Moments of inertia of a system of bodies

Given: a system of two bodies as shown in the Figure below. The first body is a homogeneous prism with the mass density ρ and the dimensions of sides: $\mathrm{a}, \mathrm{b}, \mathrm{c}$. The second one is a homogeneous cylinder with the mass density ρ and the dimensions: R (the radius), H (the length).

Task:

Find the matrix of inertia of the system (I) to the coordinate system (x,y,z).

Solution:

We get the mass of the prism from the previous exercise:

$$
\begin{equation*}
m_{1}=\rho V_{1}=\rho \frac{a b c}{2} \tag{1}
\end{equation*}
$$

And the matrix of inertia in the shifted coordinate system $\left(x^{l} y^{l} z^{l}\right)$ is:

$$
I^{1}=\frac{1}{36} m_{1}\left[\begin{array}{ccc}
3 b^{2}+2 c^{2} & 0 & a c \tag{2}\\
0 & 2 c^{2}+2 a^{2} & 0 \\
a c & 0 & 2 a^{2}+3 b^{2}
\end{array}\right]
$$

The shifted vector from the coordinate system $\left(x^{l} y^{l} z^{l}\right)$ to coordinate system $(x y z)$ is:

$$
\begin{equation*}
\vec{r}=-\frac{a}{3} \vec{i}+0 \vec{j}-\frac{c}{3} \vec{k} \tag{1}
\end{equation*}
$$

Then we have the matrix of Steiner's components:

$$
D^{1}=\frac{m_{1}}{9}\left[\begin{array}{ccc}
c^{2} & 0 & -a c \tag{2}\\
0 & c^{2}+a^{2} & 0 \\
-a c & 0 & a^{2}
\end{array}\right]
$$

So we have the matrix of inertia of the prism to the coordinate system ($x y z$):

$$
I_{x y z}^{1}=I^{1}+D^{1}=\frac{1}{12} m_{1}\left[\begin{array}{ccc}
b^{2}+2 c^{2} & 0 & -a c \tag{3}\\
0 & 2 c^{2}+2 a^{2} & 0 \\
-a c & 0 & 2 a^{2}+b^{2}
\end{array}\right]
$$

We get the mass of the cylinder from the previous exercise:

$$
\begin{equation*}
m_{2}=\rho V_{2}=\rho \pi R^{2} H \tag{4}
\end{equation*}
$$

And the matrix of inertia in the coordinate system $\left(x^{2} y^{2} z^{2}\right)$ is:

$$
I^{2}=\frac{1}{4} m_{2}\left[\begin{array}{ccc}
R^{2}+\frac{H^{2}}{3} & 0 & 0 \tag{5}\\
0 & R^{2}+\frac{H^{2}}{3} & 0 \\
0 & 0 & 2 R^{2}
\end{array}\right]
$$

From the Figure, we see that the coordinate system $(x y z)$ can be obtained by rotating the coordinate system $\left(x^{2} y^{2} z^{2}\right)$ with rotated angle φ about the axis y^{2} then translating it with translated vector \vec{r}_{2}, where:

$$
\begin{equation*}
\varphi=\operatorname{acrtg} \frac{c}{a} \tag{6}
\end{equation*}
$$

And

$$
\begin{equation*}
\vec{r}_{2}=-\left(\frac{H}{2} \sin \varphi+\frac{a}{2}\right) \vec{i}_{2}+0 \vec{j}_{2}-\left(\frac{H}{2} \cos \varphi+\frac{c}{2}\right) \vec{k}_{2} \tag{7}
\end{equation*}
$$

So we have the matrix of transformation for rotation about axis y^{2} is:

$$
T=\left[\begin{array}{ccc}
\cos \varphi & 0 & -\sin \varphi \tag{8}\\
0 & 1 & 0 \\
\sin \varphi & 0 & \cos \varphi
\end{array}\right]
$$

Then we find the matrix of inertia of body 2 in the coordinate system $\left(x^{2^{\prime}} y^{2^{\prime}} z^{2}\right)$ is:

$$
\begin{equation*}
I^{2^{2}}=T^{T} I^{2} T \tag{9}
\end{equation*}
$$

And we have the matrix of Steiner's components:

$$
D^{2}=\left[\begin{array}{ccc}
D_{1,1}^{2} & D_{1,2}^{2} & D_{1,3}^{2} \tag{10}\\
D_{2,1}^{2} & D_{2,2}^{2} & D_{2,3}^{2} \\
D_{3,1}^{2} & D_{3,2}^{2} & D_{3,3}^{2}
\end{array}\right]
$$

Where:

$$
\begin{aligned}
& D_{1,1}^{2}=m_{2}\left(\frac{H^{2}}{4} \cos ^{2} \varphi+\frac{H c}{2} \cos \varphi+\frac{c^{2}}{4}\right) \\
& D_{2,2}^{2}=m_{2}\left(\frac{H^{2}}{4}+\frac{H}{2}(c \cos \varphi+a \sin \varphi)+\frac{c^{2}+a^{2}}{4}\right) \\
& D_{3,3}^{2}=m_{2}\left(\frac{H^{2}}{4} \sin ^{2} \varphi+\frac{H a}{2} \sin \varphi+\frac{a^{2}}{4}\right) \\
& D_{1,3}^{2}=D_{3,1}^{2}=\frac{m_{2}}{4}\left(H^{2} \sin \varphi \cos \varphi+H c \sin \varphi+H a \cos \varphi+a c\right) \\
& D_{1,2}^{2}=D_{2,1}^{2}=D_{2,3}^{2}=D_{3,2}^{2}=0
\end{aligned}
$$

So we have the matrix of inertia of the cylinder to the coordinate system (xyz):

$$
\begin{equation*}
I_{x y z}^{2}=I^{2^{\prime}}+D^{2} \tag{12}
\end{equation*}
$$

The matrix of inertia of the system (I) to the coordinate system ($x y z$) is:

$$
\begin{equation*}
I=I_{x y z}^{1}+I_{x y z}^{2} \tag{13}
\end{equation*}
$$

