Dynamics of the system of particles

Calculating the dynamics of the system of two particles which is presented in the Figure. Two particles A and B move from the initial positions A_{0} and B_{0}. The trajectories of the particles are line k_{A} and k_{B}. The particles are joined together by a rope (with).

Given:

the mass of particles: m_{A}, m_{B},
friction coefficients between the particles and the surfaces when they move: $\mathrm{f}_{\mathrm{A}}, \mathrm{f}_{\mathrm{B}}$,
friction coefficients between the rope and the edge $\mathrm{C}: f_{C}$,
the length of the rope: L ,
the relation of the velocity of the particle A and its displacement is presented by the formula: $v_{A}\left(x_{A}\right)=V x_{A}$
the constants: V, h.

Task:

Write the equations of motion of the system. Find $F_{A}\left(x_{A}\right)$

Solution:

First, we draw the free body diagram of the particles using the d'Alembert as the Figure

The forces acting on the particle A include
Gravity force \vec{G}_{A}
Normal force \vec{N}_{A}
Applied force \vec{F}_{A}
Friction force \vec{T}_{A}
Tension force \vec{S}_{A}
D'Alember force \vec{D}_{A}

The forces acting on the particle B include

Gravity force \vec{G}_{B}
Normal force \vec{N}_{B}
Friction force \vec{T}_{B}
Tension force \vec{S}_{B}
D'Alember force \vec{D}_{B}
Generally, the equation of motion of the particles can be written:

$$
\begin{aligned}
& \vec{G}_{A}+\vec{N}_{A}+\vec{T}_{A}+\vec{S}_{A}+\vec{F}_{A}+\vec{D}_{A}=\overrightarrow{0} \\
& \vec{G}_{B}+\vec{N}_{B}+\vec{T}_{B}+\vec{S}_{B}+\vec{D}_{A}=\overrightarrow{0}
\end{aligned}
$$

Then we can write the component equations by the following:

$$
\begin{align*}
& x: F_{A}-T_{A}-D_{A}-S_{A} \cos \varphi=0 \tag{1}\\
& y: N_{A}-G_{A}+S_{A} \sin \varphi=0 \tag{2}
\end{align*}
$$

$$
\begin{align*}
& x: S_{B}-T_{B}-D_{B}=0 \tag{3}\\
& y: N_{B}-G_{B}=0 \tag{4}
\end{align*}
$$

Specification of force components:

Gravity force

$$
\begin{align*}
G_{A} & =m_{A} g \tag{5}\\
G_{B} & =m_{B} g \tag{6}
\end{align*}
$$

D'Alember force

$$
\begin{align*}
& D_{A}=m_{A} a_{A} \tag{7}\\
& D_{B}=m_{B} a_{B} \tag{8}
\end{align*}
$$

Friction force

$$
\begin{align*}
& T_{A}=f_{A} N_{A} \tag{9}\\
& T_{B}=f_{B} N_{B} \tag{10}
\end{align*}
$$

(the normal forces $N_{A}>0, N_{B}>0$)
The relation of the tension forces can be presented by Euler's equation, as described in the equation below:

$$
\begin{equation*}
S_{A}=S_{B} e^{f_{C} \varphi} \tag{11}
\end{equation*}
$$

S_{A} will depend on the value of S_{B}, the coefficient of friction between the rope and the eagle (f_{C}), and the contact angle between the rope and the eagle (φ) given in radians.

Kinematic quantities:

$$
\begin{align*}
& \operatorname{tg} \varphi=\frac{h}{x_{A}} \tag{12}\\
& x_{B}=\sqrt{x_{A}^{2}+h^{2}}-h \tag{13}
\end{align*}
$$

$$
\begin{align*}
& v_{B}=\frac{d x_{B}}{d t}=\frac{d x_{B}}{d x_{A}} \frac{d x_{A}}{d t}=v_{A} \frac{d x_{B}}{d x_{A}} \tag{14}\\
& a_{A}=v_{A} \frac{d v_{A}}{d x_{A}} \tag{15}\\
& a_{B}=\frac{d v_{B}}{d t}=\frac{d v_{B}}{d x_{A}} \frac{d x_{A}}{d t}=v_{A} \frac{d v_{B}}{d x_{A}} \tag{16}
\end{align*}
$$

Where:

$$
\frac{d v_{B}}{d x_{A}}=\frac{d}{d x_{A}}\left(v_{A} \frac{d x_{B}}{d x_{A}}\right)=\frac{d v_{A}}{d x_{A}} \frac{d x_{B}}{d x_{A}}+v_{A} \frac{d^{2} x_{B}}{d x_{A}^{2}}
$$

The system of equations consists of 16 equations from (1) to (16) with 18 variables:

$$
F_{A}, T_{A}, D_{A}, S_{A}, \varphi, N_{A}, G_{A}, S_{B}, T_{B}, D_{B}, N_{B}, G_{B}, x_{A}, x_{B}, v_{A}, v_{B}, a_{A}, a_{B}
$$

In combination with the relation of the velocity of the particle A and its displacement $v_{A}\left(x_{A}\right)=V x_{A}$ as the equation $17^{\text {th }}$, we can find the relationship of variables with dependence on x_{A}.

