
important. Samples should not be taken from within 50mm of the selvedge
as the fabric properties can change at the edge and they are no longer
representative of the bulk.

1.4 Measurement

The process of measurement can be defined as a quantitative comparison
between a predefined standard and the object being measured. This
definition shows that there are two parts to the measuring process: the com-
parison, which is the process that is usually thought of as measurement, and
the predefined standard, which is the part that is easily overlooked. When
an object is weighed in the laboratory on a single pan balance it gives a
reading of the mass of the object and so the balance is the local standard.
However, what is actually taking place is a comparison of the mass of the
object with that of the international standard kilogram. The validity of the
measurement relies on there being a clear link between the balance that is
in use and the international standard. In other words the balance needs to
be calibrated with standard masses that have themselves been calibrated
against other masses that in turn have been calibrated against the interna-
tional standard. This link needs to be documented at each calibration step
as to when it was carried out and to what limits of accuracy it has been
made so that the calibration of a given instrument can be traced back to
the international standards. It is also important that this calibration is
carried out at regular intervals as instrumental readings can change over
time because of wear of mechanical parts and ageing of electronic circuits.
Besides regular calibration being good laboratory practice it is specifically
demanded by ISO 9000.

The actual process of measurement is always subject to errors which
can be defined as the difference between the measured value and the
'true' value. However, the 'true' value of any parameter can never be
known because the value can only be obtained through measurement and
any measurement can only be an estimation of the value, subject to
unknown errors.

The term precision as used by metrologists [9] means the same as
repeatability. It is defined as the quality that characterises the ability of a
measuring instrument to give the same value of the quantity measured. In
other words it is an indication of how well identically performed measure-
ments agree with each other. A measurement of a property may return a
value of 2.9347, which because of the number of figures after the decimal
point may impress with its precision. If the measurement is then immedi-
ately repeated by the operator on the same object a value of 2.8962 may
be obtained, when it will be seen that the number of figures represents a
spurious precision and that the actual precision is much less. The precision



of any measurement can only be obtained by making a number of identi-
cal measurements and estimating the dispersion of the results about the
mean. The standard deviation or coefficient of variation of a set of results
is used as a measure of this. A single measurement is always of an unknown
precision, although in general the precision of particular test procedures is
known through repeated testing in a single laboratory.

However, a result may be very precise in that every time the measure-
ment is made the same number is obtained but it may vary from the 'true'
value due to systematic errors.

Accuracy may be defined as conformity with or nearness to the 'true'
value of the quantity being measured. This can only be obtained by
calibration of the measuring system against the appropriate standards at
suitable intervals.

Sensitivity is defined as the least change in the measured quantity that
will cause an observable change in the instrument reading. The sensitivity
of a measuring instrument can be increased by amplifying the output or by
using a magnifying lens to read the scale. Without an accompanying increase
in the accuracy of the calibration and a reduction in sources of variation
this may mean no more than an amplification of the errors as well.

1.4.1 Statistical terms

Most measurements in textile testing consist of a set of repeat measure-
ments that have been made on a number of identical individuals con-
stituting a sample taken from the bulk of the material. Certain statistical
measures are used to describe the average of the results and their spread.
A short guide to the terms employed is given below. For a more com-
prehensive explanation a textbook of statistics should be consulted [10-12].

Arithmetic mean or average

The arithmetic mean is the measure most commonly chosen to represent
the central value of a sample. It is obtained by adding together the indi-
vidual values of the variable x and dividing the sum by the number of indi-
viduals n. It is represented by the symbol Jc:

_ _ JC1 + X2 + X3 + . . . + Xn

n

Standard deviation

The standard deviation is the most widely used measure of the dispersion
or spread of results about the mean value. The symbol a is used for the



standard deviation of the universe (population) containing all the possible
measurements that could be made of the variable in question. The symbol
s is generally used for the estimated value of the standard deviation from
a sample which has been taken from the universe

-I1 l̂
The units that the standard deviation is measured in are the same as those
of the mean.

Coefficient of variation

A standard deviation of 1 for a property that has a mean value of 10 is
far more significant than a standard deviation of 1 for a property with
a mean value of 100. Because of this the coefficient of variation (CV)
is often used as a measure of dispersion: it is the standard deviation
expressed as a percentage of the mean. Therefore in the above example
the first result would have a CV of 10% and the second result would have
a CV of only 1%.

cv = standard deviation X IQQ = s_ x
mean x

Standard error of the mean

The standard error of the mean is a measure of the reliability of the mean
value obtained from a sample of a particular size. It is the standard devia-
tion of the means that would be obtained if repeated samples of the given
size were measured:

Standard error of mean = —
V"

where o is standard deviation of the parent universe. In the case of a sample
the standard error of the mean has to be estimated by using the standard
deviation of the sample s in place of a.

