PNEUMATIC DRIVES

Ing. Petra Komárková, Ph.D.

Basic mean for automation of sewing machine

Pneumatic drives

- Properties of pneumatic drives
 - Speed: 8 m/s (common speed 2-3 m/s)
 - Air pressure: 0,6 MPa (defines a force F = S*p)
 - Power < IkW

The Structure of Pneumatic Systems

System Circuit Diagram

Working element

Control element

Processing element

Input elements

Energy supply elements

Pneumatic drives

- Division according to the element converting the pressure to force or deflection:
 - With membrane
 - With piston
 - Special
- According to the way motion is generated
 - Single-acting
 - Double-acting
- According to the path of the output element
 - Linear
 - Swivel
 - Rotary
- According to the signal
 - Continuous (proportional)
 - Discontinuous

Type of drives used in practice (seminars)

Direct Actuation of Cylinders

- The double-acting cylinder has two working ports and can therefore create a force during extending and retracting the piston (hence the naming).
- The single-acting cylinders, however, can produce a force in one direction only. The retraction is done here by a return spring.

PISTON FORCE calculation for linear engines

THEORETICAL PISTON FORCE is given by:

$$F_{th} = A \cdot p$$

where F_{th} - theoretical piston force [N, kp]

A - piston area [m², cm²]

p - working pressure [Pa, bar]

Pneumatic piston drives achieve considerable forces - tens of kN.

- However, EFFECTIVE PISTON POWER is important for practice
- Frictional resistances must be taken into account in its calculation
- Under normal operating conditions, frictional forces can amount to 3 - 20% of the total derived force
- The single-acting cylinder has a significantly worse efficiency simply because the piston force has to work against the return spring
- Assume an efficiency of 0.95 for double-acting cylinders and 0.8 for single-acting cylinders

Effective force– single-acting cylinder

$$F_{ef} = A \cdot p - F_{fr} - F_{sp}$$

Force analysis of a single-acting cylinder

Where

F_{ef} effective force

 F_{fr} frictional resistance force

 F_{sb} return spring force

Effective force– duble-acting cylinder

Force analysis of a double-acting cylinder

Where

F_{ef} effective force

F_{fr} frictional resistance force

Effective force – duble-acting cylinder RETRACTION MOVEMENT

$$F_{ef} = A' \cdot p - F_{fr}$$

Where

$$A = \frac{D^2 \cdot \pi}{A}$$
 - effective piston area [m²]

$$A' = \frac{(D^2 - d^2) \cdot \pi}{4}$$
 - effective piston area on the piston rod side [m²]

working pressure [Pa]

 $F_{\rm ef}$ effective force [N]

inner diameter of the piston [m]

piston rod diameter [m]

Symbols for the Power Supply Section

Symbols in accordance with DIN ISO 1219
"Fluid Technique – Graphical Symbols and Circuit Diagrams"

The triangle indicates the

In general, the symbols for

pneumatics and hydraulics

flow direction.

are the same.

Energy Supply

- Compressor with constant displacement volume
- Pneumatic reservoir
- Pressure source

Maintenance

Filter

- -Water separator with manual actuation
- Water separator with automatic condensate drain
- Lubricator
- Pressure regulating valve with relief port, adjustable

Symbols for the Power Supply Section

Combined Symbols

- Air service unit

Consisting of Compressed air filter, Pressure regulating valve, Pressure gauge and compressed air lubricator

Simplified representation of a service unit

Simplified representation of a service unit without compressed air lubricator

Directional Control Valves

Directional control valves are used as

- Control elements
- Processing elements or
- Input elements

Written title: 2/2-Way valve

Spoken title: Two-slash-two way valve

Port identification: By numbers

Open position/Normally open position

Closed position/Normally closed position

Directional Control Valves: Ports and Switching Positions

Number of ports

Number of switching positions

2/2-way valve, normally open position

T 1

3/2-way valve, normally closed position

3/2-way valve, normally open position

4/2-way valve flow from 1 \rightarrow 2 and from 4 \rightarrow 3

5/2-way valve flow from 1 \rightarrow 2 and from 4 \rightarrow 5

5/3-way valve, mid-position closed

Port designations

Working ports

- I Supply port
- 2, 4 Working ports
- 3,5 Exhaust ports

12 T T T 3

Pilot ports

- 10 Signal applied blocks flow from 1 to 2
- 12 Signal applied opens flow from 1 to 2
- 14 Signal applied opens flow from 1 to 4

Example of 3/2-Way Valve

3/2-Way Valve: Ball Bearing Seat, Normally Closed Position

3/2-Way Valve: with Disk Seat, Normally Closed Position

Example of 3/2-Way Valve

3/2-Way Single Pilot Valve, Normally Closed Position

Types of actuation

- The symbols for the types of actuation are drawn directly on the valve symbols.
- Selection Depending upon system requirements
 - Manually actuated
 - Mechanically actuated
 - Pneumatically actuated
 - Electrically actuated
 - Combined types of actuation
- Purpose
 - Actuate
 - Reset
 - Center

Types of actuation

Types of actuation

Non-return, Flow Control and Pressure Control Valves

Non-return valves

- Non-return valve (check valve)
- Non-return valve, spring-loaded
- Shuttle valve (OR function)
- Dual pressure valve (AND function)
- Quick exhaust valve
- One-way flow control valve

Flow control valve

- Flow control valve (throttle valve), adjustable

Pressure control valves

- Adjustable pressure regulating valve without relief port

Symbols for the Principle Working Elements

- The symbol is represented with the advance motion to the right in the system circuit diagram
- Sloping arrow over piston: denotes adjustable end position cushioning

Single-acting:
Performs work in one direction

Double-acting: Performs work in both directions

Linear Actuators

- Single-acting cylinder
 Double-acting cylinder
- Double-acting cylinder with through piston rod
- Double-acting cylinder with single, non-adjustable cushioning
- Double-acting cylinder with single, adjustable cushioning
- Double-acting cylinder with adjustable cushioning at both ends
- Rodless cylinder with magnetic coupling

Single-Acting Cylinder

Single-Acting Cylinder

Source: FESTO

Double-Acting Cylinder

Double-Acting Cylinder

Source: FESTO

Symbols for the Principle Working Elements

Rotary Drives

- Air motor, constant displacement, rotation in one direction
- Air motor, variable displacement, rotation in one direction
- Air motor, variable displacement, rotation in both directions
- Pneumatic rotary motor

Swivel Drive

Rotary Cylinder

Direct and indirect Actuation

Direct Actuation

- Simplest possibility
- Input element =Control element

Indirect Actuation

- Usual type of actuation
- For cylinders with large diameters
- In case of large distance between input element and working element