
MECHANICS OF PARALLEL FIBER BUNDLES "TRIVIAL FIBER BUNDLE, TWO-COMPONENT FIBER BUNDLE"

Ing. Iva Mertová, Ph.D. / Department of technologies and structures

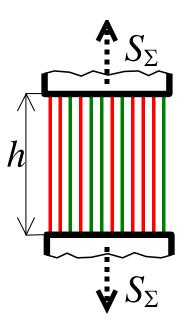
Common variables

for one fiber and fiber bundle: h...gauge length ε...strain (relative elongation) **Other variables** and functions: Number of fibers: Tensile force: Force-strain relation: Strength: **Breaking strain:**

CASE 1 (trivial)

Assumptions: All fibers have

a) same force-strain curve $S = S(\varepsilon)$ and

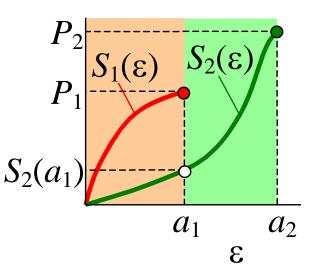

b) same strength P and same breaking strain a.

Then the following equations are valid evidently:

$$S_{\Sigma}(\varepsilon) = n S(\varepsilon), \quad P_{\Sigma} = n P, \quad a_{\Sigma} = a$$

CASE 2 (blending theory like W. J. Hamburger) **Assumptions:**

- 1. Fiber bundle is a blend (| and |) of 2 types of fibers.
- 2. All fibers of one type have
- a) same force-strain curve $S = S(\varepsilon)$ and
- b) <u>same strength</u> *P* and <u>same breaking</u> <u>strain</u> *a*.


Convention:
Fiber of one type
having <u>smaller</u>
value of brea-
<u>king strain i</u> s de-
noted as <u>No. 1</u>
(), other type
of fibers is deno-
ted as No. 2. ().
(These numbers
are used as
subscripts.)

Variables	Fiber material		
Variables:	No. 1	No. 2	
Fiber fineness	t_1	t_2	
Force-strain relation	$S_1(\varepsilon)$ $S_2(\varepsilon)$		
Breaking strain of fiber	$a_1 \leq a_2$		
Fiber strength	$P_1 = S_1(a_1)$	$P_2 = S_2(a_2)$	
Number o fibers	n_1 n_2		
Total number of fibers	$n = n_1 + n_2$		
Mass of fibers	m_1 m_2		
Total mass of fibers	$m = m_1 + m_2$		
Bundle fineness (count)	T = m/h		
Mass portion	$g_1 = m_1/m g_2 = m_2/m$		
Sum of mass portions	$g_1 + g_2 = 1$		

 It is valid for the fiber No. 1: $m_1 = g_1 m, t_1 = m_1/(n_1 h), n_1 = m_1/(t_1 h) = (g_1/t_1)(m/h), n_1 = g_1(T/t_1)$ For the fiber No. 2, it is valid analogically: $n_2 = g_2(T/t_2)$

Maximum forces, in a bundle Force-strain curves:

a) Interval $\varepsilon \leq a_1 \text{ max. at } \varepsilon = a_1$ $S_{\Sigma}(a_1) = n_1 P_1 + n_2 S_2(a_1)$ $S_{\Sigma}(a_1) = T \left[g_1 P_1 / t_1 + g_2 S_2(a_1) / t_2 \right]$ b) Interval $\varepsilon \in (a_1, a_2) \text{ max. at } \varepsilon = a_2$ $S_{\Sigma}(a_2) = n_1 \cdot 0 + n_2 P_2$ $S_{\Sigma}(a_2) = T g_2 P_2 / t_2$