The standard error can be used to place confidence limits on the mean
that has been measured. For example there is a 95% probability that the
population mean lies within ±(1.96 X standard error) of the measured
mean value. This relationship only holds when the standard error has been
calculated from the standard deviation of the parent universe a or when
the sample is large. For small samples where s has been used to calculate
the standard error, the value of 1.96 should be replaced by the appropriate
value of t obtained from statistical tables.



1.4.2 Determination of number of tests

In any test the number of individuals to be tested will depend on the
variability of the material and the accuracy required from the measurement
[1, 13]. If the material is repeatedly sampled at random and the test per-
formed on n selected items each time, in 95% of cases the mean value which
is calculated will be within ±(2C/Jri)% of the population mean, where C is
the coefficient of variation of the property being tested and n is the number
of test specimens.The values of (2C/^n)% are the confidence limits of error.
For many standard tests the coefficient of variation is known approximately
so that the number of tests necessary to achieve given confidence limits of
error can then be calculated. For instance if the coefficient of variation for
a yarn strength test is 10% and the number of tests carried out n is 5, there
is a 95% chance that the mean value will lie within ±8.9% of the popula-
tion mean. If the number of tests is increased to 10, then there is the same
chance that the mean will lie within ±6.3% of the population mean, and if
the number of tests is increased to 50, then it is likely that the mean will lie
within ±2.8% of the population mean.

The use of the coefficient of variation in the above formula assumes that
the error, in the form of the standard deviation, is proportional to the mean
value. For example in the above case of yarn strength if the mean value was
ION then the standard deviation would be IN, whereas if the mean value
was 100N then the standard deviation would be ION. With some measure-
ments the error is relatively independent of the magnitude of the mean. If
this is the case then the actual standard deviation should be used instead
of the coefficient of variation so that in 95% of cases the measured mean
value will lie within ±2S/^jn of the population mean, where S is the stan-
dard deviation.

1.4.3 Use of computers

The incorporation of computers and microprocessors has brought great
changes to the instrumentation used for testing textiles. Their use falls into
two main categories: recording and calculation of results and automation
of the test procedure. Both of these uses may be found in the most advanced
instruments.

Recording of results

In these applications the computer is usually connected via an analogue to
digital converter to an existing instrument from where it collects the data
that would previously have been written down on paper by the operator.
The advantages of such an installation are as follows:



1 In the case of a graphical output the whole of the curve is recorded
numerically so that results such as maxima, areas under the curve and
slopes can be calculated directly without having to be read from a graph.
This allows a more consistent measurement of features such as slopes
which would previously have been measured by placing a rule on the
graph by eye. However, it is important in such applications to be clear
what criteria the computer is using to select turning points in the curve
and at what point the slope is being measured. It is useful to have visual
checks on these points in case the computer is making the wrong choice.

2 The ability to adjust the zero level for the instrument automatically. This
can be done, for instance, by taking the quiescent output as being the
zero level and subtracting this from all other readings.

3 The ability to perform all the intermediate calculations together with
any statistical calculations in the case of multiple tests.

4 The ability to give a final neatly printed report which may be given
directly to a customer.

It is important, however, to be aware of the fact that the precision of the
basic instrument is unchanged and it depends on, among other things, the
preparation and loading of the sample into the instrument by the operator
and the setting of any instrumental parameters such as speed or range.

Automation of the test procedure

In such applications use is made of electronic processing power to control
various aspects of the test rather than just to record the results. This means
that steps such as setting ranges, speeds, tensions and zeroing the instru-
ment can all be carried out without the intervention of an operator. The
settings are usually derived from sample data entered at the keyboard. In
the case of yarn-testing instruments the automation can be carried as far as
loading the specimen. This enables the machinery to be presented with a
number of yarn packages and left to carry out the required number of tests
on each package.

The automation of steps in the test procedure enables an improvement
to be made in the repeatability of test results owing to the reduction in oper-
ator intervention and a closer standardisation of the test conditions. The
precision of the instrument is then dependent on the quality of the sensors
and the correctness of the sample data given to the machine. The accuracy
of the results is, however, still dependent on the calibration of the instru-
ment. This is a point that is easily overlooked in instruments with digital
outputs as the numbers have lost their immediate connection with the
physical world. If the machine fails in some way but is still giving a numer-
ical output, the figures may still be accepted as being correct.



