

New Opportunities for the Development of Education at the Technical University of Liberec

Specific objective A2: Development in the field of distance learning, online learning and

blended learning

NPO_TUL_MSMT-16598/2022

Study guide - calculations

Ing. Zdeněk Brabec, Ph.D.

Content

- Contribution margin
- Break-even point analysis
- Traditional x ABC costing
- Profit planing

I) Contribution margin

		Total		
	X	Υ	Z	Total
Sales quantity	1,000	1,500	2,000	
Sales price (in €)	300	250	400	
Variable costs per unit (in €)	200	160	280	
Fixed product costs (in €)	40,000	50,000	120,000	
Fixed company costs (in €)				150,000

Tasks:

- 1) Calculate the contribution margin of each product (multistage calculation)
- 2) Decide which product is the most profitable

Contribution margin

	Products					Total		
	X		Υ		Z		ths €	%
	ths €	%	ths €	%	ths €	%	uis €	70
Sales revenue (in €)								
Variable costs (in €)								
Contribution margin I (in €)								
Fixed product costs (in €)								
Contribution margin II (in €)								
Fixed company costs (in €)								
Profit (in €)								

Contribution margin - solution

		Products					Total	
	X		Υ		Z		ths €	%
	ths €	%	ths €	%	ths €	%	uis€ %	70
Sales revenue (in €)	300	100	375	100	800	100	1,475	100
Variable costs (in €)	200	66.7	240	64.0	560	70	1,000	67.8
Contribution margin I (in €)	100	33.3	135	36.0	240	30	475	32.2
Fixed product costs (in €)	40	13.3	50	13.3	120	15	210	14.2
Contribution margin II (in €)	60	20.0	85	22.7	120	15	265	18.0
Fixed company costs (in €)							150	10.2
Profit (in €)							115	7.8

II) Calculation of the Break-even point in heterogeneous production

Calculation of BEP is based on:

- 1. variable cost per 1,- CZK of revenues
 - → total VC/total revenues
- 2. contribution margin of a certain structure of company's output
 - → 1 total VC/total revenues

Determining the Break-even point

BEP = FC/contribution margin

BEP is expressed <u>in value</u> as such an amount of revenues that covers fixed costs spent

By the amount of output a company has neither profit nor loss \rightarrow BEP

Calculation of revenues by which a company achieves a required amount of profit

REVENUES_{RP} =

= (FC + required profit)/contribution margin

Calculation of the Break-even point in heterogeneous production

A company produces five types of products -A, B, and C. These products have the following costs and prices:

Table 1 The contribution of individual products to total revenues at the Break Even Point

Product	Product price	Average variable	Sales	Total revenues	Total variable
	(CZK)	costs (CZK)	(pc)	(CZK)	costs (CZK)
A	1,200	620	4,000	4,800,000	2,480,000
В	5,230	3,150	6,000	31,380,000	18,900,000
C	3,100	1,500	1,000	3,100,000	1,500,000
Total				39,280,000	22,880,000

Source: Own computation.

Fixed costs are 10,000,000 CZK.

Calculation of the Break-even point in heterogeneous production

Tasks:

- 1. Calculate the total revenues by which a company achieves the Break Even Point (assuming no changes in the output structure).
- 2. Calculate the contribution of individual products to the total revenues at the Break Even Point.
- 3. Assuming the constant output structure calculate the total revenues and revenues attributed to individual products by which a company will achieve the profit in the amount of 2,000,000 CZK.

TECHNICAL UNIVERSITY OF LIBEREC

Calculation of the Break-even point in heterogeneous production solution

1) The calculation of the Break Even Point by the inhomogeneous production is based on variable costs per 1 CZK of sales and the contribution margin to sales by a set structure.

$$VCpU = \frac{VC}{TR} = \frac{22,880,000}{39,280,000} = 0.5825$$
 (variable costs per 1 CZK)

Variable costs per 1,- CZK of sales are 0.5825 CZK and the contribution margin to sales is 0.4175 CZK (= 1 - 0.5825).

$$TR_{BEP} = \frac{FC}{1 - VCpU} = \frac{10,000,000}{1 - 0.5825} = \frac{10,000,000}{0.4175} = \frac{23,952,096 \text{ CZK}}{1.0000,000}$$

A company achieves the Break Even Point by revenues in the amount of 23,952,096 CZK.

