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Chapter 7 

Hacking Life 

I suspect, if you’re like me, that you find the idea of modeling aspects of the natural world a bit more 
interesting than, say, creating an accounting program (no disrespect to accountants intended). I first got 
excited by programming precisely because I (finally) made the connection between math and life and 
glimpsed the potential of code to actually model this relationship. As a painter I used to look at nature and 
try to deconstruct it visually: what colors could I see in the leaves; how did the horizon recede into the 
distance; what made highlights and shadows appear. When I moved to code I asked many of the same 
questions, but could now go much deeper, beneath the surface to the very forces that created what I was 
looking at: what determined a tree’s branch structure; how do migrating birds organize themselves into a 
V; what causes the patterns in tree bark, marble, clouds, etc. And when I first began to be able to code 
small examples of some of these things, it was incredibly exciting—like discovering a magic box of paints. I 
continue to be awed and inspired by this potential of code to literally hack life. 

Emergence and Complexity 
One of the most interesting aspects of coding natural processes is that many seemingly organized, 
complex structures are actually created by extremely simple rules. Using really basic math, we can quickly 
glimpse how simple rules create vastly massive structures. For example, by beginning with the number 1 
and simply doubling it 70 times, we reach the estimated number of stars in the universe, 1021 (according to 
Astrophysicist Laura Whitlock of NASA’s Goddard Space Flight Center). Using some code and a few 
simple rules you can simulate colonies of insects organizing their surroundings, flocking and swarming 
behaviors, and all sorts of physical dynamic systems. The key to simulating these types of emergent 
phenomena is iteration. When simple rules are allowed to be executed hundreds or even thousands of 
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times, unpredictable complex structures can emerge. One classic mathematical model that reveals this 
potential is Cellular Automata, which also lends itself quite well to programming. 

Cellular Automata  
Cellular Automata (plural of cellular automaton) or CA were first conceived of in the 1950s by mathematicians 
John von Neumann and Stanislaw Ulam, when both men were working at Los Alamos National Laboratory, 
New Mexico. At first, CA were more of a mathematical abstraction that held the promise of developing self-
replicating structures—theoretically even the fundamental structures of life itself. Von Neumann and Ulam’s 
pioneering work didn’t really impact the wider scientific community until the 1970s, when their work was 
expanded (and popularized), due in large part to advances in and increased accessibility to computation, 
including the capability to more easily create computer-generated graphics.  

In 1971 Princeton mathematician John Conway created arguably the most famous CA, “Conway’s Game 
of Life,” which brought CA to the popular imagination through an article written about it in Scientific 
American. A decade later, Steven Wolfram, founder of the Mathematica software package, continued the 
CA charge, eventually publishing a massive tome related to the subject: A New Kind of Science. For a 
wonderful history about CA, check out this article in the CellLab manual, by authors Rudy Rucker and 
John Walker: http://www.fourmilab.ch/cellab/manual/chap5.html (June 23, 2009, 23:01). 

In spite of the rather lofty aspirations of CA originators von Neumann and Ulam, the basic concepts behind 
CA are quite simple:

Create a finite set of cells in a grid-like configuration, where each cell has a set of states 
(most commonly two, for “on” or “off”) that is controlled by its surrounding cells (its 
neighborhood) from the previous generation.

The simplest type of CA is one-dimensional (1D), meaning that a single cell’s state is controlled only by 
neighboring cells along one axis. The classic 1D CA uses three contiguous cells, shown in Figure 7-1.

Figure 7-1. Cell with controlling contiguous cells 

Since there are three cells—defined as the neighborhood—each with an on or off state, there is a total of 
eight possible configurations (23), shown in Figure 7-2. In running a simulation, you apply very simple rules 
that change the pixel values (turn them off or on) based on the neighborhood configuration. Figure 7-3 
shows the previous figure updated with some simple rules. Please note these rules are arbitrary and can 
thus be changed, as I’ll demonstrate later in the chapter. 

Figure 7-2. Three cell (on/off) configurations 
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Figure 7-3. CA visual rules table 

Programming a simple 1D CA is fairly straightforward. As discussed earlier, each pixel’s state will be 
determined by three contiguous pixels (itself and the pixels to its left and right). These new calculated pixel 
values will, in a sense, represent pixel values in the next generation. Thus, in a programming 
implementation it is helpful to use two separate arrays (named bits and pixels in the upcoming example) 
representing the preset and future pixels. The initial simple 1D Cellular Automata program is listed next. 

/** 

 * Simple 1D Cellular Automata 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 *  

 * Good CS article 

 * http://www.generation5.org/content/2003/caIntro.asp 

 */ 

 

// array for bit values 

int[] bits; 

/* CA rules, 4th val is new bit state  

(0=off, 1 = 0n), based on each rule */ 

int[][] rules = { 

    {0,0,0,0}, 

    {1,0,0,1}, 

    {0,1,0,1}, 

    {0,0,1,1}, 

    {1,1,0,1}, 

    {0,1,1,1}, 

    {1,0,1,1}, 

    {1,1,1,0}  

}; 
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void setup(){ 

  size(400, 400); 

  // map color values between 0-1.0 

  colorMode(RGB, 1.0); 

  // access pixels array of sketch window 

  loadPixels();  

  // instantiate bits array to size of sketch 

  bits = new int[width*height]; 

  // initialize starting bit state 

  initNeighborhood(); 

} 

 

 

// create initial state 

void initNeighborhood(){ 

  // turn bottom middle bit on 

    bits[width*(height-1) + width/2] = 1; 

} 

 

// update bits based on CA rules 

void createGeneration(){ 

  for(int i=0; i<height-1; i++){ 

    for(int j=0; j<width; j++){ 

 

       

       // 1st and last columns use each other as neighbors in calculation 

          int firstCol = (j==0) ? width-1 : j-1; 

          int endCol = (j>0 && j<width-1) ? j+1 : 0; 

           

      // check rules 

      for(int k=0; k<rules.length; k++){ 

        if (bits[width*(i+1)+firstCol] == rules[k][0] && 

          bits[width*(i+1)+j] == rules[k][1] && 

          bits[width*(i+1)+endCol] == rules[k][2]){ 
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              bits[width*i+j] = rules[k][3]; 

         }  

      } 

    } 

  } 

} 

 

// paint screen pixels based on stored values in bits 

void setCells(){ 

  for (int i=0; i<bits.length; i++){ 

    // casts int to color data type for pixel value 

    pixels[i] = color(bits[i]); 

  } 

    // call whenever changing pixels array 

  updatePixels(); 

} 

 

void draw(){ 

  // calculates CA 

  createGeneration(); 

  // copies bit values to PImage pixels[] 

  setCells(); 

} 

In this first CA example, I tried to create a very simple implementation, with the trade-off for the simplicity 
being a lack of parameterization to easily customize the program. But don’t worry, in the CA examples to 
follow, I’ll provide lots of opportunity for customization (with, of course, the requisite increased complexity). 

In the simple 1D CA example, I used int arrays (bits[] and rules[][]) as the main data structures. 
You’ll see shortly why this provided for both an efficient and simple solution. The basic program execution 
proceeds with the creation of a single on/off state, followed by a rules analysis and then the creation of the 
next generation. In this implementation the initial state is simply turning the bottom center pixel to “on” 
(painted white), while all the other pixels are initialized to “off” (painted black). The main execution 
happens repeatedly within draw(), which allows the CA to proceed across the entire screen, until a steady 
state is reached. Later in the chapter, we’ll look at some two-dimensional CA examples that actually never 
reach this type of (static) steady-state and continually show the genesis of later generations. If you haven’t 
yet, try running the example. A screen-shot of the final steady-state of the CA is shown in Figure 7-4. 
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Figure 7-4. Simple_1D_CA screen-shot 

If you haven’t seen CA before, perhaps the order (and beauty) of the output surprised you. You’ll see 
shortly that this example demonstrates just the very tip of the iceberg of what’s possible with CA. 

Returning to the example code, I want to clarify why I chose to use int arrays. Processing structures its 
color data type as a packed 32-bit integer, in the format aaaaaaaa rrrrrrrr gggggggg bbbbbbbb, with 8-bits 
for alpha, red, green, and blue respectively. Because of this relationship between the int and color types 
in Processing, it’s possible to cast a plain old integer into a specific pixel value, as I do in the setCells()
function, with the line 

pixels[i] = color(bits[i]); 

Casting again is the converting of one data type into another. There are specific rules about type casting, 
and not all types can be converted to one another. I cover type casting in Processing in Chapter 2. The 
simple_1D_CA example will only use an off or on state for each pixel, so I utilized a 0 and 1 to record 
these two states respectively, which obviously fit well within the range of the int type. 
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It might seem more efficient to try to utilize a smaller data structure than a 32-bit integer 
to record 1 bit of information, such as Processing’s char type, which is 16 bits; or byte,
which is only 8 bits; or best of all perhaps Processing’s Boolean type, which presumably 
would be a 1-bit data structure, only needing to account for true or false. Because 
Processing (really Java) has an internal memory management scheme in conjunction 
with a virtual machine, it turns out these seemingly smaller data types internally utilize 
more memory than assumed, and in some cases would also require additional casting to 
work as a valid color type. 