To be generally acceptable automated instruments have to be able to
carry out the test to the appropriate standard or have to be able to demon-
strate identical results to those that have been obtained with the standard
test method.

It is still possible even with advanced automation for results to be incor-
rect for such simple reasons as wrong identification of samples or failure to
condition samples in the correct testing atmosphere.

1.4.4 Types of error

Errors fall into two types.

Bias or systematic error

With this type of error the measurements are consistently higher or lower
than they should be. For instance if a balance is not zeroed before use then
all readings taken from it will have the same small amount added to or sub-
tracted from them. This type of error cannot be detected by any statistical
examination of the readings. Systematic errors can only be eliminated by
careful design of the tests, proper calibration and correct operation of the
instruments.

Precision or random error

This type of error is present when repeated measurements of the same
quantity give rise to differing values which are scattered at random around
some central value. In such cases the error can be estimated by statistical
methods.

1.4.5 Sources of error

Errors of both types can arise from a number of causes:

1 Instrument reproducibility: even when an instrument is correctly cali-
brated, mechanical defects can influence the readings unless they are
taken in exactly the same fashion as the calibration values. Mechanical
defects such as slackness, friction and backlash can cause measurements
to vary. These effects can depend on the direction that the mechanism
is moving so that the error may be different when the reading is increas-
ing from that when it is decreasing. Electrical and electronic instruments
can suffer from drift of settings over a period of time owing to an
increase in temperature of components.

2 Operator skill: a great many tests are based on personal manipulation
of the apparatus and visual reading of a resultant indication. An op-



erator may be called on to prepare a sample, load it into the instrument,
adjust readings such as zero and maximum, and to take a reading from
a scale. Each manipulation, adjustment and reading involves an uncer-
tainty which can depend on the skill and the conscientiousness of the
individual operator. The ideal in instrument and test method design is
to reduce the amount and scope of operator intervention.

3 Fineness of scale division: a fundamental limit is set to the precision of
a measurement by the instrument scale which is necessarily subdivided
at finite intervals. It carries with it an immediate implication of a
minimum uncertainty of one half of the finest scale division. In the case
of a digital scale the last digit of the display sets the limit to the preci-
sion in a similar manner as it has by its nature to be a whole digit. The
final digit implies that it is plus or minus half of what would be the next
digit. However, digital scales usually read to more figures than the equiv-
alent analogue scale.

4 External factors: these may come from sources outside the actual instru-
ment such as line voltage fluctuations, vibration of instrument supports,
air currents, ambient temperature and humidity fluctuations and such
diverse factors as variation in the sunlight intensity through windows.

The above uncertainties in the measurement of textile properties derive
from the measurement process. In addition to these uncertainties, textile
materials also exhibit variation in properties throughout their bulk. These
can be quite considerable in magnitude, particularly in the case of yarns and
fibres. This variability, in a similar manner to the errors described above,
falls into two types: systematic, as is the case when the properties of a fabric
vary from the edge to the centre, and random, when the variability has no
pattern. The effect of this is to add to the errors from the measurement itself
to give a larger overall error from which it is difficult to separate out the
variability of the material from the experimental error. Therefore, because
of all the above sources of variation, the appropriate statistical analysis of
results has a great importance in textile testing.

1.4.6 Repeatability and reproducibility

The true accuracy of a test method can only be gauged by repeated
testing of identical material both within the same laboratory and between
different testing laboratories that possess the same type of equipment.
International round trials [14-17] are organised by sending out sets of test
samples, all produced from the same batches of material, to participating
laboratories and asking them to test the samples in a prescribed manner.
The results are then correlated and the within (repeatability) and between
(reproducibility) laboratory variations calculated. The variation between



laboratories is always greater than the variation found within a single
laboratory.

BS 5532 [18] defines repeatability and reproducibility as follows.

Repeatability

1 Qualitatively: the closeness of agreement between successive results
obtained with the same method on identical test material, under the
same conditions (same operator, same apparatus, same laboratory and
short intervals of time).

2 Quantitatively: the value below which the absolute difference between
two single test results obtained in the above conditions may be expected
to lie with a specified probability. In the absence of other indication, the
probability is 95%.

Rep roducib ility

1 Qualitatively: the closeness of agreement between individual results
obtained with the same method on identical test material but under
different conditions (different operators, different apparatus, different
laboratories and/or different times).

2 Quantitatively: the value below which the absolute difference between
two single test results on identical material obtained by operators in dif-
ferent laboratories, using the standardised test method may be expected
to lie with a specified probability. In the absence of other indication, the
probability is 95%.