Calculation of the Break-even point in heterogeneous production - solution

2) Share on total revenues = 4,800,000 / 39,280,000 * 100 = **12.22**

Revenues by achieving the BEP in CZK (Product A) = 23,952,096 * 12,22 / 100 = 2,926,936

Number of products = 2,926,936 / 1,200 = 2,439 products

	Share on	Revenues by	Price	Number of
Product	total revenues	achieving the	per	products by
	(%)	BEP (CZK)	piece	BEP in pcs
A	12.2200	2,926,936	1,200	2,439
В	79.88780	19,134,847	5,230	3,659
C	7.8921	1,890,313	3,100	610
Total	100	23,952,096		

Calculation of the Break-even point in heterogeneous production - solution

$$TRp = \frac{FC + P}{1 - VCpU} = \frac{10,000,000 + 2,000,000}{1 - 0.5825} = \frac{12,000,000}{0.4175} = \frac{28,742,515 \text{ CZK}}{1}$$

A company achieves the profit in the amount of 2,000,000 CZK by the total revenues of 28,742,515_CZK.

The revenues of individual products by achieving the profit in the amount of 2,000,000 CZK (product A) = 28,742,515 * 12.22 = 3,512,325 CZK

Product	Share on total revenues (%)	Revenues at the given profit (CZK)	Price per piece	Number of products at the given profit in pcs
A	12.2200	3,512,325	1,200	2,927
В	79.88780	22,961,816	5,230	4,390
C	7.8921	2,268,376	3,100	732
Total	100	28,742,515		

III) Comparison of traditional product costing with ABC

• Beta company manufactures products A and B for which this information is available:

Ratio	Unit of measure	Product A	Product B
Production and sale	pcs	25,000	5,000
Direct material	CZK/pcs	25	20
Direct wages	CZK/pcs	15	5
Machine hours (number of hours for the production of 1 pc)	hour/pc	1	2
Number of adjustments of machines for total production		4	20
Number of shipments to deliver the total quantity		40	80
Number of pcs in one delivery	pcs	625	62.50
Number of pcs produced per 1 adjustment	pcs	6,250	250

Comparison of traditional product costing with ABC

Overhead costs have this structure:

• machine adjustment costs = 120,000 CZK

• other production overheads = 700,000 CZK

• shipping and delivery costs = 180,000 CZK

Total overhead costs = 1,000,000 CZK

Tasks:

a) Calculate the production cost for products A and B in the traditional way using a **mark-up calculation**. As a cost-allocation base, use: - *direct wages*,

- machine hours.

- b) Calculate production costs for products A and B using the ABC method.
- c) Compare all calculated results.

Distribution of total overhead costs by direct wages

Coefficient OC =
$$\frac{1,000,000}{(15 \times 25,000) + (5 \times 5,000)}$$
$$= \frac{1,000,000}{375,000 + 25,000} = 2.5 (250\%)$$

Overhead costs (OC) of each product will represent 250% of direct labour costs.

• Calculation of production costs in CZK per one piece using mark-up calculation:

	A	В
Direct material	25	20
Direct wages	15	5
Overhead costs	37.5	12.5
Total costs	77.5	37.5

Distribution of total overhead costs by machine hours

OC rate
$$=\frac{1,000,000}{(1\times25,000)+(2\times5,000)} = \frac{1,000,000}{25,000+10,000} =$$

28. 60 CZK/machine hour

Overhead costs (OC) of each product will represent 28.60 CZK per each machine hour.

• Calculation of production costs in CZK per one piece using mark-up calculation:

	A	В
Direct material	25	20
Direct wages	15	5
Overhead costs	28.60	57.20
Total costs	68.60	82.20

Allocation of overheads using the ABC method

Types of Overhead costs (OC)

```
• machine adjustment costs = 120,000 \text{ CZK}
```

• other production overhead costs = 700,000 CZK

• shipping and delivery costs = 180,000 CZK

1. Allocation of Machine Adjustment Costs \rightarrow CD₁ = number of machine adjustments

Rate₁ =
$$\frac{\text{machine adjustement costs}}{CD_1(\text{nb. of machine adjustments})} = \frac{120\ 000}{4\ (A) + 20\ (B)}$$

= **5**, **000 CZK/adjustment**

Total adjustment costs attributable to all products A:

Rate₁ x number of adjustments = $5,000 \times 4 = 20,000$ CZK

Adjustment costs attributable to 1 pc of product $A \rightarrow$

$$\frac{\text{machine adjustment costs}}{\text{number of products A}} = \frac{20,000}{25,000} = 0.80 \text{ CZK/1pc}$$

Total adjustment costs attributable to all products B:

Rate₁ x number of adjustments = $5,000 \times 20 = 100,000$ CZK

Adjustment costs attributable to 1 pc of product $B \rightarrow$

$$\frac{\text{machine adjustment costs}}{\text{number of products B}} = \frac{100,000}{5,000} = 20 \text{ CZK/1pc}$$

Check:

Total adjustment costs of product A 20,000 CZK

Total adjustment costs of product B 100,000 CZK

Adjustment costs 120,000 CZK (this amount was allocated)

- **2.** Allocation of other production overhead costs \rightarrow CD₂
- = number of machine hours

$$Rate_2$$

Other production overhead costs

 CD_2 (total machine hours for the whole production) 700,000

$$=\frac{1}{(1 \times 25,000 \text{ A}) + (2 \times 5,000 \text{ B})}$$

= 20 CZK /machine hour

Other production overhead costs attributable to 1 pc of product A:

Rate₂ x machine hours = $20 \times 1 = 20$ CZK/1ks

Other production overhead costs attributable to 1 pc of product B:

Rate₂ x machine hours = $20 \times 2 = 40$ CZK/1ks

Check:

Total other production overhead costs for the product A:

Rate₂ x number of manufactured pieces = $20 \times 25,000 = 500,000 \text{ CZK}$

Total other production overhead costs for the product B:

Rate₂ x number of manufactured pieces = $40 \times 5,000 = 200,000 \text{ CZK}$

Total other production overhead costs (this amount was allocated)

700,000 CZK

3. Allocation of shipping and delivery costs \rightarrow CD₃ = number of deliveries

Rate₃ =
$$\frac{\text{Shipping and delivery costs}}{\text{CD}_3 \text{ (total number of deliveries)}}$$

= $\frac{180\ 000}{40\ \text{A} + 80\ \text{B}}$ = 1,500 CZK/delivery

Total shipping and delivery costs of all products A:

Rate₃ x number of deliveries = $1,500 \times 40 = 60,000$ CZK

Shipping and delivery costs per 1 piece of product A

$$\rightarrow \frac{\text{schipping and deliver costs}}{\text{number of products A}} = \frac{60,000}{25,000} = 2.40 \text{ CZK/1pc}$$

Total shipping and delivery costs of all products B:

Rate₃ x number of deliveries = $1,500 \times 80 = 120,000$ CZK

Shipping and delivery costs per 1 piece of product $B \rightarrow$

$$\frac{\text{shipping and deliver costs}}{\text{number of products B}} = \frac{120,000}{5,000} = 24 \text{ CZK/1pc}$$

Check:

Total shipping and delivery costs of products A

Total shipping and delivery costs of products B

1

60,000 CZK 120,000 CZK

Total Shipping and delivery costs (this amount was allocated)

180,000 CZK

Calculation of production costs in CZK per one piece using the ABC method:

	A	В
Direct material	25	20
Direct wages	15	5
OC for machine adjustment	0.80	20
Other production overhead costs	20	40
OC for expedition and delivery	2.40	24
Total costs	63,20	109

Comparison of calculated results:

Total cost of 1 pc of product in CZK:	A	В
Mark-up calculation (by direct wages)	77.50	37.50
Mark-up calculation (by machine hours)	68.60	82.20
ABC method	63.20	109.00

IV) Determination of profit in the following year

- Variable costs equals to 60% of revenues, the rest of the costs are fixed costs, which will not change in the next 2 years.
- Income tax will not be paid for 5 years.
- Profit in the current year reached 25 mil. CZK with revenues of CZK 250 million.

Tasks:

- a) Determine the amount of costs in the next year if revenues will rise to CZK 300 million
- b) Calculate the profit in the next year
- c) Calculate the return on sales in each year

Determination of profit in the following year - solution

a) Costs next year

Total cost = revenues – profit = 250 - 25 = 225 million CZK Variable costs = 60% of revenues: $250 \times 0,6 = 150$ million CZK Fixed costs = total cost – variable costs = 225 - 150 = 75 million CZK (does not change)

Total expected costs next year = Variable costs + fixed costs = $300 \times 0.6 + 75 = 180 + 75 = 255$ million CZK

b) Profit next year:

Profit = Total Revenues - Total Cost = 300 - 255 = 45 million CZK

Determination of profit in the following year - solution

c) Return on sales – first year:

ROS = profit / revenues *100 = 25 / 250 * 100 = 10%

Return on sales – second year:

ROS = profit / revenues *100 = 45 / 300 * 100 = 15%

Thank you for your attention