 $S_{\Sigma}(\varepsilon > a_2) = 0$

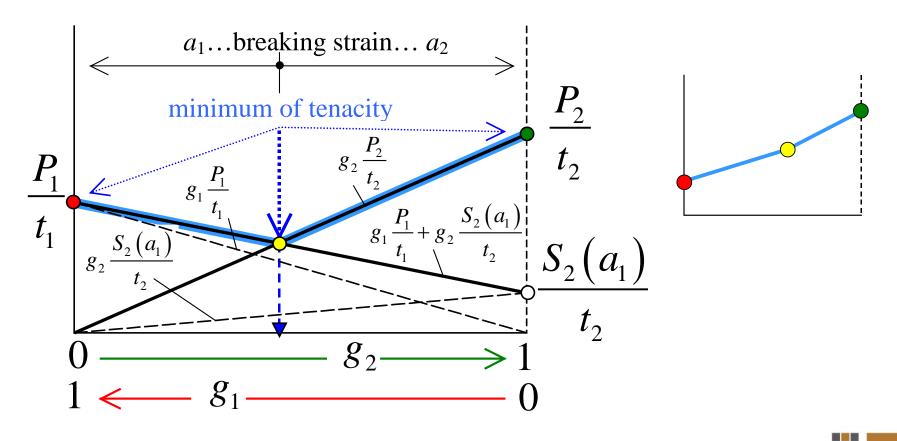
c) Interval $\varepsilon > a_2 \Rightarrow$ all fibers are broken,

Strength of bundle

$$P_{\Sigma} = \max\left\{S_{\Sigma}\left(a_{1}\right), S_{\Sigma}\left(a_{2}\right)\right\} = T\max\left\{\left[g_{1}\frac{P_{1}}{t_{1}} + g_{2}\frac{S_{2}\left(a_{1}\right)}{t_{2}}\right], \left[g_{2}\frac{P_{2}}{t_{2}}\right]\right\}$$

$$P_1/t_1$$
 ...tenacity of fiber No. 1 (e.g. N/tex)
 P_2/t_2 ...tenacity of fiber No. 2 (e.g. N/tex)
 $S_2(a_1)/t_2$...specific stress of fiber No. 2 (e.g. N/tex) at

Bundle tenacity P_{Σ}/T


$$\frac{P_{\Sigma}}{T} = \max\left\{ \left[g_1 \frac{P_1}{t_1} + g_2 \frac{S_2(a_1)}{t_2} \right], \left[g_2 \frac{P_2}{t_2} \right] \right\} \quad \text{(e.g. N/tex)}$$

Breaking strain of bundle

a)
$$a_{\Sigma} = a_1$$
 if $P_{\Sigma}/T = g_1 P_1/t_1 + g_2 S_2(a_1)/t_2$
b) $a_{\Sigma} = a_2$ if $P_{\Sigma}/T = g_2 P_2/t_2$

 $\varepsilon = a_1$

Graphical representation of resulting equation $P_{\Sigma}/T = \max\left\{ \left[g_1 P_1/t_1 + g_2 S_2(a_1)/t_2 \right], \left[g_2 P_2/t_2 \right] \right\}$

Minimum bundle tenacity – two possibilities:

a)
$$g_2 = 0$$
 (•) and then $P_{\Sigma}/T = P_1/t_1$

b) By point of intersection (o) of two lines, it is

$$\begin{array}{l} \sum_{g_{1}=g_{2}}^{=1-g_{2}} & g_{1} / t_{1} + g_{2} S_{2} (a_{1}) / t_{2} = g_{2} P_{2} / t_{2} , \\ P_{1} / t_{1} = g_{2} P_{1} / t_{1} + g_{2} P_{2} / t_{2} - g_{2} S_{2} (a_{1}) / t_{2} , \end{array}$$

$$\begin{array}{l} g_{2} = \frac{P_{1} / t_{1}}{P_{1} / t_{1} + P_{2} / t_{2} - S_{2} (a_{1}) / t_{2}} \\ P_{1} / t_{1} = g_{2} P_{1} / t_{1} + g_{2} P_{2} / t_{2} - g_{2} S_{2} (a_{1}) / t_{2} , \end{array}$$

and using of this value we get $P_{\Sigma}/T = g_2 P_2/t_2$ Now, the minimum bundle tenacity is the minimum of three calculated values P_{Σ}/T .

Note: After addition of fibers having higher tenacity, the tenacity of resulting bundle can *decrease!*