Returning to the simple_1D_CA example, the rules[][] array (shown again next) 

int[][] rules = { 

    {0,0,0,0}, 

    {1,0,0,1}, 

    {0,1,0,1}, 

    {0,0,1,1}, 

    {1,1,0,1}, 

    {0,1,1,1}, 

    {1,0,1,1}, 

    {1,1,1,0}  

}; 

functions as a look-up table of the CA rules. rules[][] is a 2D array, or an array of arrays, with an overall 
length of eight, with each internal array having a length of four. The first three values in the internal arrays 
account for the neighborhood states I discussed earlier, and the fourth value has the rule for that state. For 
example, when one is looking at the first internal array, {0,0,0,0}, if the neighborhood is all off (all 0’s), 
then the pixel being evaluated will be turned/remain off. In the second array {1,0,0,1}, if the pixel on the 
left is on and the next two pixels to its right are off, then the pixel being evaluated will be turned/remain on. 
The reason I wrote “turned/remain” is because the evaluation will occur on the pixel row directly below the 
pixel affected, so the affected pixel could either be on or off. Please note also the rule (the fourth value in 
each array) is hard-coded in this initial example, but in later examples in the chapter, you’ll be able to pass 
arguments to create variations to the rules, and thus output.

The main work in the example is handled by the createGeneration() function, listed again next: 

void createGeneration(){ 

  for(int i=0; i<height-1; i++){ 

    for(int j=0; j<width; j++){ 

       

       // 1st and last columns use each other as neighbors in calculation 

          int firstCol = (j==0) ? width-1 : j-1; 

          int endCol = (j>0 && j<width-1) ? j+1 : 0; 
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      // check rules 

      for(int k=0; k<rules.length; k++){ 

        if (bits[width*(i+1)+firstCol] == rules[k][0] && 

          bits[width*(i+1)+j] == rules[k][1] && 

          bits[width*(i+1)+endCol] == rules[k][2]){ 

          bits[width*i+j] = rules[k][3]; 

        }  

      } 

    } 

  } 

} 

Using nested for loops, the function moves through the bits[] array, where each value in the array 
represents a specific pixel in the sketch window. The actual pixels are stored in another array aptly named 
“pixels.”

Please remember that to access the sketch window’s global pixels array, you need to 
first call Processing’s loadPixels() function, which I did up in the setup() function.

The actual CA rules evaluation occurs within the conditional block, within the nested for loops. In regard to 
program flow, createGeneration() is called from within draw(), which executes at Processing’s default 
frame rate (60 FPS). Each draw cycle, the nested for loops process the entire bits array checking for 
matches against the rules. As I mentioned earlier the analysis occurs on the row directly beneath the 
actual bit (ultimately pixel) affected. You can think of the rows as representing different generations 
(present and future respectively).

Nesting three for loops is bit confusing at first glance (alright, even on later glances), 
and in truth is not terribly efficient, performance-wise speaking. You could conceivably 
use at least one less loop and treat the bits and pixels arrays as single-dimensional 
arrays (which of course they really are). However, I personally find it easier to think 
about (and process) arrays that represent 2D data (a table structure) using a procedure 
that accounts for rows and columns, which is what the extra loop provides.

With regard to the rules table, within the nested conditional block when all three statements evaluate to 
true, then the rule (the fourth value in the same nested array) is applied. Since the rules look-up table 
accounts for all possible neighborhood configurations, every pixel’s state is accounted for this way. A final 
point about this function refers to the two rather ugly lines 

int firstCol = (j==0) ? width-1 : j-1; 

int endCol = (j>0 && j<width-1) ? j+1 : 0; 

If you’re not familiar with this syntax, it uses the ternary operator ?: (The same one exists in ActionScript.) 
I have to admit to not really being a big fan of it, but in this case it seemed to keep the function from getting 
too pudgy. The ternary operator allows you to do terse if/else expressions, but, some would say, with 
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decreased readability—until (I guess) you get really used to it. If it isn’t obvious, the ternary operation is 
(Boolean condition) ? (stuff to do if true) : (stuff to do if false). The reason I included these 
two expressions in the first place was to account for the first and last pixel in each column. Since the CA 
neighborhood in this example includes three contiguous pixels (used to evaluate every pixel) there will be 
an edge problem (a missing third pixel) on the first and last pixel in each row. To account for this I wrap the 
window pixels, by using the pixels on the opposite edge of the sketch window as the third pixel. In other 
words, when a right column edge pixel is evaluated, the pixel to its left and the first pixel on the left side of 
the screen are used for the rules evaluation. (If you’re wondering, I didn’t invent this idea, but saw it 
implemented in numerous other CA implementations.) 

Again, this initial sketch was intended to give you a down-and-dirty look at CA; more interesting variations 
are coming. However, if you simply can’t wait for the next example, you can create some variation in this 
example by altering the initial starting state in the initNeighborhood() function. For example, Figure 7-5 
shows a screen-shot created using the following starting position: bits[width*(height-1) + width/8] = 
1. You can also easily adjust the rules by changing which conditions result in on or off pixels—just be 
prepared for some funky results. 

Figure 7-5. Simple_1D_CA screen-shot based on altered initial state 
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In considering a more robust and creative application of CA, it will help to create a well-structured program, 
so I’ll utilize an OOP approach. (I hope you feel refreshed after the brief procedural respite.) The next 
example will function as both a framework for extended 1D and 2D CA development, as well as a small 
showcase of their creative potential.

1D CA Framework 
There were a number of issues I tried to address in this example. I wanted users to be able to 

• customize the CA, including altering color 
• zoom-in to see the CA at different pixel resolutions 
• use the CA as part of a larger image 
• create their own CA subclasses 

To follow along with the example, create a new sketch named whatever you like, and then add a new tab 
to the sketch named “Shape.” Here’s the Shape class code. 

/** 

 * Cellular Automata 

 * Shape class - convenience class 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

class Shape { 

 

  // instance properties 

  PVector loc = new PVector(); 

  float w; 

  float h; 

   

 

  // default constructor 

  Shape(){ 

  } 
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  Shape(float w, float h){ 

    this.w = w; 

    this.h = h; 

  } 

 

  // constructor 

  Shape(float x, float y, float w, float h){ 

    loc.x = x; 

    loc.y = y; 

    this.w = w; 

    this.h = h; 

  } 

 

  // setters 

  void setLoc(float x, float y){ 

    loc.x = x; 

    loc.y = y; 

  } 

 

  void setLoc(PVector loc){ 

    this.loc = loc; 

  } 

 

  void setSize(float w, float h){ 

    this.w = w; 

    this.h = h; 

  } 

 

} 

This Shape class is very straightforward with concepts I’ve covered throughout the book. It will serve as a 
base class, encapsulating a location and size, which other classes will extend. Next, create a tab named 
“Cell,” including the following code: 
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/** 

 * Cellular Automata 

 * Cell class 

 * - encapsulates drawing to pixel buffer 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

class Cell extends Shape{ 

 

  color c; 

  // reference to CA obj 

  CA ca; 

 

  Cell(float x, float y, float w, float h, CA ca){ 

    super(x, y, w, h); 

    this.ca = ca; 

  } 

 

  void setColor(color c){ 

    this.c = c; 

  } 

 

  // draw to pixels buffer 

  void create(){ 

    float origin = int(loc.y) * ca.w + int(loc.x); 

    for (int i=0; i<w; i++){ 

      for (int j=0; j<h; j++){ 

          // - pretty nasty pixls[index] expression 

        ca.p.pixels[int(min(origin + j*ca.w + i, ca.w*ca.h))] = c; 

      } 

    } 

  } 

} 
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The Cell class, which you’ll notice extended Shape, will function primarily as a utility class that allows 
pixels to be grouped into a larger block or cell. The class is also straightforward, with the exception of its 
create() method, which converts the cell construct, from a higher-level 2D component, to specific index 
values in a pixel buffer. I’ll return to this method later in the chapter. 

Next, create a new tab named “CA,” which will be the base class for 1D (and some 2D) CA. Add the 
following code to the CA tab: 

/** 

 * Cellular Automata  

 * CA class (base class) 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

abstract class CA extends Shape{ 

  // instance properties, including default values 

  int cellScale = 3; 

  int rows = 10, cols = 10; 

  float rowSpan, colSpan;  

  Cell[][] cells; 

  PImage p; 

  color[] pixls; 

  color[] nextPixls; 

  int[] state; 

 

  // default start colors 

  color onC = 0xff000000; 

  color offC = 0xffffffff; 

 

  // default constructor 

  CA(){ 

    super(200.0, 200.0); 

    initCA(); 

  } 
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  // constructor 

  CA(float w, float h, int cellScale){ 

    super(w, h); 

    this.cellScale = cellScale; 

    rows = ceil(h/cellScale); 

    cols = ceil(w/cellScale); 

    initCA(); 

  } 

 

  // initialize 

  void initCA(){ 

    pixls = new color[rows*cols]; 

    nextPixls = new color[rows*cols]; 

    // record current pixel on/off state as integer array 

    state = new int[pixls.length]; 

    colSpan = w/cols; 

    rowSpan = h/rows; 

 

    cells = new Cell[rows][cols]; 

    for (int i=0; i<rows; i++){ 

      for (int j=0; j<cols; j++){ 

        // instantiate cells 

        cells[i][j] = new Cell(colSpan*j, rowSpan*i, colSpan, rowSpan, this); 

      } 

    } 

    p = createImage(int(w), int(h), RGB); 

  } 

 

  // set starting state (single pixel) 

  void setInitState(int id){ 

    resetState(); 

    // turn initial pixel on  

    pixls[id] = onC; 

    recordState(); 
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    paintInitState();  

  } 

 

  // set starting state (array of pixels) 

  void setInitState(int[] ids){ 

    resetState(); 

    for (int i=0; i<ids.length; i++){ 

      pixls[ids[i]] = onC; 

    } 

    recordState(); 

    paintInitState();  

  } 

 

  // set starting state (single pixel using 2D coord) 

  void setInitState(int row, int col){ 

    resetState(); 

    pixls[row*(cols-1) + (col-1)] = onC; 

    recordState(); 

    paintInitState();  

  } 

 

  // record pixel state in integer array (1 = on, 0 = off) 

  void recordState(){ 

    for (int i=0; i<pixls.length; i++){ 

      if (pixls[i] == onC){ 

        state[i] = 1; 

