MatLab Programming Fundamentals

guarantor: Maroš Tunák tel.: 3465
e-mail: maros.tunak@tul.cz

Course objectives

The aim of the course is to acquire basics knowledge and skills of students the MatLab program. At the end of the course students will be able to use MatLab for their own work and will be ready to deepen their programming skills in MatLab.

MatLab Programming Fundamentals

time requirements: $0 p+2 c$
credits: 4
exercises: Monday 10:40-12:15; 12:30-14:05 (B-PC2, Tunák M.) Tuesday 08:50-10:25; 10:40-12:15 (B-PC2, Tunák M.)
consultation: Wednesday 10:40-12:15 (E-KHT)

Requirements on student/graded credit

(1) participation in exercises (max. 3 absences)
(2) elaboration of semester work (after approval of the semester work, you can attend a practical demonstration)
(3) practical demonstration of acquired skills (there will be 1-2 examples to solve; elaboration time 1 hour; you can use any materials ...)

Content

IS/STAG Syllabus

1. Getting started with Matlab. Working environment, windows, paths, basic commands, variables. Loading, saving and information about variables. Help.
2. Mathematics with vectors and matrices. Creating vectors and matrices. Indexing. Special matrices. Matrix operations. Element by element operations. Relational operations, logical operations, examples and tricks.
3. Control flow. Loops, conditional statements, examples.
4. Script m-files, Function m-files.
5. Visualisation. Two-dimensional graphics. Three-dimensional graphics.
6. Graphical user interface.
7.-10. Statistics and Machine Learning Toolbox. Basics of statistical data processing, exploratory data analysis, descriptive statistics, data visualisation, hypothesis testing, confidence intervals, regression analysis, control charts.
11.-13. Solution of practical problems in textile and industrial engineering.

Literature

Recommended

MathWorks. Getting Started with MATLAB. [Online]. Dostupné z:
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html

Study materials

http://elearning.tul.cz

Installation

http://liane.tul.cz/cz/software/MATLAB

Visualisation. Two-dimensional graphics.

Two-dimensional graphics

The possibilities of creating 2-D graphs in MatLab are huge. The following will be listed basic possibilities of using the plot command. When plot is called, a new Figure window (if not already open) is open, axes are created and points are drawn. The default is to drawn in blue color, with no marker type and solid line. line icon.

- for example plotting of function x^{2} at an interval of -10 to 10 with division step 2. First, we need to create a vector x at the specified interval and calculate the functional values for each x. Simple plotting is done by the command $\mathrm{plot}(\mathrm{x}, \mathrm{y})$, where the vectors x and y must have same size:

```
>> x=-10:2:10;
>> y=x.^2;
>> plot(x,y)
```


Two-dimensional graphics

Figure: Figure Window

Two-dimensional graphics

- smaller division step, new figure window

```
>> x=-10:0.5:10;
>> y=x.^2;
>> figure,plot(x,y)
```


Two-dimensional graphics

Two-dimensional graphics

- plot of vector y against index order
>> figure, plot(y)

Two-dimensional graphics

Two-dimensional graphics

- quick adjustment of line specifications is performed by means of a text string (color, line style, marker type), eg. red color, circle, dotted line

```
>> figure,plot(x,y,':or')
```


Two-dimensional graphics

Line specifications

Symbol	Line style	Symbol	Marker type
-	solid line	+	plus
$:$	dashed line	\circ	circle
-	doted line	$*$	asterisk
.-	dash-dotted line		point
Symbol	Color	x	cross sign
r	Red	s	čtverec
g	Green	d	diamond
b	Blue	A	upward-pointing triangle
c	Cyan	v	downward-pointing triangle
m	Magenta	$<$	left-pointing triangle
y	Yellow	$>$	right-pointing triangle
k	blacK	p	pentagram
w	White	h	hexagram

Two-dimensional graphics

- example of plotting function $y=\sin (x)$ on interval $<-2 \pi, 2 \pi>$, green color, diamond, solid line

```
>> x=-2*pi:0.1:2*pi;
>> y=sin(x);
>> plot(x,y,'gd-')
```


Two－dimensional graphics

Two-dimensional graphics

- inserting title, axis labels x and y

```
>> title('Function sin(x)')
>> xlabel('x = -2\pi : 2\pi ')
>> ylabel('sin(x)')
```


Two-dimensional graphics

Two-dimensional graphics

- grid insertion, setting of axis limits, legend
>> grid on
>> axis([[-7 7 -1.2 1.2])
>> legend('sin(x)')

Two-dimensional graphics

Two-dimensional graphics

- to the same graph display function $z=\cos (x)$ on the interval $\langle-2 \pi, 2 \pi\rangle$, color red, circle, dashed line

```
>> z=cos(x);
>> hold on
>> plot(x,z,'or-.')
>> legend('sin(x)','\operatorname{cos(x)')}
```