Errors involved

In order to understand the difference between repeatability and repro-
ducibility the error in the test result can be considered to be due to two
components [14]:

1 A random error (standard deviation ar) which occurs even when the
same operator is using the same apparatus in the same laboratory. The
variance of this a? is called the within-laboratory variance and is
assumed to have the same value for all laboratories.

2 An error (standard deviation OL) due to the difference that occurs when
another operator carries out the test in a different laboratory using a
different piece of identical apparatus. The variance of this OL is called
the between-laboratory variance.

The total error in a result that combines several sources of error can be
obtained by adding together their variances. The numerical values for



repeatability and the reproducibility are then given by substituting a value
of 2 for n in the above equation for confidence limits:

2
Repeatability = —o r

V^

Reproducibility = —(OL + a?)
V2

1.4.7 Significant figures

The numerical expression of the magnitude of a measurement may contain
some figures that are doubtful. This can arise either from an estimation
between the scale divisions by the operator or, in the case of a digital
readout, from the uncertainty in the choice of the last figure by the machine.
For instance in the case of a measurement of length by a rule that is
graduated in millimetres, the rule might show that the length is definitely
between 221mm and 222mm. Estimation by the person making the
measurement might put the value at 221.6mm. The figures 221 are exact
but the final digit (6) is doubtful because it is only estimated. However,
all four figures are regarded as significant because they convey meaningful
information. This can be seen if it is imagined that the true value is
actually 221.7mm; the error would then be O.lmm but if the figures had
been taken to the nearest whole millimetre (222) the error would have been
0.3mm.

Significant figures, therefore, include all the exact figures followed by one
doubtful one. Any zeros before the figures are not included in the number
of significant figures and zeros after the figures are included only if they are
considered to be exact regardless of the position of the decimal point. Zeros
that are only there to position the decimal point are not regarded as
significant; for example, 540,000 has only two significant figures. If it is nec-
essary to express the fact that some of the zeros are significant, it is better
to write the number as, for instance, 5.40 X 105. Zeros after a decimal point
should be included only if they are significant. For instance the value 3.0
has two significant figures.

Unless otherwise indicated the uncertainty in any written measurement
of a continuous variable is taken to be plus or minus half a step of the last
significant figure. For instance 25.4mm is taken to mean 25.4 ± 0.05 mm but
25.40mm would be taken to mean 25.40 ± 0.005mm.

The number of significant figures written down only concerns the reading
of figures from instruments. It is an entirely separate issue from how many
of the figures are meaningful which can only be decided from repeat tests
as described above.



Rounding off

When further calculations are carried out on measured values the number
of figures in a result may increase but in general the number that are
significant does not increase. Retaining these figures in the final result gives
a misleading impression of the precision of the result. The discarding of any
figures beyond the significant ones is known as rounding off.

The convention for rounding off is that the last figure to remain is left
unchanged if the amount to be discarded is less than 0.5, but it is increased
by one if the amount to be discarded is greater than 0.5. For example: 6.854
would be rounded to 6.85 to three significant figures or 6.9 to two significant
figures. Note that the rounding up or down is done only in one stage, not
firstly to 6.85 and then to 6.8.

If the amount to be discarded is exactly 0.5 of a step then the rounding
is to the nearest even figure in the last place, the idea being that this gives
a random choice with as many results being rounded up as are rounded
down. For example 6.85 would be rounded down to 6.8 whereas 6.95 would
be rounded up to 7.0.

When carrying out calculations involving results with different numbers
of significant figures, the number of figures in the result is governed by the
contribution with the largest error. For example in addition or subtraction:

2.71 + 11.814 - 14.52
6.4 + 123.625 + 5.7165 - 135.7
2000 + 2,400,000 = 2,400,000

In each case the result is governed by the number whose concluding figure
is the furthest to the left. In the case of simple multiplication or division the
result should not in general be credited with more significant figures than
appear in the term with the smallest number of significant figures. For
example:

63.26 X 0.0217 = 1.37
0.356 X 0.6149 - 0.219

In case of doubt the mathematical operations can be carried out on the
results for the implicit range of values.

Any rounding off must be carried out only on the final result after all the
calculations have been made.

General reading

The WIRA Textile Data Book.WlRA, Leeds, 1973.
Morton W E and Hearle JWS, Physical Properties of Textile Fibres, 3rd edn.,

Textile Institute, Manchester, 1993.



Massey B S, Measures in Science and Engineering, Ellis Horwood, Chichester,
1986.
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