      }  

      else { 

        state[i] = 0; 

      } 

    } 

  } 

 

  // update pixels based on state integer array 
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  void updateState(){ 

    for (int i=0; i<state.length; i++){ 

      if (state[i] == 1){ 

        pixls[i] = onC; 

      }  

      else { 

        pixls[i] = offC; 

      } 

    } 

  } 

 

  // ensure starting pixel state is rendered 

  void paintInitState(){ 

    arrayCopy(pixls, nextPixls); 

    paint(); 

  } 

 

  // reset all pixels to off 

  void resetState(){ 

    for (int i=0; i<pixls.length; i++){ 

      pixls[i] = offC; 

    } 

  } 

 

  // paint "dem perty" cells 

  void paint(){ 

    p.loadPixels(); 

    for (int i=0; i<rows; i++){ 

      for (int j=0; j<cols; j++){ 

        cells[i][j].setColor(nextPixls[cols*i + j]); 

        cells[i][j].create(); 

      } 

    }  

    p.updatePixels(); 
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    image(p, -w/2+loc.x, -h/2+loc.y); 

    arrayCopy(nextPixls, pixls);  

  } 

 

  // must be implemented in subclass (or subclass will be abstract) 

  abstract void init(); 

  abstract void createGeneration(); 

 

} 

CA is an abstract class, meaning that it can’t be instantiated directly. Abstract classes can include 
properties and methods like in a standard class, as well as abstract method stubs, or unimplemented 
methods such as 

abstract void init(); 

abstract void createGeneration(); 

These methods are declared with the abstract keyword and do not include a method block (are 
unimplemented).

Abstract methods must be implemented in any class that extends the abstract class, or 
the subclass automatically becomes abstract as well.  

One of the main benefits of an abstract class is an enforced common interface. For example, it is safe to 
assume that any (non-abstract) class that extends CA will include implemented init() and
createGeneration() methods. Each CA subclass can implement these methods to suit its own needs. In 
other words, the method interfaces will be common (between CA subclasses) but the implementation of the 
methods will not. Abstract classes help enforce good black-box design, where the interface to the box, not 
what happens inside the box, is what’s known (accessible). 

Even though abstract classes can’t be directly instantiated, they can still contain constructors that are 
invoked by subclass constructors. This provides the same benefit of a standard superclass in regard to 
being able to efficiently initialize an object though chained constructors. The CA subclasses we’ll create will 
use the CA constructor for this purpose. 

Next we’ll look at the instance property arrays (cells, pixls, nextPixls, state) in CA declared at the top of 
the class,

• cells references the higher level component constructs I mentioned earlier. The number and size 
of the Cell objects will be based on the overall size of the CA object and the cellScale property; 
larger scale values will create fewer but larger cells.  

• pixls and nextPixls will directly reference the CA object’s pixel buffer—present and next 
generation respectively.
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• state will help with bookkeeping of a sort, keeping track of the pixel on/off state, without having to 
worry about the specific pixel color values (since the pixels will not only be black and white as 
with the previous example). 

The initCA() method initializes the arrays and instantiates the Cell objects. Notice in the instantiation call 
I pass a reference to the CA object, as the last argument 

cells[i][j] = new Cell(colSpan*j, rowSpan*i, colSpan, rowSpan, this); 

Finally, with line p = createImage(int(w), int(h), RGB); I create an off-screen image that contains a 
pixel buffer (pixels array). Unlike the simple_1D_CA example, I will not write directly to the sketch window 
pixels array. Instead, I’ll write to the pixel array of the off-screen image; then when I want to render the 
CA to the screen, I’ll draw the off-screen image using image(p, x, y). Also, remember that Processing 
includes both a pixels array global variable and a PImage pixels array instance property (this was one of 
the reasons I chose to name my color array pixls in the example.) 

In the simple_1D_CA example, the starting state was limited to a single pixel. Here, we can also use an 
array of pixels. The overloaded setInitState() methods provide a public interface for initiating the 
neighborhood state. There are also a number of component utility methods, including recordState(),
updateState(), paintInitState(), and resetState(). These will allow us to both run the CA in real time, 
as well as to step through each generation, using, for example, a mouse event. 

Finally the paint() method, included again next, coordinates the drawing of the pixels to the screen. This 
is a bit more involved than perhaps at initial glance, so I’ll walk through the process. 

// paint "dem perty" cells 

  void paint(){ 

    p.loadPixels(); 

    for (int i=0; i<rows; i++){ 

      for (int j=0; j<cols; j++){ 

        cells[i][j].setColor(nextPixls[cols*i + j]); 

        cells[i][j].create(); 

      } 

    }  

    p.updatePixels(); 

    image(p, -w/2+loc.x, -h/2+loc.y); 

    arrayCopy(nextPixls, pixls);  

  } 

The first step is to “safely” load the p.pixels array using the p.loadPixels() call. Honestly, I find this step 
a bit of a clunky implementation and inconsistent with standard OOP. And in truth, it may even be possible 
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to access the PImage pixels array without this call. However, it is strongly advised in the language 
reference that this call always be used to ensure the array is properly created/loaded. Here’s what the 
reference has to say about it: 

“Certain renderers may or may not seem to require loadPixels() or updatePixels(). 
However, the rule is that any time you want to manipulate the pixels[] array, you must 
first call loadPixels(), and after changes have been made, call updatePixels(). Even if the 
renderer may not seem to use this function in the current Processing release, this will 
always be subject to change.” 

Next in paint(), within the for loops, the cells’ colors are updated based on the nextPixls array, and 
then the cells.create() method is invoked. To see again what happens in the create() method, click on 
the Cell tab. I’ve copied the method again next: 

// From Cell.pde 

// draw to pixels buffer 

  void create(){ 

    float origin = int(loc.y) * ca.w + int(loc.x); 

    for (int i=0; i<w; i++){ 

      for (int j=0; j<h; j++){ 

          // - pretty nasty pixls[index] expression 

        ca.p.pixels[int(min(origin + j*ca.w + i, ca.w*ca.h))] = c; 

      } 

    } 

  } 

The create() method draws a block of pixels, based on the width and height specified for the Cell object. 
This block is drawn directly into the p.pixels array, which, you’ll remember, was instantiated back in CA;
this was the reason I needed to pass a reference to CA when I instantiated the Cell objects. Drawing the 
block of pixels in the right place in the p.pixels array was tricky, especially since the pixels arrays in 
Processing are one-dimensional. The full-length expression I needed for targeting each pixel in the correct 
order based on the nested for loops was 

ca.p.pixels[int(min(int(loc.y) * ca.w + int(loc.x) + j*ca.w + i, ca.w*ca.h))] = c; 

That is one scary-looking line of code that should make your head hurt; it really did mine while I was trying 
to figure it out. The int() casting and min() calls are needed to ensure rounding errors do not allow the 
index value to go out of (array length) bounds. In the create() method, you’ll notice, I broke the 
expression into two lines to make it a bit more comprehensible.

Returning to the paint() method in CA, after p.pixels is written to, I call p.updatePixels() to ensure the 
pixels array is properly updated, and then I draw the image to the sketch window with image(p, -w/2+loc.x, 
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-h/2+loc.y). The last step, arrayCopy(nextPixls, pixls) copies the nextPixls array values to pixls,
updating the pixel state (previous generation) to current generation values. arrayCopy() is an efficient 
Processing function for copying the contents (or part of the contents) of one array into another. You can read 
more about the function at http://processing.org/reference/arrayCopy_.html.

To use CA, we need to create a subclass that extends it. The first I’ll show will build upon what we looked at 
in the simple_1D_CA example, with added parameterization; then we’ll look at an interesting variation on 
the 1D CA.

Create a new tab named “CA_1D” and copy the following code into it: 

/** 

 * Cellular Automata 

 * CA_1D class 

 * neighborhood:   | ? |  

 *               * | * | * 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

class CA_1D extends CA{ 

  // instance properties 

 

  // CA rules 

  boolean[] rules = new boolean[8]; 

  color[][] table = new color[8][4]; 

 

  // default constructor 

  CA_1D(){ 

    super(); 

    init(); 

  } 

 

  // constructor 

  CA_1D(int w, int h, int cellScale){ 

    super(w, h, cellScale); 

    init(); 
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  } 

 

  // REQUIRED implementation – initializes stuff 

  void init(){ 

    // initialize 1D rules 

    initRules(); 

    // build rules table 

    buildTable(); 

    //set default pixel starting state - bottom center pixel set to on 

    int middleBottomCell = (rows-1)*(cols) + (cols)/2; 

    setInitState(middleBottomCell); 

    // record pixel on/off state in integer state table 

  } 

 

  // initialize rules 

  void initRules(){ 

    rules[0] = false; 

    rules[1] = true; 

    rules[2] = true; 

    rules[3] = true; 

    rules[4] = true; 

    rules[5] = true; 

    rules[6] = true; 

    rules[7] = false; 

  } 

 

  // build rules table 

  void buildTable() { 

    table[0][0] = offC;  

    table[0][1] = offC;  

    table[0][2] = offC;  

    table[0][3] = rules[0] ? onC : offC; 

    table[1][0] = offC;  

    table[1][1] = offC;  

    table[1][2] = onC;  



CHAPTER 7 

352 

    table[1][3] = rules[1] ? onC : offC; 

    table[2][0] = offC;  

    table[2][1] = onC;  

    table[2][2] = offC;  

    table[2][3] = rules[2] ? onC : offC; 

    table[3][0] = offC;  

    table[3][1] = onC;  

    table[3][2] = onC;  

    table[3][3] = rules[3] ? onC : offC; 

    table[4][0] = onC;  

    table[4][1] = offC;  

    table[4][2] = offC;  

    table[4][3] = rules[4] ? onC : offC; 

    table[5][0] = onC;  

    table[5][1] = offC;  

    table[5][2] = onC;  

    table[5][3] = rules[5] ? onC : offC; 

    table[6][0] = onC;  

    table[6][1] = onC;  

    table[6][2] = offC;  

    table[6][3] = rules[6] ? onC : offC; 

    table[7][0] = onC;  

    table[7][1] = onC;  

    table[7][2] = onC;  

    table[7][3] = rules[7] ? onC : offC; 

  } 

 

  // REQUIRED implementation 

  void createGeneration(){ 

    for (int i=0; i<rows-1; i++){ 

      for (int j=0; j<cols; j++){ 

        for (int k=0; k<rules.length; k++){ 

          // 1st and last columns use each other as neighbors in calculation 

          int firstCol = (j==0) ? cols-1 : j-1; 

          int endCol = (j>0 && j<cols-1) ? j+1 : 0; 
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          // rules determined by binary table: 0 = offCol, 1 = onC. 

