## Dynamics of rotational motion of a body

The skew cylinder is attached to the vertical rotary axis as in the figure.

## Given:

- Dimension of the cylinder h, r;
- Mass of the cylinder m;
- Skew angle  $\varphi$
- Dimension of the axis  $l_1$ ,  $l_2$ ;
- Driving moment to the rotary axis  $M_E$



## Task:

- Moment of inertia about the axis
- System of equations of motion

## **Solution:**

The local coordinate system  $O, x_0, y_0, z_0$  is attached to the cylinder.

We know the matrix of inertia of the cylinder to the coordinate system  $O, x_0, y_0, z_0$  as following:

$$I_{0} = \frac{1}{4}m\begin{bmatrix} 2r^{2} & 0 & 0 \\ 0 & r^{2} + \frac{h^{2}}{3} & 0 \\ 0 & 0 & r^{2} + \frac{h^{2}}{3} \end{bmatrix}$$

$$(1)$$

The second coordinate system  $O, x_{\scriptscriptstyle 1}, y_{\scriptscriptstyle 1}, z_{\scriptscriptstyle 1}$  which has  $y_{\scriptscriptstyle 1} \equiv y_{\scriptscriptstyle 0}$  is attached to the rotary axis.

Matrix of transformation from the coordinate system  $O, x_0, y_0, z_0$  to the coordinate system  $O, x_1, y_1, z_1$ :

$$T_{1} = \begin{bmatrix} \cos(-\varphi) & 0 & \sin(-\varphi) \\ 0 & 1 & 0 \\ -\sin(-\varphi) & 0 & \cos(-\varphi) \end{bmatrix} = \begin{bmatrix} \cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ \sin\varphi & 0 & \cos\varphi \end{bmatrix}$$
 (2)

Then we find the matrix of inertia of the cylinder in the coordinate system  $O, x_1, y_1, z_1$  is:

$$I_1 = T_1^T I_0 T_1 \tag{3}$$

$$I_{1} = \begin{bmatrix} \cos \varphi & 0 & -\sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{bmatrix} \frac{1}{4} m \begin{bmatrix} 2r^{2} & 0 & 0 \\ 0 & r^{2} + \frac{h^{2}}{3} & 0 \\ 0 & 0 & r^{2} + \frac{h^{2}}{3} \end{bmatrix} \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix}$$

$$= \frac{1}{4} m \begin{bmatrix} \left(r^{2} + \frac{h^{2}}{3}\right) \sin^{2} \varphi + 2r^{2} \cos^{2} \varphi & 0 & \left(-r^{2} + \frac{h^{2}}{3}\right) \sin \varphi \cos \varphi \\ 0 & r^{2} + \frac{h^{2}}{3} & 0 \end{bmatrix}$$

$$= \frac{1}{4} m \begin{bmatrix} \left(r^{2} + \frac{h^{2}}{3}\right) \sin^{2} \varphi + 2r^{2} \cos^{2} \varphi & 0 & \left(-r^{2} + \frac{h^{2}}{3}\right) \sin \varphi \cos \varphi \\ 0 & \left(-r^{2} + \frac{h^{2}}{3}\right) \sin \varphi \cos \varphi & 0 & \left(r^{2} + \frac{h^{2}}{3}\right) \cos^{2} \varphi + 2r^{2} \sin^{2} \varphi \end{bmatrix}$$

The global coordinate system O, x, y, z which has  $x \equiv x_1$  is fixed on the space.

The rotary axis rotates about the x-axis with angle  $\theta$ .

Matrix of transformation from the coordinate system  $O, x_1, y_1, z_1$  to the coordinate system O, x, y, z:

$$T_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
 (5)

Then we find the matrix of inertia of the cylinder in the coordinate system O, x, y, z is:

$$I = T_2^T I_1 T_2 \tag{6}$$

So we have moment of inertia with respect to the x-axis as follow:

$$J_{x} = \frac{m}{4} \left[ \left( r^{2} + \frac{h^{2}}{3} \right) \sin^{2} \varphi + 2r^{2} \cos^{2} \varphi \right]; \tag{7}$$

And

$$D_{xy} = \frac{m}{4} \sin \theta \cos \varphi \sin \varphi \left( -r^2 + \frac{h^2}{3} \right)$$
$$D_{xz} = \frac{m}{4} \cos \theta \cos \varphi \sin \varphi \left( -r^2 + \frac{h^2}{3} \right)$$

Dynamics of rotational motion of the cylinder about the rotary axis:

The free body diagram:



