Dynamics of rotational motion of a body
The skew cylinder is attached to the vertical rotary axis as in the figure.
Given:

- Dimension of the cylinder h, r;

- Mass of the cylinder m;

- Skew angle ¢

- Dimension of the axis 1, I2;

- Driving moment to the rotary axis M.

Task:

- Moment of inertia about the axis
- System of equations of motion

Solution:

The local coordinate system 0O,z,y,,7, is attached to the cylinder.
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We know the matrix of inertia of the cylinder to the coordinate system O,z,,y,,z, as

following:
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The second coordinate system O,z,y,,z, Whichhas y, = y, is attached to the rotary axis.



Matrix of transformation from the coordinate system 0O,z,y,,2, to the coordinate

system O,z,y,,2
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Then we find the matrix of inertia of the cylinder in the coordinate system 0,z ,y,, 2,
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The global coordinate system 0O,z,y,z which has z = z, is fixed on the space.

The rotary axis rotates about the x-axis with angle 6.

Matrix of transformation from the coordinate system O,z,y,,z to the coordinate

system O,z,y,z :

1 0 0 (5)
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Then we find the matrix of inertia of the cylinder in the coordinate system 0O,z,y,z Is:
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So we have moment of inertia with respect to the x-axis as follow:
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Dynamics of rotational motion of the cylinder about the rotary axis:

The free body diagram:
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FSand M are external force and external moment,

Dand M pare D’Alembert force and D’ Alembert moment

For rotating body, we know:

D=T+0 (10)
'?z—mzict =—m(axt) (11)
O =-ma,, =-m(&xV, ) (12)



T and O are vectors of tangent component and normal component of D’ Alembert force,
d, and &, are vectors of tangent acceleration and normal acceleration in the coordinate

system O,z,y,,2 ,

a and @ are vectors of angular acceleration and angular velocity of the cylinder in the
coordinate system O,z y,, 2
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r. and V. are vectors of displacement and velocity of the center point of mass of the
cylinder in the coordinate system O,z,,y,,2, .

Because of ¢ =0, we have:

P -0 (13)
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So we get:
D=T=0=0 (14)

The system of equations is given from the component equations of (6) and (7) as follows:

(Xl):RAX:O (15)
(yl) : RAy + RBy =0 (16)
(z):R,, +Ry, —G =0 (17)
(M, ):Mc+Mp, =0 (18)
(M, ):Rg, L, =R I, + Mg, =0 (19)
(M, )Ryl =Rg, 1, +M,, =0 (20)
Where

G =mg (21)
M, =-J.a; (22)
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In which J,,D,,,D,, given from (5).
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Solving the system of equations (16), (17), (18), (19), (20) with considering to (7), (21),
(22), (23), (24) ,(25), we get:
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Where @ is the rotated angle of the rotary axis (0< 6 <27x)