          // [111][110][101][100][011][010][001][000] 

          if (pixls[cols*(i+1) + firstCol] == table[k][0] && 

            pixls[cols*(i+1) + j] == table[k][1] && 

            pixls[cols*(i+1) + endCol] ==  table[k][2]){ 

              nextPixls[(cols)*i + j] = table[k][3]; 

          } 

 

        } 

      } 

    } 

    // paint pixels on screen 

    paint(); 

  } 

 

  // update rules - requires 8 boolean values 

  void setRules(boolean[] rules) { 

    this.rules = rules; 

    buildTable(); 

  } 

 

  void setOnColor(color onC){ 

    this.onC = onC; 

    buildTable(); 

    updateState(); 

    paintInitState();  

  } 

 

  void setOffColor(color offC){ 

    this.offC = offC; 

    buildTable(); 

    updateState(); 

    paintInitState(); 

  } 

} 
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Although this example will follow rules similar to those of the simple_1D_CA example, the implementation
will be different. Rather than using int arrays to store 0’s and 1’s only, I used color[] arrays, to refer to 
actual pixel values; I did this to allow for display of a full range of color. 

The CA_1D constructors, as discussed earlier, call the CA constructors for initialization. In addition, the 
subclass has its own initialization routine, init(), which, you’ll remember, must be implemented since the 
method was declared abstract in CA. The init() implementation includes the call 
setInitState(middleBottomCell), for setting a default starting on/off state (the first generation). 

Reading through the rest of the class, I split the rules table into two methods, initRules() and 
buildTable(), to allow users to be able to set custom rules, which I’ll demonstrate shortly. The 
createGeneration() method, like init(), was required to be implemented since it was also declared 
abstract in CA. Its implementation is quite similar to the same named function in the simple_1D_CA example. 
However, now the conditional block is comparing actual pixel color values, instead of just 0’s and 1’s. This 
method also includes a call to paint(), defined in CA. The rest of the class code consists of setter methods, 
which I’ll assume are self-explanatory. Next, we’ll generate some sample CA, using the new classes. 

In the main tab, which should still be blank if you’ve been following along, add the following code and run 
the sketch: 

/** 

 * Cellular Automata Main Tab - 01 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_1D ca; 

 

void setup(){ 

  size(600, 600); 

  background(255); 

  ca = new CA_1D(600, 600, 1); 

} 

 

void draw(){ 

  translate(ca.w/2, ca.h/2); 

  ca.createGeneration(); 

} 
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If the sketch ran successfully you should see output, shown in Figure 7-6, similar to the simple_1D_CA
example, only with the black and white colors reversed. 

Figure 7-6. 1D Cellular Automata screen-shot, stage 1 

Obviously if all we wanted to do was this, the simple-1D-CA implementation would have sufficed. In the 
next step we’ll change the colors of the cells as well as the scale. Here’s the updated main tab code, with 
the changes in bold.
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/** 

 * Cellular Automata Main Tab - 02 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_1D ca; 

color onC = 0xff22ee33; 

color offC = 0xff772299; 

 

void setup(){ 

  size(600, 600); 

  background(255); 

  ca = new CA_1D(600, 600, 5); 

  ca.setOnColor(onC); 

  ca.setOffColor(offC); 

} 

 

void draw(){ 

  translate(ca.w/2, ca.h/2); 

  ca.createGeneration(); 

} 
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Figure 7-7. 1D Cellular Automata screen-shot, stage 2 

Notice in the purple and green output how the larger scale factor turns each pixel into a block, creating, in 
a sense, a magnified bitmap of the image. In this implementation, save for memory limitations, there is no 
maximum limit for the scale factor. 

As we briefly looked at earlier, you can change the initial on/off start state to influence the final output. In 
this implementation you can specify a single cell as we did earlier, or an array of cells, which I’ll 
demonstrate next, shown in Figure 7-8; again the new code is bold.
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/** 

 * Cellular Automata Main Tab - 03 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_1D ca; 

color onC = 0xff221166; 

color offC = 0xffffff00; 

 

void setup(){ 

  size(600, 600); 

  background(255); 

  ca = new CA_1D(600, 600, 12); 

  ca.setOnColor(onC); 

  ca.setOffColor(offC); 

 

  //add multiple starting states 

  int seedCount = 50; 

  int[] cells = new int[seedCount]; 

  for (int i=0; i<seedCount; i++){ 

    cells[i] = int((ca.rows-1) * (ca.cols) + random(ca.cols)); 

  } 

  ca.setInitState(cells); 

} 

 

void draw(){ 

  translate(ca.w/2, ca.h/2); 

  ca.createGeneration(); 

} 
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Figure 7-8. 1D Cellular Automata screen-shot, stage 3 

The next variation, shown in Figures 7-9 and 7-10, demonstrates how changing the rules affects the 
output. The example creates a table of 16 CA, each with a different rule set. Replace your main tab code 
with the following to run the example: 

/** 

 * Cellular Automata Main Tab - 04 

 * By Ira Greenberg <br /> 
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 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_1D[] cas = new CA_1D[16]; 

boolean[] rules = new boolean[8]; 

color onC = 0xff000000; 

color offC = 0xff111111; 

 

void setup(){ 

  size(800, 800); 

  background(255); 

  for (int i=0; i<cas.length; i++){ 

    cas[i] = new CA_1D(200, 200, 2); 

    // calculate random rules  

   for (int j=0; j<8; j++){ 

      rules[j] = boolean(round(random(1))); 

    } 

    cas[i].setRules(rules); 

  } 

} 

 

void draw(){ 

  translate(cas[0].w/2, cas[0].h/2); 

  int step = cas.length/4; 

  for (int i=0; i<step; i++){ 

    for (int j=0; j<step; j++){ 

      pushMatrix(); 

      translate(cas[step*i + j].w*i, cas[step*i + j].h*j); 

      cas[step*i + j].createGeneration(); 

      popMatrix(); 

    } 

  } 

} 
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Figure 7-9. 1D Cellular Automata screen-shot, stage 4, screenshot 1 
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Figure 7-10. 1D Cellular Automata screen-shot, stage 4, screenshot 2, (cellScale = 10) 
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You may want to run this example a number of times to see the range of potential output. You can also be 
more selective in specifying the rules—not making them all random. I randomized the rules using the 
expression rules[j] = boolean(round(random(1))).

Although the boolean type in Processing evaluates to the constants true or false, it is 
possible to cast a 1 and 0 to these respective constants; this also works the other way 
around (e.g., int(true) evaluates to 1). 

Finally, I include one more variation that puts all the aspects discussed thus far together and adds random 
rotation as well (see Figures 7-11 and 7-12). The new code is in bold.

/** 

 * Cellular Automata Main Tab - 05 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_1D[] cas = new CA_1D[16]; 

boolean[] rules = new boolean[8]; 

// for random rotation 

float[] rots = new float[cas.length]; 

 

void setup(){ 

  size(800, 800); 

  background(255); 

  for (int i=0; i<cas.length; i++){ 

    cas[i] = new CA_1D(200, 200, round(random(1, 20))); 

    // calculate random rules 

    for (int j=0; j<8; j++){ 

      rules[j] = boolean(round(random(1))); 

    } 

    cas[i].setRules(rules); 

    // calculate random color 

    cas[i].setOnColor(color(random(255), random(255), random(255))); 

    cas[i].setOffColor(color(random(255), random(255), random(255))); 
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    // calculate random rotation 

    rots[i] = HALF_PI*round(random(1, 3)); 

  } 

} 

 

void draw(){ 

  translate(cas[0].w/2, cas[0].h/2); 

  int step = cas.length/4; 

  for (int i=0; i<step; i++){ 

    for (int j=0; j<step; j++){ 

      pushMatrix(); 

      translate(cas[step*i + j].w*i, cas[step*i + j].h*j); 

      rotate(rots[i]); 

      cas[step*i + j].createGeneration(); 

      popMatrix(); 

    } 

  } 

} 
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Figure 7-11. 1D Cellular Automata screen-shot, stage 5, screenshot 1 
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Figure 7-12. 1D Cellular Automata screen-shot, stage 5, screenshot 2 

Using very simple rules, the CA_1D class allowed you to create somewhat complex patterns based on 
discrete on/off cell states. You saw by changing the rules you could create some interesting variations. It 
would, of course, also be possible to change the evaluation neighborhood and rules structure further to 
create other variations. However, one of the limiting factors in this approach is the use of discrete cell 
states, either being on or off. In the next example, I’ll extend our discussion of one-dimensional CA using a 
continuous (versus discrete) method of cell genesis. 
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(Almost) Continuous CA
Rather than flipping cells on or off, the continuous CA will average the actual color values of cells in its 
neighborhood to determine the cell’s color in the next generation. However, averaging alone is not enough 
to create something very interesting. Figure 7-13 illustrates a CA output using just the averaging process.

