] = lp.pixls[ctr];

 ctr++;

 }

 }

 }

 paintInitState();

 }

This method enables the CA_2D object to accept a .lif pattern and embed the pattern in the pixls array.
As with most things relating to pixels in Processing, the only challenging part was accounting for the two-
dimensional structure of the pattern in the one-dimensional arrays. I used the local variables deltaW and
deltaH to help center the pattern bits in the pixls array.

The last step is running the new parser. Replace what’s in the main tab with the following to give it a test
drive:

/**

 * Cellular Automata 2D Parser – main tab

 * By Ira Greenberg

 * The Essential Guide to Processing for Flash Developers,

 * Friends of ED, 2009

 */

LIF_Parser lp;

String url = "http://www.radicaleye.com/lifepage/patterns/aqua50.lif";

CA_2D ca2;

CHAPTER 7

408

void setup(){

 size(800, 600);

 background(255);

 ca2 = new CA_2D(width, height, 1);

 ca2.setOnColor(0xffff9900);

 ca2.setOffColor(0xff112233);

 lp = new LIF_Parser(url);

 ca2.setPattern(lp);

}

void draw(){

 translate(ca2.w/2, ca2.h/2);

 ca2.createGeneration();

}

Figure 7-28. “p2 c/2 spaceships” pattern, by Hartmut Holzwart and Dean Hickerson

HACKING LIFE

409

If it worked you should have seen something that looked like Figure 7-28. I recommend trying a bunch
more patterns, which you can find around the web. There is a good pattern catalog at
http://radicaleye.com/lifepage/#browse (August 7, 2009, 17:41). Just replace the quoted String
address part of the line, String url = "http://www.radicaleye.com/lifepage/patterns/aqua50.lif";,
with the new address. One last thing I suggest you also try is building a table structure of all the different
CA discussed this chapter. Since they all work with the CA framework, you should be able to run them all
simultaneously; then send me an email of what you get at processing@iragreenberg.com.

Summary
This chapter introduced the exciting concepts of emergence and complexity showcasing cellular automata.
Building a CA framework, we looked at 1D, Continuous and 2D implementations, including an interactive
example that allowed us to select CA thumbnails for enlargement (for our burgeoning tee-shirt business).
CA reveal how simple rules can lead to very unexpected emergent complexity. This idea has much
broader implications than for simply making cool images (not to knock cool images), but relates to how
large complex systems, across many disciplines, emerge, grow, transform, and even perish. CA is just one
computational approach for simulating and “playing” with complexity. Processing is a great environment for
exploring this area because of its robustness, and ease, in handling pixel operations. Next chapter we’ll
build upon some of the concepts we looked at during this chapter, as well as earlier in the book, as we
explore creative data visualization in Processing.