EMPIRICAL USAGE OF RESULTS FOR YARNS

	Quantity	Instead of FIBERS and BUNDLES	we use values of YARNS
Instead of fiber parame-	$ ho_1$	Relative strength (tenacity)of fiber with lower breaking strain	Relative strength (tenacity) of one component yarn with lower breaking strain
	p ₂	Relative strength (tenacity)of fiber with higher breaking strain	Relative strength (tenacity)of one component yarn with higher breaking strain
ters, para- meters of	<i>a</i> ₁	Breaking strain of fiber of compo- nent with lower breaking strain	Breaking strain of one component yarn with lower breaking strain
one com- ponent and blen- σ ded yarns	<i>a</i> ₂	Breaking strain of fiber of compo- nent with higher breaking strain	Breaking strain of one component yarn with higher breaking strain
	σ ₂₁ (a)	Relative force in fiber with higher breaking strain by relative elongation $\varepsilon = a_1$	Relative force in one component yarn with higher breaking strain by relative elongation $\epsilon = a_1$
are used.	g ₁ , g ₂	Mass portion of fibers with lower and higher breaking strain in bundle	Mass portion of fibers of one compo- nent yarn with lower and higher breaking strain in bundle
	\pmb{p}_{Σ}	Relative strength (tenacity) of bundle from two components	Relative strength (tenacity) of blended yarn from two components
	\pmb{a}_{Σ}	Breaking strain of bundle from two components	Breaking strain of blended yarn from two components

- Task 1 Calculate number of fibers in bundle, breaking strain of bundle, breaking strength of bundle and relative breaking strength of bundle.
- a) 100% cotton, *T*=20tex, *t*=0,17tex, *l*=26mm, *p*=0,298Ntex⁻¹, *a*=9%
- b) 100% POP, *T*=20tex, *t*=0,188tex, *l*=40mm, *p*=0,4Ntex⁻¹, *a*=63%
- a) *n*=118fibers, *a_{bundle}*=9%, *P_{bundle}*=5,98N, *p_{bundle}*=0,298Ntex⁻¹
- b) *n*=106fibers, *a_{bundle}*=63%, *P_{bundle}*=7,97N, *p_{bundle}*=0,4Ntex⁻¹

Task 2 Calculate relative breaking strength of blended yarn 65CO/35POP, yarn count is 20tex, if you know properties of each component:

100% cotton, *t*=0,17tex, p_1 =0,183Ntex⁻¹, a_1 =6,2%

100% POP, *t*=0,188tex, p_2 =0,231Ntex⁻¹, a_2 =24,3%

$$\sigma_{2}(a_{1}) = a_{1} \frac{p_{2}}{a_{2}} = 6.2 \frac{0.231}{24.3} = 0.0589 \, N/ \, tex$$

$$G_{2} = \frac{p_{1}}{p_{1} + p_{2} - \sigma_{2}(a_{1})} = \frac{0.183}{0.183 + 0.231 - 0.0589} = 0.52$$

$$G_{1} = 1 - G_{2} = 0.48$$

$$g_{2} = 0.35 \Longrightarrow p_{\Sigma} = g_{1} p_{1} + g_{2} \sigma_{2}(a_{1}) = 0.65 * 0.183 + 0.35 * 0.0589 = 0.1396 \, N/ \, tex$$

Task 3 Calculate relative breaking strength of blended yarn 50CO/50PES, yarn count is 25tex, if you know properties of each component:

100% cotton, $p_1=0,332$ Ntex⁻¹, $a_1=4,9\%$

100% PES, $p_2=0,132$ Ntex⁻¹, $a_2=15\%$

$$\sigma_{2}(a_{1}) = a_{1} \frac{p_{2}}{a_{2}} = 4.9 \frac{0.132}{15} = 0.04312 N / tex$$

$$G_{2} = \frac{p_{1}}{p_{1} + p_{2} - \sigma_{2}(a_{1})} = \frac{0.332}{0.332 + 0.132 - 0.04312} = 0.79$$

$$G_{1} = 1 - G_{2} = 0.21$$

$$g_{2} = 0.5 \implies p_{\Sigma} = g_{1} p_{1} + g_{2} \sigma_{2}(a_{1}) = 0.50 * 0.332 + 0.5 * 0.04312 = 0.1876 N / tex$$

Task 4 Calculate relative breaking strength of blended yarn 35CO/65POP, yarn count is 20tex, if you know properties of each component:

100% cotton, $p_1=0,14$ Ntex⁻¹, $a_1=4,2\%$

100% POP, *p*₂=0,42Ntex⁻¹, *a*₂=9%

$$\sigma_{2}(a_{1}) = a_{1} \frac{p_{2}}{a_{2}} = 4, 2 \frac{0.42}{9} = 0.196 N / tex$$

$$G_{2} = \frac{p_{1}}{p_{1} + p_{2} - \sigma_{2}(a_{1})} = \frac{0.14}{0.14 + 0.42 - 0.196} = 0.38$$

$$G_{1} = 1 - G_{2} = 0.62$$

$$g_{2} = 0.65 \Rightarrow p_{\Sigma} = g_{2} p_{2} = 0.65 * 0.42 = 0.273 N / tex$$