Figure 7-13. 1D Continuous Cellular Automata screenshot 
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To get more interesting results, we need to introduce some chaos into the process. This will involve a two-
stage process. First, I’ll introduce a constant value that will be added to each averaged color component (r, 
g, b). Second, I’ll introduce a threshold, or maximum, that I’ll use as a constraint for each component 
value. Here’s an example of the process using pseudo code with cells C1, C2, and C3 representing the 
neighborhood and CN as the new cell. 

// pseudo code 

c = constant 

t = threshold  

CN.r = (C1.r + C2.r + C3.r)/3 + c 

CN.g = (C1.g + C2.g + C3.g)/3 + c 

CN.b = (C1.b + C2.b + C3.b)/3 + c 

if  (CN.r > t)  then  CN.r -= t 

if  (CN.g > t)  then  CN.g -= t 

if  (CN.b > t)  then  CN.b -= t 

Create next generation using CN 

In truth, my Continuous CA implementation will not be technically continuous. This has not only to do with 
my pathological inability to follow directions (even my own), but also the results I’ll generate, which will be 
essentially indistinguishable from a “real” continuous CA. The term continuous perhaps evokes real 
numbers for you. (Yes, you probably are a geek if this is true.) In a continuous system, pretty much every 
value can be represented using the range 0.0 to 1.0. Most continuous CA examples that I’ve seen do in 
fact use this range. However, my system will be a little simpler and based on integers in the range of 0–
255. Next is a Continuous CA class. 

Using the existing sketch, add a new tab named “CA_1DC” and add the following class code to it: 

/** 

 * Cellular Automata 

 * CA_1DC class 

 * neighborhood:   | ? |  

 *               * | * | * 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

class CA_1DC extends CA{ 
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  //instance properties 

  float[] consts = { 

    23, 23, 23  }; 

  float[] thresholds = { 

    255, 255, 255  }; 

 

  // default constructor 

  CA_1DC(){ 

    super(); 

    init(); 

  } 

 

  // constructor 

  CA_1DC(int w, int h, int cellScale){ 

    super(w, h, cellScale); 

    init(); 

  } 

 

  void init(){ 

    int middleBottomCell = (rows-1)*cols + cols/2; 

    setInitState(middleBottomCell, onC); 

  } 

 

  // set starting state (single pixel) 

  void setInitState(int id, color c){ 

    resetState(); 

    pixls[id] = c; 

    paintInitState();  

  } 

 

  // set starting state (array of pixels) 

  void setInitState(int[] ids, color[] c){ 
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    // reset(); 

    resetState(); 

    for (int i=0; i<ids.length; i++){ 

      pixls[ids[i]] = c[i]; 

    } 

    paintInitState();  

  } 

 

  // set starting state 

  void setInitState(int row, int col, color c){ 

    // reset pixels 

    resetState(); 

    pixls[row*(cols-1) + (col-1)] = c; 

    paintInitState();  

  } 

 

  /* rules: 

   1. average 3 neighboring colors, e.g. (c[j-1] + c[j] + c[j+1])/3  

   2. add a constant, e.g. c + const 

   3. if color components > 255 subtract 255 */ 

  void createGeneration(){ 

    for (int i=0; i<rows-1; i++){ 

      for (int j=0; j<cols; j++){ 

        // use 1st colum as j+1, for end pixel in each column 

        int firstCol = (j==0) ? cols-1 : j-1; 

        int endCol = (j>0 && j<cols-1) ? j+1 : 0; 

        int row = cols*(i+1); 

        float r =  ((pixls[row + firstCol] >> 16 & 0xFF) + (pixls[row + j] >> � 

          16 & 0xFF) + (pixls[row + endCol] >> 16 & 0xFF))/3 + consts[0]; 

        float g =  ((pixls[row + firstCol] >> 8 & 0xFF) + (pixls[row + j] >>  �  

          8 & 0xFF) + (pixls[row + endCol] >> 8 & 0xFF))/3 + consts[1]; 
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        float b =  ((pixls[row + firstCol] & 0xFF) + (pixls[row + j] & 0xFF) +  �  

          (pixls[row + endCol] & 0xFF))/3 + consts[2]; 

        if (r>thresholds[0]){ 

          r-=thresholds[0]; 

        } 

 

        if (g>thresholds[1]){ 

          g-=thresholds[1]; 

        } 

 

        if (b>thresholds[2]){ 

          b-=thresholds[2]; 

        } 

         nextPixls[(cols)*i + j] = int(r) << 16 | int(g) << 8 | int(b); 

      } 

    } 

    // paint pixels on screen 

    paint(); 

  } 

 

  // pass custom rules 

  void setconsts(float[] consts) { 

    this.consts = consts; 

  } 

 

  void setThresholds(float[] thresholds) { 

    this.thresholds = thresholds; 

  } 

} 
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Since the class extends CA it follows a structure very similar to CA_1D. Again, one of the nice things about a 
consistent framework is that it allows you to almost intuit how to work with a class. Thus, I’ll assume you 
can make your way through most of this source code on you own. Where I think I can offer some 
clarification is in the createGeneration() method. You’ll remember as a CA subclass, both init() and 
createGeneration() need to be implemented. Next is the snippet of code in the function again that 
handles the main CA calculation. 

float r =  ((pixls[row + firstCol] >> 16 & 0xFF) + (pixls[row + j] >> � 

    16 & 0xFF) + (pixls[row + endCol] >> 16 & 0xFF))/3 + consts[0]; 

float g =  ((pixls[row + firstCol] >> 8 & 0xFF) + (pixls[row + j] >>  �  

    8 & 0xFF) + (pixls[row + endCol] >> 8 & 0xFF))/3 + consts[1]; 

float b =  ((pixls[row + firstCol] & 0xFF) + (pixls[row + j] & 0xFF) +  �  

    (pixls[row + endCol] & 0xFF))/3 + consts[2]; 

 

   if (r>thresholds[0]){ 

r-=thresholds[0]; 

} 

 

   if (g>thresholds[1]){ 

  g-=thresholds[1]; 

} 

 

if (b>thresholds[2]){ 

    b-=thresholds[2]; 

} 

nextPixls[(cols)*i + j] = int(r) << 16 | int(g) << 8 | int(b); 

I chose to use bitwise operators to work with the components, as they are substantially faster than using 
Processing’s red(), green(), blue(), and color() functions; to see this for yourself try substituting 
Processing’s color component functions in the expressions. For example, the red expression would look 
like this:

float r =  (red(pixls[row + firstCol]) + red(pixls[row + j]) + red(pixls[row + endCol]))/3 + 
consts[0]; 

I covered bitwise operations in Chapter 2 and more extensively in Processing Creative Coding and 
Computational Art, Appendix B.
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To allow for more variation in the CA I created three constants, as well as three threshold values. Again, 
the constants are simply added to each averaged color component, and then the new component value is 
reduced to the amount greater than the threshold (or if the value is less than the threshold it remains 
unchanged). Finally, the color is put back together. To try out the new CA_1DC class, enter the following 
code in the main tab: 

/** 

 * Continuous Cellular Automata Main Tab - 01 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

// global variables 

CA_1DC cca; 

void setup(){ 

  size(600, 600); 

  cca = new CA_1DC(600, 600, 1); 

} 

 

void draw(){ 

  translate(cca.w/2, cca.h/2); 

  cca.createGeneration(); 

}  

This first example, shown in Figure 7-14, is grayscale as the three constants are all the same values, and 
the onC and offC colors are black and white by default. Notice, though, the interesting pattern that’s 
generated.
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Figure 7-14. 1D Continuous Cellular Automata screen-shot, stage 1 

In the next example, shown in Figures 7-15, 7-16, and 7-17, I’ll create a table of CA varying the constants 
and thresholds in each CA, but keeping the three values in each array the same. Here’s the code: 
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/** 

 * Continuous Cellular Automata Main Tab - 02 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

// global variables 

int rows = 4, cols = 4; 

int rowSpan, colSpan; 

int cellScale = 1; 

float threshMin = 128, threshMax = 255; 

float constMin = 2, constMax = 127; 

// for random seed placement 

int seedCount = 2; 

 

// declare arrays 

CA_1DC[] cacs; 

int[] seeds; 

color[] clrs; 

 

void setup(){ 

  size(800, 800); 

  initialize(); 

} 

 

void initialize(){ 

  this.rows = rows; 

  this.cols = cols; 

  rowSpan = height/rows; 

  colSpan = width/cols; 

   

  cacs = new CA_1DC[rows*cols]; 

  seeds = new int[seedCount]; 

  clrs = new color[seedCount]; 
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  for (int i=0; i<cacs.length; i++){ 

    cacs[i] = new CA_1DC(colSpan, rowSpan, cellScale); 

 

    for (int j=0; j<seedCount; j++){ 

      seeds[j] = int((cacs[i].rows-1)*(cacs[i].cols) + int(random(cacs[i].cols))); 

      clrs[j] = color(random(255), random(255), random(255)); 

    } 

    cacs[i].setInitState(seeds, clrs); 

 

    float t = random(threshMin, threshMax); 

    cacs[i].setThresholds(new float[] { t, t, t }); 

    float c = random(constMin, constMax); 

    cacs[i].setconsts(new float[] { c, c, c }); 

  } 

} 

 

void draw(){ 

  for (int i=0; i<rows; i++){ 

    for (int j=0; j<cols; j++){ 

      pushMatrix(); 

      // simplify stuff 

      int index = cols*i + j; 

      float x = cacs[index].w*j; 

      float y = cacs[index].h*i; 

      float w = cacs[index].w; 

      float h = cacs[index].h; 

      // move top left corner to 0,0 

      translate(w/2, h/2); 

      // move into position in table 

      translate(x, y); 

      // do CA magic 

      cacs[index].createGeneration(); 

      popMatrix(); 

    } 

  } 

} 
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Figure 7-15. 1D Continuous Cellular Automata screen-shot, stage 2 
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Figure 7-16. 1D Continuous Cellular Automata screen-shot, stage 2 (cellScale = 3) 
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Figure 7-17. 1D Continuous Cellular Automata screen-shot, stage 2 (1 row, 10 columns) 

There is nothing really new in this code. I suggest messing around with the values a bit to see what’s 
possible. I’m sure you’ll agree that the continuous approach yields much more interesting images than the 
straight 1D discrete CA discussed earlier. You might also try creating your own CA rules, maybe using trig 
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functions in the continuous calculations, for example; there is a lot of untapped aesthetic potential here. 
Before I move on to 2D CA, I want to include one more interactive continuous CA example.