From (12), we get:

$$
\varphi\left(x_{A}\right)=\operatorname{arctg} \frac{h}{x_{A}}
$$

From (13), we get:

$$
\begin{equation*}
\frac{d x_{B}}{d x_{A}}=\frac{x_{A}}{\sqrt{x_{A}^{2}+h^{2}}} \tag{17}
\end{equation*}
$$

So:

$$
\frac{d^{2} x_{B}}{d x_{A}^{2}}=\frac{\sqrt{x_{A}^{2}+h^{2}}-\frac{x_{A}}{\sqrt{x_{A}^{2}+h^{2}}}}{\sqrt{x_{A}^{2}+h^{2}}}=\frac{h^{2}}{\left(x_{A}^{2}+h^{2}\right)^{\frac{3}{2}}}
$$

From

$$
v_{A}\left(x_{A}\right)=V x_{A}
$$

We have:

$$
\frac{d v_{A}}{d x_{A}}=V
$$

Then substitute to the equation (15) and (16), we determine function $a_{A}\left(x_{A}\right), a_{B}\left(x_{A}\right)$:

$$
a_{A}=v_{A} \frac{d v_{A}}{d x_{A}}=V^{2} x_{A}
$$

$$
\begin{aligned}
a_{B} & =v_{A} \frac{d v_{B}}{d x_{A}}=v_{A}\left(\frac{d v_{A}}{d x_{A}} \frac{d x_{B}}{d x_{A}}+v_{A} \frac{d^{2} x_{B}}{d x_{A}^{2}}\right)=V x_{A}\left(V \frac{x_{A}}{\sqrt{x_{A}^{2}+h^{2}}}+V x_{A} \frac{h^{2}}{\left(x_{A}^{2}+h^{2}\right)^{\frac{3}{2}}}\right) \\
& =V^{2} x_{A}^{2} \frac{x_{A}^{2}+2 h^{2}}{\left(x_{A}^{2}+h^{2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Rewrite the equations (1) ...(4) in the forms:

$$
\begin{align*}
& F_{A}-f_{A} N_{A}-m_{A} a_{A}\left(x_{A}\right)-S_{A} \cos \varphi\left(x_{A}\right)=0 \tag{18}\\
& N_{A}-m_{A} g+S_{A} \sin \varphi\left(x_{A}\right)=0 \tag{19}\\
& S_{B}-f_{B} N_{B}-m_{B} a_{B}\left(x_{B}\right)=0 \tag{20}\\
& N_{B}-m_{B} g=0 \tag{21}
\end{align*}
$$

From (21), we get:

$$
N_{B}=m_{B} g
$$

And from (20), we have:

$$
\begin{equation*}
S_{B}=m_{B}\left[f_{B} g+a_{B}\left(x_{A}\right)\right] \tag{22}
\end{equation*}
$$

From (19), we have:

$$
N_{A}=m_{A} g-S_{A} \sin \varphi\left(x_{A}\right)
$$

Substitute to (18), we have:

$$
F_{A}-m_{A} f_{A} g-m_{A} a_{A}\left(x_{A}\right)+S_{A}\left[f_{A} \sin \varphi\left(x_{A}\right)-\cos \varphi\left(x_{A}\right)\right]=0
$$

Substitute to (22) to (11), we have:

$$
S_{A}=m_{B}\left[f_{B} g+a_{B}\left(x_{A}\right)\right] e^{f_{C} \varphi\left(x_{A}\right)}
$$

Then we obtain:

$$
F_{A}=m_{A}\left[f_{A} g+a_{A}\left(x_{A}\right)\right]-m_{B}\left[f_{B} g+a_{B}\left(x_{A}\right)\right] e^{f_{C} \varphi\left(x_{A}\right)}\left[f_{A} \sin \varphi\left(x_{A}\right)-\cos \varphi\left(x_{A}\right)\right]
$$

