TECHNICAL UNIVERSITY OF LIBEREC Faculty of Textile Engineering

MECHANICS OF PARALLEL FIBER BUNDLES
„TRIVIAL FIBER BUNDLE, TWO-COMPONENT FIBER BUNDLE"

Ing. Iva Mertová, Ph.D. / Department of technologies and structures

Common variables for one fiber and fiber bundle:
h...gauge length ε...strain (relative elongation)
Other variables and functions:
Number of fibers:
Tensile force:
Force-strain relation:
Strength:
Breaking strain:

One fiber: Fiber bundle:

1
S
$S=S(\varepsilon)$
S_{Σ}
P (max. of S) $\quad P_{\Sigma}\left(\right.$ max. of $\left.S_{\Sigma}\right)$
$a,(P=S(a)) \quad a_{\Sigma},\left(P_{\Sigma}=S_{\Sigma}\left(a_{\Sigma}\right)\right)$

CASE 1 (trivial)
Assumptions: All fibers have
a) same force-strain curve $S=S(\varepsilon)$ and
b) same strength P and same breaking strain a. Then the following equations are valid evidently:

$$
S_{\Sigma}(\varepsilon)=n S(\varepsilon), \quad P_{\Sigma}=n P, \quad a_{\Sigma}=a
$$

CASE 2 (blending theory like W. J. Hamburger) Assumptions:

1. Fiber bundle is a blend (| and |) of 2 types of fibers.
2. All fibers of one type have
a) same force-strain curve $S=S(\varepsilon)$ and
b) same strength P and same breaking

strain a.

Convention:
Fiber of one type having smaller value of breaking strain is denoted as No. 1 (I), other type of fibers is denoted as No. 2. (|). (These numbers are used as subscripts.)

Variables:	Fiber material	
	No. 1	No. 2
Fiber fineness	t_{1}	t_{2}
Force-strain relation	$S_{1}(\varepsilon)$	$S_{2}(\varepsilon)$
Breaking strain of fiber	$a_{1} \leq a_{2}$	
Fiber strength	$P_{1}=S_{1}\left(a_{1}\right)$	$P_{2}=S_{2}\left(a_{2}\right)$
Number o fibers	n_{1}	
Total number of fibers	$n=n_{1}+n_{2}$	
Mass of fibers	m_{1}	
Total mass of fibers	$m=m_{1}+m_{2}$	
Bundle fineness (count)	$T=m / h$	
Mass portion	$g_{1}=m_{1} / m$	$g_{2}=m_{2} / m$
Sum of mass portions	$g_{1}+g_{2}=1$	

It is valid for the fiber No. 1:

$$
m_{1}=g_{1} m, t_{1}=m_{1} /\left(n_{1} h\right), n_{1}=m_{1} /\left(t_{1} h\right)=\left(g_{1} / t_{1}\right)(m / h), n_{1}=g_{1}\left(T / t_{1}\right)
$$

For the fiber No. 2, it is valid analogically:

$$
n_{2}=g_{2}\left(T / t_{2}\right)
$$

Maximum forces, in a bundle Force-strain curves:
a) Interval $\varepsilon \leq a_{1}$ max. at $\varepsilon=a_{1}$

$$
\begin{aligned}
& S_{\Sigma}\left(a_{1}\right)=n_{1} P_{1}+n_{2} S_{2}\left(a_{1}\right) \\
& S_{\Sigma}\left(a_{1}\right)=T\left[g_{1} P_{1} / t_{1}+g_{2} S_{2}\left(a_{1}\right) / t_{2}\right]
\end{aligned}
$$

b) Interval $\varepsilon \in\left(a_{1}, a_{2}\right\rangle$ max. at $\varepsilon=a_{2}$

$$
\begin{aligned}
& S_{\Sigma}\left(a_{2}\right)=n_{1} \cdot 0+n_{2} P_{2} \\
& S_{\Sigma}\left(a_{2}\right)=T g_{2} P_{2} / t_{2}
\end{aligned}
$$

c) Interval $\varepsilon>a_{2} \Rightarrow$ all fibers are broken,

$$
S_{\Sigma}\left(\varepsilon>a_{2}\right)=0
$$

Strength of bundle

$$
P_{\Sigma}=\max \left\{S_{\Sigma}\left(a_{1}\right), S_{\Sigma}\left(a_{2}\right)\right\}=T \max \left\{\left[g_{1} \frac{P_{1}}{t_{1}}+g_{2} \frac{S_{2}\left(a_{1}\right)}{t_{2}}\right],\left[g_{2} \frac{P_{2}}{t_{2}}\right]\right\}
$$