One of the benefits of being able to see a table of smaller CA is the increased rate of exploration. 
However, the small images make it difficult to fully see all the detail (or perhaps output an image for a tee-
shirt). It would be nice if you could enlarge any image without sacrificing detail and/or resolution. In the last 
continuous CA example, I’ll code interactivity to allow us to do this. I‘ll also add some additional 
functionality to create even more variation, shown in Figures 7-18, 7-19, 7-20, and 7-21. 
Additions/changes to the existing code are bold.

/** 

 * Continuous Cellular Automata Main Tab - 03 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

// global variables 

int rows = 8, cols = 8; 

int rowSpan, colSpan; 

int cellScale = 1; 

float threshMin = 128, threshMax = 255; 

float constMin = 2, constMax = 127; 

// for random seed placement 

int seedCount = 1; 

 

// declare arrays 

CA_1DC[] cacs; 

float[][] thresholds; 

float[][] consts; 

int[][] seeds; 

color[][] clrs; 

 

// for interactivity 

int overID = 0; 

boolean iSFirstClick = true; 
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void setup(){ 

  size(800, 800); 

  initialize(); 

} 

 

void initialize(){ 

  this.rows = rows; 

  this.cols = cols; 

  rowSpan = height/rows; 

  colSpan = width/cols; 

 

  cacs = new CA_1DC[rows*cols]; 

  thresholds = new float[cacs.length][3]; 

  consts = new float[cacs.length][3]; 

  seeds = new int[cacs.length][seedCount]; 

  clrs = new color[cacs.length][seedCount]; 

 

  for (int i=0; i<cacs.length; i++){ 

    cacs[i] = new CA_1DC(colSpan, rowSpan, cellScale); 

 

    for (int j=0; j<seedCount; j++){ 

      seeds[i][j] = int((cacs[i].rows-1)*(cacs[i].cols) + int(random(cacs[i].cols))); 

      clrs[i][j] = color(random(255), random(255), random(255)); 

    } 

    cacs[i].setInitState(seeds[i], clrs[i]); 

 

    for (int j=0; j<thresholds[0].length; j++){ 

      thresholds[i][j] = random(threshMin, threshMax); 

      consts[i][j] = random(constMin, constMax); 

    } 

    cacs[i].setThresholds(thresholds[i]); 

    cacs[i].setconsts(consts[i]); 

  } 
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} 

 

// draw selected CA full screen with original values 

void calcCA(int i){ 

  // factor to scale the initial pixel state 

  float widthFctr = width/cacs[i].w; 

  // get original rows and cols value before updated 

  float oldRows = cacs[i].rows; 

  float oldCols = cacs[i].cols; 

 

  // new output will fill the sketch window 

  rows = cols = 1; 

  int scl = cacs[0].cellScale; 

  // reinitialize cacs 

  cacs = new CA_1DC[1]; 

  cacs[0] = new CA_1DC(width, height, scl); 

  // updates initial seeds, if originally set 

  for (int j=0; j<seedCount; j++){ 

    if (seeds[i][j] !=0){ 

      seeds[i][j] = int((cacs[0].rows-1)*cacs[0].cols + (seeds[i][j]- � 

        (oldRows-1)*oldCols)*widthFctr); 

    } else { 

      // if default centered seed was used 

      seeds[i][j] = (cacs[0].rows-1)*cacs[0].cols + cacs[0].cols/2; 

    } 

  } 

  // set with original values 

  cacs[0].setInitState(seeds[i], clrs[i]); 

  cacs[0].setThresholds(thresholds[i]); 

  cacs[0].setconsts(consts[i]); 

} 
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void draw(){ 

  for (int i=0; i<rows; i++){ 

    for (int j=0; j<cols; j++){ 

      pushMatrix(); 

      // simplify stuff 

      int index = cols*i + j; 

      float x = cacs[index].w*j; 

      float y = cacs[index].h*i; 

      float w = cacs[index].w; 

      float h = cacs[index].h; 

      // move top left corner to 0,0 

      translate(w/2, h/2); 

      // move into position in table 

      translate(x, y); 

      // do CA magic 

      cacs[index].createGeneration(); 

      popMatrix(); 

 

      // check which cell mouse is over 

      if (mouseX > x && mouseX < x + w && 

        mouseY > y && mouseY < y + h){ 

        overID = index; 

      } 

    } 

  } 

} 

 

// if the first time clicking on sketch, select CA to enlarge 

void mouseClicked(){ 

  if (iSFirstClick){ 

    calcCA(overID); 

    iSFirstClick = false; 

  } 

} 
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Figure 7-18. 1D Continuous Cellular Automata screen-shot, stage 3 
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Figure 7-19. 1D Continuous Cellular Automata screen-shot, stage 3 
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Figure 7-20. 1D Continuous Cellular Automata screen-shot, stage 3 
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Figure 7-21. 1D Continuous Cellular Automata screen-shot, stage 3 

Looking at the code in the example, you’ll notice I added a bunch of 2D arrays. The main coding 
challenges I had to deal with were retaining all the critical data for each thumbnail (i.e., colors, constants, 
and threshold values) and coming up with an event detection method that would know which thumbnail 
had been clicked on. 
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I found it easiest to create the new calcCA() method to isolate the redrawing of the large image from the 
initial drawing of the thumbnails. The calcCA() method is called from within the mouseClicked() function, 
which is one of Processing’s built-in event functions. Each time calcCA(overID) is called an index value is 
passed to the function representing the thumbnail clicked on. Within draw() notice the home-brewed 
detection block: 

if (mouseX > x && mouseX < x + w && 

  mouseY > y && mouseY < y + h){ 

  overID = index; 

} 

Admittedly this approach is neither elegant nor efficient, as the detection check happens every draw cycle, 
and I needed to create the overID global variable. However, a more OOP’ish solution would have required 
doing a bit of tinkering with the base CA class, which, at this point in the chapter, wasn’t going to happen. 
Of course, adding detection to the CA class and rewiring this example (even adding interactivity to all the 
previous examples) would be an excellent thing to try on your own. One other point that might be 
confusing is the expression I used to scale the seeds in the original thumbnail to the larger image, the line 

seeds[i][j] = int((cacs[0].rows-1)*cacs[0].cols + (seeds[i][j]-� 

  (oldRows-1)*oldCols)*widthFctr); 

This is a pretty ornery-looking line of code. Since the seeds are all on the bottom row of cells (which 
you’ll remember are stored in a 1D array), it was simplest to only deal with the last row in calculating the 
scaling. Thus, I simply added the scaled index positions to the rest of the array. To get a clearer sense 
of why I handled it this way, try scaling a table and seeing how specific index values shift within the 
table; it’s messy!

One-dimensional CA offered a glimpse into how simple rules can lead to remarkable complexity. By 
adding an additional dimension and generating two-dimensional CA, we can blow open the doors of this 
fascinating potential. That said, 2D CA is a pretty large area of research (and this has already been a long 
chapter), so I’ll just introduce the topic here and provide examples that both reveal interesting aspects of 
this research area and also create the beginnings of a 2D CA framework for studying them further.

2D CA
Going from 1D to 2D CA is not very difficult. However, as I mentioned earlier, it opens up lots of new 
possibilities; from a coding standpoint it’s simply a matter of incorporating a second axis in the rules 
analysis. You can also create 3D CA by adding a third axis, which I won’t be covering here, but you can 
learn more about here: http://risais.home.comcast.net/~risais/3dca/3dca.htm (November, 15, 2009 
14:08). The examples to follow will be based on the most famous 2D CA, Game of Life (“Life”), developed 
by John Conway in 1970. 
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Conway developed Life based on the earlier work of John von Neumann, one of the originators of CA 
mentioned at the beginning of the chapter. What is so interesting about Conway’s Life CA is the range of 
output it’s capable of producing, In fact, Life “theoretically” has the capacity to function as a computer, or 
more precisely the capacity to calculate any algorithm. You can read more theoretical information about 
Life at http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life (August, 6, 2009 11:38 am). 

In spite of Life’s computational power, it is pretty simple to code, which is perhaps the most fascinating 
aspect of this whole area of research—from simple steps can emerge incredible complexity. As previously 
mentioned, implementing Life will involve two axes (x and y), and each cell’s neighborhood will be defined 
by its eight surrounding cells (see Figure 7-22).

Figure 7-22. 2D CA Game of Life neighborhood 

The rules of Life are as follows (taken directly from the Wikipedia page previously referenced, 
http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life):

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population. 
2. Any live cell with more than three live neighbors dies, as if by overcrowding. 
3. Any live cell with two or three live neighbors lives on to the next generation. 
4. Any dead cell with exactly three live neighbors becomes a live cell. 