Equations are in vector form:

$$\sum \vec{F}_i^E + \vec{D} = \vec{0} \tag{8}$$

$$\sum \vec{M}_i^E + \vec{M}_D = \vec{0} \tag{9}$$

where:

 $\vec{F}_{i}^{E}$  and  $\vec{M}_{i}^{E}$  are external force and external moment,

 $\vec{D}$  and  $\vec{M}_{\scriptscriptstyle D}$  are D'Alembert force and D'Alembert moment

For rotating body, we know:

$$\vec{D} = \vec{T} + \vec{O} \tag{10}$$

$$\vec{T} = -m\vec{a}_{ct} = -m(\vec{\alpha} \times \vec{r}_C) \tag{11}$$

$$\vec{O} = -m\vec{a}_{Cn} = -m(\vec{\omega} \times \vec{v}_C) \tag{12}$$

Where:

 $\vec{T}$  and  $\vec{O}$  are vectors of tangent component and normal component of D'Alembert force,

 $\vec{a}_{Ct}$  and  $\vec{a}_{Cn}$  are vectors of tangent acceleration and normal acceleration in the coordinate system  $O, x_1, y_1, z_1$ ,

 $\vec{\alpha}$  and  $\vec{\omega}$  are vectors of angular acceleration and angular velocity of the cylinder in the coordinate system  $O,x_1,y_1,z_1$ ,

 $\vec{r}_C$  and  $\vec{v}_C$  are vectors of displacement and velocity of the center point of mass of the cylinder in the coordinate system  $O, x_1, y_1, z_1$ .

Because of  $C \equiv O$ , we have:

$$\vec{r}_C = \vec{0} \tag{13}$$

$$\vec{v}_C = \vec{0}$$

So we get:

$$\vec{D} = \vec{T} = \vec{O} = \vec{0} \tag{14}$$

The system of equations is given from the component equations of (6) and (7) as follows:

$$\left(x_{1}\right): \mathbf{R}_{Ax} = 0 \tag{15}$$

$$(y_1): R_{Ay} + R_{By} = 0 (16)$$

$$(z_1): R_{Az} + R_{Bz} - G = 0$$
 (17)

$$\left(\widehat{M}_{x_{i}}\right): M_{E} + M_{Dx} = 0 \tag{18}$$

$$\left(\widehat{M}_{y_1}\right): R_{Bz} l_2 - R_{Az} l_1 + M_{Dy} = 0$$
(19)

$$(\widehat{M}_{z_1}): \mathbf{R}_{Ay} \, l_1 - \mathbf{R}_{By} \, l_2 + M_{Dz} = 0 \tag{20}$$

Where:

$$G = mg (21)$$

$$M_{Dx} = -J_x \alpha; (22)$$

$$M_{Dy} = D_{xy}\alpha - D_{xz}\omega^2 = \frac{m}{4}\cos\varphi\sin\varphi\left(-r^2 + \frac{h^2}{3}\right)(\alpha\sin\theta - \omega^2\cos\theta);$$
(23)

$$M_{Dz} = D_{xz}\alpha + D_{xy}\omega^2 = \frac{m}{4}\cos\varphi\sin\varphi\left(-r^2 + \frac{h^2}{3}\right)\left(\omega^2\sin\theta + \alpha\cos\theta\right). \tag{24}$$

$$\alpha = \dot{\omega} \tag{25}$$

In which  $J_x, D_{xy}, D_{xy}$  given from (5).

Solving the system of equations (16), (17), (18), (19), (20) with considering to (7), (21), (22), (23), (24), (25), we get:

$$\alpha = \frac{M_E}{J_r};$$

$$\alpha = \dot{\omega} = \omega \frac{d\omega}{d\theta} \Rightarrow \alpha d\theta = \omega d\omega \Rightarrow 2\alpha d\theta = d\omega^2 \Rightarrow \omega^2 = 2\alpha\theta$$

$$\mathbf{R}_{Ay} = -\frac{D_{xz}\alpha + D_{xy}\omega^{2}}{\left(l_{1} + l_{2}\right)}, \ \mathbf{R}_{Az} = \frac{-D_{xy}\alpha + D_{xz}\omega^{2} + mgl_{1}}{l_{1} + l_{2}}$$

$$\mathbf{R}_{By} = \frac{D_{xz}\alpha + D_{xy}\omega^{2}}{\left(l_{1} + l_{2}\right)}, \ \mathbf{R}_{Bz} = \frac{D_{xy}\alpha - D_{xz}\omega^{2} + mgl_{2}}{l_{1} + l_{2}}$$

Where  $\theta$  is the rotated angle of the rotary axis ( $0 \le \theta \le 2\pi$ )