Two-dimensional graphics

Two-dimensional graphics

- or individual pairs can be plotted with one command
>> figure, plot(x, y, 'gd-', x, z, 'or-.' $)$

Two-dimensional graphics

Two-dimensional graphics

Command Operation

» plot(y) plot a vector y vs index
» plot(x, y) plot a vector y vs vector x
$\geqslant \operatorname{plot}(x, y, ' \mathrm{p}$ ') plot a vector y vs vector x with parameters
» title('text') title above a graph
» xlabel('text') label text on the x axis
» ylabel('text') label text on the y axis
» text(x, y, 'text') adds text at the point $(x, y$)
» gtext('text') adds text at manually indicated point
» grid on/off
» axis([xmin xmax ymin ymax])
» $\operatorname{xlim}([x m i n ~ x m a x])$
» $\operatorname{ylim}([y m i n y m a x])$
» legend('fun1','fun2') plots a legend box » legend off delete the legend box

Two-dimensional graphics

- Example: draw three functions $y 1=\sin (x), y 2=\sin (x+0.25)$, $y 3=\sin (x+0.5)$ on interval $\langle 0,2 \pi\rangle$ in different color with solid line, legend, grid

```
>> x=0:0.1:2*pi;
>> y1=sin(x);
>> y2=sin(x+0.25);
>> y3=sin(x+0.5);
>> plot(x,y1,x,y2,x,y3)
>> xlim([0,2*pi])
>> grid on
>> legend('sin(x)','sin(x+.25)','sin(x+.5)')
```


Two-dimensional graphics

Aile Eigure 7

Two-dimensional graphics

- insert text at a defined position or user selected

```
>> text(1,-0.4,'function sin')
>> gtext('function sin + shift')
```


Two-dimensional graphics

A. Figure 7

Two-dimensional graphics

Command Operation
» figure new figure window
» clf clear the current figure
»close closing of current figure
» hold on/off retain current graph in figure
» subplot($\mathrm{m}, \mathrm{n}, \mathrm{p}$) create axes in tiled positions

Two-dimensional graphics

- Sometimes it is useful to bring several coordinate systems into one graphic window. This is possible using the subplot command, which creates a $m \times n$ coordinate system matrix in one graphical window. The first number represents the number of rows, the second number of columns and the third position from the upper left corner. For example, functions $\sin (x), \cos (x), x^{2}$ side by side

```
>> x=-10:0.1:10;
>> y1=x;
>> y2=x.^2;
>> y3=x.^3;
>> subplot(1,3,1),plot(x,y1),title('function y=x')
>> subplot(1,3,2),plot(x,y2,'r'),title('function y=x^2')
>> subplot(1,3,3),plot(x,y3,'g'),title('function y=x^3')
>> sgtitle('Title of subplot figure')
```


Two-dimensional graphics

Two-dimensional graphics

- or joining positions

```
>> figure
>> subplot(2,2,1),plot(x,y1),title('function y=x')
>> subplot(2,2,3),plot(x,y2,'r'),title('function y=x^2')
>> subplot(2,2,[2 4]),plot(x,y3,'g'),title('function y=x^3')
```


Two-dimensional graphics

Two-dimensional graphics

Examples for practice

Examples for practice

(1) Draw a graph of the theoretical values of area coverage Z for set of n jerseys $1,2, \ldots, 8$, if $Z=\left[\begin{array}{lll}0.615 & 0.631 & 0.657 \\ 0.694 & 0.671 & 0.716 \\ 0.701 & 0.734\end{array}\right]$, insert axis labels.
(2) Draw a graph of the dependence of porosity $P[\%]=\left[\begin{array}{lllllll}1.91 & 5.46 & 8.73 & 11.42 & 15.01\end{array}\right]$ on the relative elongation of kinesiotape $\epsilon[\%]=\left[\begin{array}{llll}0 & 13.3 & 25 & 33.3 \\ 50\end{array}\right]$. Insert axis labels.
(3) Generate a X vector that contains 100 values from $N(0,1)$ and in one Figure window draw even X data with a red circle against the index and to the graph next to it odd X data with a green circle and a line.
4. Draw probability density functions of normal distribution $N\left(\mu, \sigma^{2}\right)$ for parameters $\mu=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $\sigma=\left[\begin{array}{lll}1 & 2 & 0.5\end{array}\right]$, ie. $N(0.1), N(0.2), N(0.0 .5), N(2.1)$ at x in $\left.<-10,10\right\rangle$ to one chart with different color, insert legend. The probability density function of a normal distribution is defined by:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Solution