The basic coding structure we’ll follow will be very similar to what we’ve done throughout the chapter. In 
fact, we’ll use our current CA framework. To get started, create a new tab in the existing sketch used for 
the continuous CA example, or you can use any sketch that includes the Shape, Cell, and CA classes. 
Name the new tab “CA_2D” and enter the following code into the tab: 
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/** 

 * Cellular Automata 

 * CA_2D class 

 * neighborhood: * | * | * 

 *               * | ? | * 

 *               * | * | * 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

class CA_2D extends CA{ 

  // instance properties 

 

  // default constructor 

  CA_2D(){ 

    super(); 

    init(); 

  } 

 

  // constructor 

  CA_2D(int w, int h, int cellScale){ 

    super(w, h, cellScale); 

    init(); 

  } 

 

  // REQUIRED implementation – initializes stuff 

  void init(){ 

    // set default starting state 

    /* R-pentomino pattern 

    ** 

   ** 

    * 

    */ 
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    int[] initState = {    

                          ((rows)/2-1)*(cols) + (cols-1)/2+1, 

                          ((rows)/2-1)*(cols) + (cols-1)/2,  

                          (rows)/2*(cols) + (cols-1)/2,  

                          (rows)/2*(cols) + (cols-1)/2-1, 

                          ((rows)/2+1)*(cols) + (cols-1)/2 

                        }; 

    setInitState(initState); 

  } 

 

  // set starting state (array of pixels) 

  void setInitState(int[] ids){ 

    resetState(); 

    for (int i=0; i<ids.length; i++){ 

      pixls[ids[i]] = onC; 

    } 

    paintInitState();  

  } 

 

// set starting state (single pixel) 

  void setInitState(int row, int col){ 

    resetState(); 

    pixls[row*(cols-1) + (col-1)] = onC; 

    paintInitState();  

  } 

 

  // REQUIRED implementation 

  void createGeneration(){ 

    for (int i=0; i<rows; i++){ 

      for (int j=0; j<cols; j++){ 

        // 1st and last columns use each other as neighbors in calculation 

        int firstCol = (j==0) ? cols-1 : j-1; 

        int endCol = (j>0 && j<cols-1) ? j+1 : 0; 

        // 1st and last rows use each other as neighbors in calculation 
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        int firstRow = (i==0) ? rows-1 : i-1; 

        int endRow = (i>0 && i<rows-1) ? i+1 : 0; 

 

        int sum = 0; 

        if (pixls[cols*(firstRow) + firstCol] == onC){ 

          sum+=1; 

        }  

        if (pixls[cols*(firstRow) + j] == onC){ 

          sum+=1; 

        }  

        if (pixls[cols*(firstRow) + endCol] == onC){ 

          sum+=1; 

 

        }  

        if (pixls[cols*i + endCol] == onC){ 

          sum+=1; 

 

        }  

        if (pixls[cols*(endRow) + endCol] == onC){ 

          sum+=1; 

 

        }  

        if (pixls[cols*(endRow) + j] == onC){ 

          sum+=1; 

 

        }  

        if (pixls[cols*(endRow) + firstCol] == onC){ 

          sum+=1; 

        }  

        if (pixls[cols*i + firstCol] == onC){ 

          sum+=1; 

        }  

 

        if (pixls[cols*i + j] == onC){ 
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          if (sum < 2 || sum > 3){ 

            nextPixls[cols*i + j] = offC; 

          }  

          // if sum is 2 or 3 

          else { 

            nextPixls[cols*i + j] = onC; 

          } 

        }  

        // if pixel is offC 

        else { 

          if (sum == 3){ 

            nextPixls[cols*i + j] = onC; 

          } 

        } 

      } 

    } 

    // paint pixels on screen 

    paint(); 

  } 

 

  void setOnColor(color onC){ 

    this.onC = onC; 

  } 

 

  void setOffColor(color offC){ 

    this.offC = offC; 

  } 

 

} 

The class is very similar to the CA_1D class, although the init() and createGeneration() methods are 
implemented differently. The rules analysis in createGeneration() is a bit lengthier than in the 1D 
examples, but it should still be pretty self-explanatory as it follows the Life rules enumerated earlier. Before 
discussing the init() method, let’s try out the new code. In the main tab enter the following and then run 
the sketch: 
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/** 

 * Cellular Automata 2D _ main tab – 01 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_2D ca2; 

 

void setup(){ 

  size(600, 600); 

  background(255); 

  ca2 = new CA_2D(600, 600, 1); 

} 

 

void draw(){ 

  translate(ca2.w/2, ca2.h/2); 

  ca2.createGeneration(); 

} 

If the code ran okay, you should have seen a bunch of white pixels growing and moving about the sketch 
window. Figure 7-23 shows the sketch after 1000 frames. To be more specific, albeit cryptic, the sketch 
screenshot shows the R-pentomino pattern after 1000 generations following Life’s rules. 



HACKING LIFE 

395 

Figure 7-23. 2D CA Game of Life R-pentomino pattern after 1000 frames 

Returning to the CA_2D code, here’s the init() method again. 

// REQUIRED implementation – initializes stuff 

  void init(){ 

    // set default starting state 

    /* R-pentomino pattern 

    ** 

   ** 
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    * 

    */ 

    int[] initState = {    

                          ((rows)/2-1)*(cols) + (cols-1)/2+1, 

                          ((rows)/2-1)*(cols) + (cols-1)/2,  

                          (rows)/2*(cols) + (cols-1)/2,  

                          (rows)/2*(cols) + (cols-1)/2-1, 

                          ((rows)/2+1)*(cols) + (cols-1)/2 

                        }; 

    setInitState(initState); 

  } 

This method creates a default starting on/off pixels state, which we’ve also done in earlier examples. 
However, rather than beginning with a single pixel or random array of pixels, we’re beginning with a very 
specific pixel pattern, in this case one named “R-pentomino” (also sometimes referred to as F-pentomino). 
To better see this pattern, we’ll modify our example sketch, increasing the scale of the pixels and also 
adding an interactive element. Replace the code in the main tab with the following: 

/** 

 * Cellular Automata 2D _ main tab – 02 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

CA_2D ca2; 

 

void setup(){ 

  size(600, 600); 

  background(255); 

  ca2 = new CA_2D(600, 600, 20); 

  translate(ca2.w/2, ca2.h/2); 

  ca2.paint(); 

} 

 

void draw(){ 

} 
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void mousePressed(){ 

  translate(ca2.w/2, ca2.h/2); 

  ca2.createGeneration(); 

} 

When you run the sketch, click anywhere within the sketch window to iteratively move through the sketch one 
iteration at a time. Figures 7-24, 7-25, and 7-26 show the sketch at iterations 0, 30, and 100 respectively. 

Figure 7-24. 2D CA Game of Life R-pentomino pattern at start, cellScale = 20 
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Figure 7-25. 2D CA Game of Life R-pentomino pattern after 30 frames, cellScale = 20 
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Figure 7-26. 2D CA Game of Life R-pentomino pattern after 100 frames, cellScale = 20 

A pentomino is simply a shape composed of five symmetrical squares that are all connected orthogonally. 
You can read more about them at http://en.wikipedia.org/wiki/Pentomino (August, 6, 2009 14:00). Based 
on Life’s rules, the R-pentomino pattern creates some unexpected results, which was indeed what Conway 
discovered when he first tried inputting the pattern, by hand mind you! It turns out that the R-pentomino 
pattern doesn’t reach a stable state until a little over 1100 iterations (certainly a lot of work to try to do by 
hand). It also turns out that many of the sub-patterns created during these 1000 iterations of R-pentomino 
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reveal many of the other classic patterns that Life produces, including ones formally classified as still-lifes, 
gliders, oscillators, guns, and puffers among others. Here is a nice link that discusses some of these 
interesting patterns: http://www.math.com/students/wonders/life/life.html (August, 6, 2009 14:12). 

Although it would be interesting to try to create new patterns, there is already a treasure trove of them, with 
many creative hybrid patterns that combine multiple sub-patterns; some of these can be very complex. For 
example, Figure 7-27 shows a pattern called “c/3 long spaceships,” by Hartmut Holzwart and David Bell, 
which is composed of about 40,000 characters.

Figure 7-27. “c/3 long spaceships” pattern, by Hartmut Holzwart and David Bell 

You probably wouldn’t want to try to code the c/3 long spaceships pattern by hand; loading it (like you 
would an image) would obviously be a much better solution. Fortunately, this loading problem has been 
solved—well, sort of. There have been file formats created for storing Life patterns (see 
http://psoup.math.wisc.edu/mcell/ca_files_formats.html#Life%201.05, August 6, 2009 14:56) 
enabling people to load and distribute them. A common Life pattern format is “Life 1.05,” which uses the 
.lif suffix (you’ll also see .life suffixes). It’s a very simple ASCII format that lists on/off pixels as a series of 
*’s and .’s respectively; in addition, each block of characters is preceded by a point location, specifying 
where on a Cartesian coordinate system to draw the block of pixels. For example, to draw the R-
pentomino pattern at coordinate 100, 100, the .lif file would look like this. (Please note the #D is for file 
descriptions/comments. Some files also include a #N or #R for specifying rules, which we’ll ignore.) 
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#Life 1.05 

#D R-pentomino 

#D Adapted by Ira Greenberg 

#D The Essential Guide to Processing for Flash Developers 

#D Friends of ED, 2009  

#P 100 100 

.** 

**. 

.*. 

I mentioned earlier that the Life pattern format sort of solved the problem; the other part is being able to 
parse the .lif file. As you might suspect, a Google search did not turn up a Processing .lif parser, so I 
decided to write one. My parser takes a URL address argument (as a link to a .lif file), which can be local, 
in the sketch’s data directory, or on the web. In my example, the URL will be on the web, within a freely 
accessible Life patterns catalog. 

If you’re running an example online (as an applet), and the .lif file is on the web, it 
needs to reside on the same server as your applet or the applet must be signed; this is 
for security reasons. To learn how to sign an applet, check out this Processing hack I 
wrote a while back: http://processing.org/hacks/hacks:signapplet (August 7, 2009 
15:05).

