

Marie Kašparová Mária Průšová

## Work-Safety Rules in Labs of Dept. Of Material Engineering

#### Globally Harmonized System of Classification and Labelling of chemicals (EU)





GH904 Compressed Gas



GHS05 Corrosive



GHS06 Taxic





GHS08 Health Hazard



GHS09 Environmental Hazard

- CH<sub>3</sub>COCH<sub>3</sub>
- NaOH
- $H_2SO_4$
- CH<sub>3</sub>COOH
- $Na_2S_2O_4$
- SnCl<sub>2</sub>
- NaClO

## **General guidelines**



## **General guidelines**

- Do not smoke
- Do not eat and drink
- Do not taste chemicals
- Read carefully laboratory manual
- Wear laboratory clothing and protective glasses
- Keep face and eyes away from boiling equipments
- Tie back your long hair
- Do not wear contact lenses

## **General guidelines**

Use tongs or protective gloves to carry hot objects

- Do not use damaged or broken glassware
- Clean up your lab area
- Wash your hands with soap and water after finishing your experiments

## General rules – conc. acids Pour conc. acids to water!!!



First aid for skin and eye injury – wash the affected area with plenty of water!

#### **General rules - fire**

- Exits (2)
- Run away
- Sream loudly



#### **General rules – accident or injury**

- Inform your teacher about spill, breakage
- Injury caused by Sharp Object glass rod
  - First aid inform your teacher, wash the bleeding injury with water, apply disinfectant



#### Lab devices







#### Lab devices









## Lab equipment









#### **Stock solution**



#### Method: weight 1 g sodium chloride NaCl and refill up to 1 l with water



#### **Conversion of units**

- 1 kg = 1000 g 1 g = 0,001 kg
- 1 g = 1000 mg 1 mg = 0,001 g
- 1 | = 1000 ml 1 ml = 0,001 l

 $1 \, dm^3 = 1 \, I$ 

1 dm<sup>3</sup> approx. 1 kg Water has density 1 kg/l (valid also for diluted solutions)

#### **Frequent mistakes**

Using of wrong quantities or units

Using of wrong ratio and direct/inverse proportion

## **Basic terms in dyeing of textiles**

<u>Liquor ratio</u>: ratio between weight of fibers and the volume of liquor

• Examples: 1:50 1:100

## **Basic terms**

<u>% of dye</u>: weight of fabric or fibers

- Light shades 0.3-0.5%
- Middle shades 1-1.5%
- Dark shades about 3%

## An example of calculation

Dye 5 g textile material in dyeing bath with following content:

2% dye
15% Glauber's salt (Na<sub>2</sub>SO<sub>4</sub> . 10H<sub>2</sub>O)
10 g.l<sup>-1</sup> sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>)
Liquor ratio 1:50

Total volume of dyeing bath ???

## An example of calculation

Dye 5 g textile material in dyeing bath with following content:

2% dye
15% Glauber's salt (Na<sub>2</sub>SO<sub>4</sub> . 10H<sub>2</sub>O)
10 g.l<sup>-1</sup> sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>)
Liquor ratio 1:50

**Total volume of dyeing bath:** 

5 g mat. x 50 ml = 250 ml

#### Calculation of 2 % dye

| 2 % dye – from the weight<br>of material 5 g                 | Stock solution of dye:<br>10 g.l <sup>-1</sup>   |
|--------------------------------------------------------------|--------------------------------------------------|
| 5g 100%                                                      | 10 g1000ml                                       |
| $\frac{x \text{ g } \dots 2\%}{\frac{x}{5} = \frac{2}{100}}$ | $\frac{0.1 \text{ g x ml}}{10} = \frac{x}{1000}$ |
| $x=\frac{2\times 5}{100}=0.1\ g$                             | $x = \frac{0.1 \times 1000}{10} = 10  ml$        |

#### Calculation of 15 % Glauber's salt

15 % Glauber's salt **Stock solution**  $(Na_2SO_4 . 10H_2O)$  $Na_2SO_4 \cdot 10H_2O : 50 \text{ g.l}^{-1}$ - weight of material 5 g 50 g....1000ml 5 g ..... 100% 0,75 g.... xml <u>xg.....</u> 15%  $\frac{x}{5} = \frac{15}{100}$  $\frac{0.75}{x} = \frac{x}{x}$  $^{-}$  1000 50  $x = \frac{0.75 \times 1000}{50} = 15 \ ml$  $x = \frac{5 \times 15}{100} = 0.75 \ g$ 