$P_{1} / t_{1} \quad$...tenacity of fiber No. 1 (e.g. $\mathrm{N} / \mathrm{tex}$)
$P_{2} / t_{2} \quad$...tenacity of fiber No. 2 (e.g. N/tex)
$S_{2}\left(a_{1}\right) / t_{2}$...specific stress of fiber No. 2 (e.g. N/tex) at $\quad \varepsilon=a_{1}$
Bundle tenacity P_{Σ} / T

$$
\frac{P_{\Sigma}}{T}=\max \left\{\left[g_{1} \frac{P_{1}}{t_{1}}+g_{2} \frac{S_{2}\left(a_{1}\right)}{t_{2}}\right],\left[g_{2} \frac{P_{2}}{t_{2}}\right]\right\} \text { (e.g. N/tex) }
$$

Breaking strain of bundle
a) $a_{\Sigma}=a_{1}$ if $P_{\Sigma} / T=g_{1} P_{1} / t_{1}+g_{2} S_{2}\left(a_{1}\right) / t_{2}$
b) $a_{\Sigma}=a_{2}$ if $\quad P_{\Sigma} / T=g_{2} P_{2} / t_{2}$

Graphical representation of resulting equation

$$
P_{\Sigma} / T=\max \left\{\left[g_{1} P_{1} / t_{1}+g_{2} S_{2}\left(a_{1}\right) / t_{2}\right],\left[g_{2} P_{2} / t_{2}\right]\right\}
$$

Minimum bundle tenacity - two possibilities:
a) $g_{2}=0$ (o) and then $\quad P_{\Sigma} / T=P_{1} / t_{1}$

b) By point of intersection (\circ) of two lines, it is

$$
\begin{array}{ll}
\stackrel{=1-g_{2}}{g_{1}} P_{1} / t_{1}+g_{2} S_{2}\left(a_{1}\right) / t_{2}=g_{2} P_{2} / t_{2}, & g_{2}=\frac{P_{1} / t_{1}}{P_{1} / t_{1}+P_{2} / t_{2}-S_{2}\left(a_{1}\right) / t_{2}} \\
P_{1} / t_{1}=g_{2} P_{1} / t_{1}+g_{2} P_{2} / t_{2}-g_{2} S_{2}\left(a_{1}\right) / t_{2}, &
\end{array}
$$

and using of this value we get $P_{\Sigma} / T=g_{2} P_{2} / t_{2}$
Now, the minimum bundle tenacity is the minimum of three calculated values P_{Σ} / T.
Note: After addition of fibers having higher tenacity, the tenacity of resulting bundle can decrease!

EMPIRICAL USAGE OF RESULTS FOR YARNS

Instead of fiber parameters, parameters of one component and blended yarns are used.

Quantity	Instead of FIBERS and BUNDLES	we use values of YARNS
p_{1}	Relative strength (tenacity) of fiber with lower breaking strain	Relative strength (tenacity) of one component yarn with lower breaking strain
p_{2}	Relative strength (tenacity) of fiber with higher breaking strain	Relative strength (tenacity) of one component yarn with higher breaking strain
a_{1}	Breaking strain of fiber of compo- nent with lower breaking strain	Breaking strain of one component yarn with lower breaking strain
a_{2}	Breaking strain of fiber of compo- nent with higher breaking strain	Breaking strain of one component yarn with higher breaking strain
$\sigma_{21}(a)$	Relative force in fiber with higher breaking strain by relative elongation $\varepsilon=a_{1}$	Relative force in one component yarn with higher breaking strain by relative elongation
g_{1}, g_{2}	Mass portion of fibers with lower and higher breaking strain in bundle	Mass portion of fibers of one compo- nent yarn with lower and higher breaking strain in bundle
p_{Σ}	Relative strength (tenacity) of bundle from two components	Relative strength (tenacity) of blended yarn from two components
a_{Σ}	Breaking strain of bundle from two components	Breaking strain of blended yarn from two components

