

Use of computers in textile laboratories

Sensors Data processing Analysis and

presentation of results

Model of information transfer

Setting of measuring device

Basic requirements for sensor selection

□ Selection of the type of measured quantities

- number of measurements
- number of measured places
- Selection of measurement precision
 - testing method

Measurement devices

- reliability
- time demands
- availability of measurements
- request on operators

Interuptions Measurement costs

 \boldsymbol{T}

 \boldsymbol{x}

 $\partial_s x_1$

Measurement errors

- Average error of measurement device o_{inst}
- Variability of material
- Average measurement error ov
- Non-correlated values

Rounding of measurement values

MEASURED VALUES =

Resulting values ± Standard deviation

Example: Mass of 100 m of yarn is 2.54689 g

- Error of scale $A = 528 \text{ mg} \Rightarrow \text{Value}$
- **C** Error of scale $B = 248 \text{ mg} \Rightarrow \text{Value}$

A =
$$2.5 \pm 0.5$$
 g
B = 2.55 ± 0.24 g

Data processing I.

Estimation of mean value (average, modus, median)

Average
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad [\dots]$$
Modus \widehat{x} mostly repeated valueMedian $\widetilde{x} = x_{(k)}$ where $k = \frac{n}{2}$ for odd n $\widetilde{x} = \frac{x_{(k)} + x_{(k+1)}}{2}$ where $k = \frac{n+1}{2}$ for even n

Data processing II

- Estimation of variability (variance, standard deviation)
- Variance s² and standard deviation s

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} [....^{2}]$$

$$s = \sqrt{s^{2}} [....]$$
Coeff. of variance $v = \frac{s}{2} \cdot 10^{2} [\%]$

X

Confidence interval \Rightarrow **CI**

□ Lower limit L_D □ Upper limit L_H

$$L_{D} = \overline{x} - t_{\alpha(n-1)} \cdot \frac{s}{\sqrt{n}} \quad [\dots]$$
$$L_{H} = \overline{x} + t_{\alpha(n-1)} \cdot \frac{s}{\sqrt{n}} \quad [\dots]$$

 $\Box \ t_{\alpha(n-1)} \Rightarrow \text{kvantil of Student's}$ selective distribution

$$\Box$$
 For $n \cong \infty$, and $\alpha = 0,95$

t_{α(n-1)} = 1,96

E.g. CI for linear density:

$$CI_{T} = \langle 24, 1; 25, 1 \rangle tex$$

Large data set

- categorization of data j, (x_j), j = 1, 2, 3,k,
 - \Rightarrow set of categories
 - Sign of category x_j
 - Number of measurements in category n_i
 - Number of all measurements n
 - Frequency function f_j

j	x _{jd} - x _{jh} [μm]	x _j [μm]	number of measurement	n _j
1	11 - 13	12	++++	
2	13 - 15	14	++++ ++++	
3	15 - 17	16	++++ ++++ ++++	
4	17 - 19	18	++++ ++++ ++++ ++++ 	
5	19 - 21	20	++++ ++++ ++++ ++++ ++++	

Large data set > 40

- Setting of category range
- Extent of category
- Number of categories
- Calculation of mean and variance
- Confidence interval

 $CI_p = \overline{x} \pm t_{\alpha(n-1)} \frac{s}{\sqrt{n}}$ [unit]

 $R = x_{max} - x_{min}$ $\Delta x = 0,08 \cdot R$ $10 \le k \le 20$

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{k} x_j \cdot n_j$$

 $s = \sqrt{s^2}$

$$s^2 = \frac{1}{n} \sum_{j=1}^k (x_j - \overline{x})^2 \cdot n_j$$

Ing. Blanka Tomková, Ph.D.

Histogram and frequency function

$$f_j = \frac{n_j}{n} \cdot 100 \, [\%] \quad n = \sum_{j=1}^k n_j$$

j	d _{jd} - d _{jh} [μm]	d _j [μm]	number of measurements	n _j	f _j [%]
1	11-13	12	++++	10	10
2	13-15	14	+++++ ++++	13	13
3	15-17	16	+++++ +++++ +++++ +++++ +++++	30	30
4	17-19	18	++++ +++++ +++++	27	27
5	19-21	20	++++ +++++ +++++	20	20
Σ					100%

FACULTY OF TEXTILE ENGINEERING <u>TUL</u>

Histogram and cumulative density function

j	d _{jd} - d _{jh} [μm]	d _j [μm]	number of measurements	n _j	f _j [%]	F _j [%]
1	11-13	12	++++ ++++	10	10	10
2	13-15	14	++++ ++++	13	13	23
3	15-17	16	++++ ++++ ++++ ++++ ++++	30	30	53
4	17-19	18	++++ ++++ ++++ 	27	27	80
5	19-21	20	++++ ++++ ++++	20	20	100

2. Lecture on Textile Testing