### Calculation of 10 g.l<sup>-1</sup> $Na_2CO_3$

Liquor ratio 1:50, weight of material 5 g, Total volume of dyeing bath 250ml

| 10 g.l <sup>-1</sup> sodium carbonate,  | Stock solution                                        |
|-----------------------------------------|-------------------------------------------------------|
| tj. Na <sub>2</sub> CO <sub>3</sub>     | 100 g.l <sup>-1</sup> Na <sub>2</sub> CO <sub>3</sub> |
| 10 g 1000ml                             | 100g 1000 ml                                          |
| x g 250ml                               | 2.5g x ml                                             |
| $x = \frac{10 \times 250}{100} = 2.5 g$ | $x = \frac{2.5 \times 1000}{100} = 25  ml$            |

## **Dyeing bath**

**Calculation:** 

dye – 2 % from 5 g = <u>0,1 g dye..... 10 ml</u> Glauber's salt – 15 % from 5 g = <u>0,75 g G. S...... 15ml</u> Sodium carbonate – to 250 ml weight <u>2,5 g s.c....25ml</u>



#### Liquor ratio 1:50

Total volume of dyeing bath 5 g mat. x 50 ml = <u>250 ml</u>



## An example

Dye 4 g textile material in dyeing bath with following content:

```
5% reactive dye
6% NaCl
10g.l<sup>-1</sup> sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>)
Liquor ratio 1:50
```

**Total volume of dyeing bath:** 

4 g mat. x 50 ml = 200 ml

## Calculation of 4 % dye

| 4 % dye – from the weight<br>of material 5 g       | Stock solution of dye:<br>10 g.l <sup>-1</sup>               |
|----------------------------------------------------|--------------------------------------------------------------|
| 5g 100%                                            | 10 g1000 ml                                                  |
| $\frac{x \text{ g } \dots 4\%}{5} = \frac{4}{100}$ | $\frac{0.2 \text{ g x ml}}{\frac{x}{1000}} = \frac{0.2}{10}$ |
| $x = \frac{4.5}{100} = 0.2 g$                      | $x = \frac{0.2.1000}{10} = 20 \text{ ml}$                    |

#### Calculation of 6 % NaCl

| 6 % dye – from the weight<br>of material 4 g | Stock solution of NaCl:<br>10 g.l <sup>-1</sup> |
|----------------------------------------------|-------------------------------------------------|
| 4 g 100%                                     | 10 g1000ml                                      |
| <u>xg 6%</u>                                 | <u>0.24 g x ml</u>                              |
| $\frac{x}{4} = \frac{6}{100}$                | $\frac{x}{1000} = \frac{0.24}{10}$              |
| $x = \frac{4.6}{100} = 0.24 g$               | $x = \frac{0.24 \cdot 1000}{10} = 24  m$        |

## Calculation of 2 % dye

| 10 g.l <sup>-1</sup> dye – from the<br>total volume of bath       | Stock solution of dye:<br>50 g.l <sup>-1</sup>           |
|-------------------------------------------------------------------|----------------------------------------------------------|
| 10 g 1000 ml                                                      | 50 g1000 ml                                              |
| $\frac{x \text{ g } \dots 200 \text{ ml}}{10} = \frac{200}{1000}$ | $\frac{2 \text{ g x ml}}{\frac{x}{1000}} = \frac{2}{50}$ |
| $x = \frac{200.10}{1000} = 2 g$                                   | $x = \frac{2.1000}{50} = 40 \text{ ml}$                  |

## **Dyeing bath**



Total volume of dyeing bath 4 g mat. x 50 ml = 200 ml

## **Grey scale**

to evaluate colour shade **change** in colour fastness tests, eg washing, water, perspiration

#### Change in colour 1-5 (with four half steps) Change in staining 1-5 (with four half steps)

## **Requirements for credit**

- Presence in lab excercises
- Work out the report
- Seminar work
- Write the test (10 questions)

# Thank you!