I’ve coded the parser as a Processing class that will work within our CA framework. In the existing CA 
sketch (that includes the CA_2D class) create a new tab named “LIF_PARSER.” I’ll state in advance that 
this class is pretty dense, BUT it will be our last example, so you’ll be able to rest your brain shortly. Also, 
in the next chapter we’ll look at Processing’s XML implementation, so this final example will also be a good 
data loading primer. Add the following to the LIF_PARSER tab: 

/** 

 * Cellular Automata 

 * LIF_Parser class 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

class LIF_Parser{ 

  // stores symbols (. *) 

  String[] symbs = {}; 

  // path to .lif file 
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  String url; 

  // stores all lines in .lif file 

  String[] lines; 

  // stores number of lines of symbols within each coord group 

  int[] indices; 

  // utility counter to increment coords[][] array 

  int coordsCounter = 0; 

  // stores origin in a sense of each symbol group 

  int[][] coords; 

  // bits buffer for pattern 

  int[] bits; 

  // bits array size (w, h) 

  int w, h; 

 

 

  // constructor 

  LIF_Parser(String url){ 

    this.url = url; 

    // load .lif file 

    lines = loadStrings(url); 

    // get numbers of lines within each coord group 

    indices = getIndices(); 

    // instantiate coords array values of where to draw each part of pattern 

    coords = new int[indices.length][2]; 

    // isolate coords and reformat as int[][] 

    parseCoords(); 

    //shift coords to remove negative values and isolate symbols 

    shiftCoords(); 

    // create bits array based on pattern 

    calcBits(); 

  } 

 

  /* parses initial line strings, creating 

   int[][] of coord data and isolates symbols*/ 
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  void parseCoords(){ 

    for (int i=0; i<lines.length; i++){ 

      String tempStr = ""; 

      // detect coords 

      if (lines[i].charAt(0) == '#' && lines[i].charAt(1) == 'P'){ 

        // collect coord locs 

        for (int j = 2; j<lines[i].length(); j++){ 

          tempStr += lines[i].charAt(j); 

        } 

        String tempStr2 = ""; 

        for (int j=0; j<tempStr.length(); j++){ 

          if (j>0 && tempStr.charAt(j) == ' '){ 

            tempStr2 += ','; 

          }  

          else if (tempStr.charAt(j) != ' '){ 

            tempStr2 += tempStr.charAt(j); 

          } 

        } 

        coords[coordsCounter][0] = int(split(tempStr2, ','))[0]; 

        coords[coordsCounter][1] = int(split(tempStr2, ','))[1]; 

        coordsCounter ++;  

      }  

      else { 

        // collect symbols 

        if (lines[i].charAt(0) != '#'){ 

          symbs = append(symbs, lines[i]); 

        } 

      } 

    } 

  } 

 

 

  /* add offset to x and y coords, based on lowest  

   values, to avoid negative values */ 
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  void shiftCoords(){ 

    int xMin = 0, yMin = 0; 

    // get lowest values 

    for (int i=0; i<coords.length; i++){ 

      if (coords[i][0] < xMin){ 

        xMin = coords[i][0]; 

      } 

      if (coords[i][1] < yMin){ 

        yMin = coords[i][1]; 

      } 

    } 

    // shift all coords 

    for (int i=0; i<coords.length; i++){ 

      coords[i][0] += abs(xMin); 

      coords[i][1] += abs(yMin); 

    } 

  } 

 

  /* structure of data 

   * stores number of symbols within each group 

   * delimited by #P coordX coordY  in .lif file */ 

  int[] getIndices(){ 

    int j = 0; 

    int[] indices = {}; 

 

    for (int i=0; i<lines.length; i++){ 

      if(lines[i].charAt(0) != '#'){ 

        j++; 

      }  

      else { 

        if (j!= 0){ 

          indices = append(indices, j); 

        } 

        j = 0; 
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      }  

    } 

    // get last group 

    indices = append(indices, j); 

    return indices; 

  } 

 

  // calculate bits 

  void calcBits(){ 

    // counter 

    int ctr = 0; 

    for (int i=0; i<indices.length; i++){ 

      for (int j=0; j<indices[i]; j++){ 

        // calculate max horizontal dimension 

        if (coords[i][0] + symbs[ctr].length() > w){ 

          w = coords[i][0] + symbs[ctr].length(); 

        } 

        // calculate max vertical dimension 

        if (coords[i][1] + indices[i] > h){ 

          h = coords[i][1] + indices[i]; 

        } 

        ctr++; 

      } 

    } 

    // instantiate bits array 

    bits = new int[w*h]; 

    // reset counter 

    ctr = 0; 

    //fill bits array 

    for (int i=0; i<indices.length; i++){ 

      for (int j=0; j<indices[i]; j++){ 

        for (int k=0; k<symbs[ctr].length(); k++){ 

          if (symbs[ctr].charAt(k) == '.'){ 

            bits[w*(coords[i][1] + j) + (coords[i][0]+k)] = 0; 



CHAPTER 7 

406 

          }  

          else if (symbs[ctr].charAt(k) == '*'){ 

            bits[w*(coords[i][1] + j) + (coords[i][0]+k)] = 1; 

          } 

        } 

        ctr++; 

      } 

    } 

  } 

 

} 

Rather than break down all this code in detail, I’ll discuss the class in a top-level way, which I think will 
more quickly help demystify it; really it’s not that complicated (it just looks that way). Here’s the basic 
algorithm:

1. Load the URL using Processing’s loadStrings() function. loadStrings() brings in an external 
file as a String array, delimited by line breaks. 

2. Calculate and store the number of lines of symbols within each coordinate group. It’s possible 
that the file will contain only one coordinate group. 

3. Isolate and store the coordinate values where to place each symbol group. 
4. Shift the coordinate values so they are all positive. 
5. Calculate and store an array of bits based on the symbols ‘*’ = 1 or ‘.’ = 0. 

I strongly suggest going through the class to see how I coded each part of the algorithm. If you come 
across a Processing function you haven’t seen before, be sure to highlight it and hit command+shift+f
(Mac) or control+shift+f (Win), to read about it in the Processing reference. 

We’re almost ready to test out the new parser. First, though, we need to add one more method to the 
CA_2D class. At the bottom of the class, add the following method (be sure to put it above the final closing 
curly brace of the class): 

// put pattern array into pixls as initial on/off state 

  void setPattern(LIF_Parser lp){ 

    resetState(); 

    float deltaW = (cols - lp.w)/2.0; 

    float deltaH = (rows - lp.h)/2.0; 

    int ctr = 0; 

    for (int i=0; i<rows; i++){ 

      for (int j=0; j<cols; j++){ 
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        if (i >= deltaH && i < lp.h+deltaH &&  

          j >= deltaW && j < lp.w+deltaW){ 

          if (lp.bits[ctr] == 0){ 

            pixls[int(i*cols+j)] = offC; 

          }  

          else if (lp.bits[ctr] == 1){ 

            pixls[int(i*cols+j)] = onC; 

          } 

          // pixls[int(i*cols+j)] = lp.pixls[ctr]; 

          ctr++; 

        } 

 

      } 

    } 

    paintInitState();  

  } 

This method enables the CA_2D object to accept a .lif pattern and embed the pattern in the pixls array. 
As with most things relating to pixels in Processing, the only challenging part was accounting for the two-
dimensional structure of the pattern in the one-dimensional arrays. I used the local variables deltaW and 
deltaH to help center the pattern bits in the pixls array. 

The last step is running the new parser. Replace what’s in the main tab with the following to give it a test 
drive:

/** 

 * Cellular Automata 2D Parser – main tab 

 * By Ira Greenberg <br /> 

 * The Essential Guide to Processing for Flash Developers, 

 * Friends of ED, 2009 

 */ 

 

LIF_Parser lp; 

String url = "http://www.radicaleye.com/lifepage/patterns/aqua50.lif"; 

CA_2D ca2; 
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void setup(){ 

  size(800, 600); 

  background(255); 

  ca2 = new CA_2D(width, height, 1); 

  ca2.setOnColor(0xffff9900); 

  ca2.setOffColor(0xff112233); 

  lp = new LIF_Parser(url); 

  ca2.setPattern(lp); 

} 

 

void draw(){ 

  translate(ca2.w/2, ca2.h/2); 

  ca2.createGeneration(); 

} 

Figure 7-28. “p2 c/2 spaceships” pattern, by Hartmut Holzwart and Dean Hickerson 
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If it worked you should have seen something that looked like Figure 7-28. I recommend trying a bunch 
more patterns, which you can find around the web. There is a good pattern catalog at 
http://radicaleye.com/lifepage/#browse (August 7, 2009, 17:41). Just replace the quoted String
address part of the line, String url = "http://www.radicaleye.com/lifepage/patterns/aqua50.lif";,
with the new address. One last thing I suggest you also try is building a table structure of all the different 
CA discussed this chapter. Since they all work with the CA framework, you should be able to run them all 
simultaneously; then send me an email of what you get at processing@iragreenberg.com.

Summary  
This chapter introduced the exciting concepts of emergence and complexity showcasing cellular automata. 
Building a CA framework, we looked at 1D, Continuous and 2D implementations, including an interactive 
example that allowed us to select CA thumbnails for enlargement (for our burgeoning tee-shirt business). 
CA reveal how simple rules can lead to very unexpected emergent complexity. This idea has much 
broader implications than for simply making cool images (not to knock cool images), but relates to how 
large complex systems, across many disciplines, emerge, grow, transform, and even perish. CA is just one 
computational approach for simulating and “playing” with complexity. Processing is a great environment for 
exploring this area because of its robustness, and ease, in handling pixel operations. Next chapter we’ll 
build upon some of the concepts we looked at during this chapter, as well as earlier in the book, as we 
explore creative data visualization in Processing. 