Task 1 Calculate number of fibers in bundle, breaking strain of bundle, breaking strength of bundle and relative breaking strength of bundle.
a) 100% cotton, $T=20 \mathrm{tex}, t=0,17 \mathrm{tex}, ~ l=26 \mathrm{~mm}, p=0,298 \mathrm{Ntex}^{-1}, a=9 \%$
b) 100% POP, $T=20 \mathrm{tex}, t=0,188 \mathrm{tex}, l=40 \mathrm{~mm}, p=0,4 \mathrm{Ntex}^{-1}, a=63 \%$
a) $n=118$ fibers, $a_{\text {bundle }}=9 \%, P_{\text {bundle }}=5,98 \mathrm{~N}, p_{\text {bundle }}=0,298 \mathrm{Ntex}^{-1}$
b) $n=106$ fibers, $a_{\text {bundle }}=63 \%, P_{\text {bundle }}=7,97 \mathrm{~N}, p_{\text {bundle }}=0,4 \mathrm{Ntex}^{-1}$

Task 2 Calculate relative breaking strength of blended yarn 65CO/35POP, yarn count is 20tex, if you know properties of each component:
100% cotton, $t=0,17$ tex, $p_{1}=0,183$ Ntex $^{-1}, a_{1}=6,2 \%$
100% POP, $t=0,188$ tex, $p_{2}=0,231 \mathrm{Ntex}^{-1}, a_{2}=24,3 \%$

$$
\begin{aligned}
& \sigma_{2}\left(a_{1}\right)=a_{1} \frac{p_{2}}{a_{2}}=6,2 \frac{0,231}{24,3}=0,0589 \mathrm{~N} / \text { tex } \\
& G_{2}=\frac{p_{1}}{p_{1}+p_{2}-\sigma_{2}\left(a_{1}\right)}=\frac{0,183}{0,183+0,231-0,0589}=0,52 \\
& G_{1}=1-G_{2}=0,48 \\
& g_{2}=0,35 \Rightarrow p_{\Sigma}=g_{1} p_{1}+g_{2} \sigma_{2}\left(a_{1}\right)=0,65 * 0,183+0,35 * 0,0589=0,1396 \mathrm{~N} / \mathrm{tex}
\end{aligned}
$$

Task 3 Calculate relative breaking strength of blended yarn 50CO/50PES, yarn count is 25tex, if you know properties of each component:
100% cotton, $p_{1}=0,332$ Ntex $^{-1}, a_{1}=4,9 \%$
100% PES, $p_{2}=0,132$ Ntex $^{-1}, a_{2}=15 \%$

$$
\begin{aligned}
& \sigma_{2}\left(a_{1}\right)=a_{1} \frac{p_{2}}{a_{2}}=4,9 \frac{0,132}{15}=0,04312 \mathrm{~N} / \text { tex } \\
& G_{2}=\frac{p_{1}}{p_{1}+p_{2}-\sigma_{2}\left(a_{1}\right)}=\frac{0,332}{0,332+0,132-0,04312}=0,79 \\
& G_{1}=1-G_{2}=0,21 \\
& g_{2}=0,5 \Rightarrow p_{\Sigma}=g_{1} p_{1}+g_{2} \sigma_{2}\left(a_{1}\right)=0,50 * 0,332+0,5 * 0,04312=0,1876 \mathrm{~N} / \mathrm{tex}
\end{aligned}
$$

Task 4 Calculate relative breaking strength of blended yarn 35CO/65POP, yarn count is 20tex, if you know properties of each component:
100% cotton, $p_{1}=0,14 \mathrm{Ntex}^{-1}, a_{1}=4,2 \%$
100% POP, $p_{2}=0,42 \mathrm{Ntex}^{-1}, a_{2}=9 \%$

$$
\begin{aligned}
& \sigma_{2}\left(a_{1}\right)=a_{1} \frac{p_{2}}{a_{2}}=4,2 \frac{0,42}{9}=0,196 \mathrm{~N} / \text { tex } \\
& G_{2}=\frac{p_{1}}{p_{1}+p_{2}-\sigma_{2}\left(a_{1}\right)}=\frac{0,14}{0,14+0,42-0,196}=0,38 \\
& G_{1}=1-G_{2}=0,62 \\
& g_{2}=0,65 \Rightarrow p_{\Sigma}=g_{2} p_{2}=0,65 * 0,42=0,273 \mathrm{~N} / \mathrm{tex}
\end{aligned}
$$

