## Linear and area unevenness

- Definition of mass unevenness
- Causes of mass unevenness
- Uneveness measurement
- The relation of the uneveness of longitudinal fabrics (yarns) to the unevenness of woven or knitted fabrics













## Mass unevenness (ME)

fluctuations in fiber mass in the yarn cross-section or in other longitudinal sections of the fiber product







DATE: 03/28/08 Device: TS5130



#### Ing. Blanka Tomková, Ph.D.



## **Development of ME I.**

 Unequal number of fibers in various yarn crosssections and their assemblies in the yarn structure *intrinsic unevennes of yarn - limit unevennes*





## Limit unevenness

### **Minimum unevennes of product - inherent**

random number of fibers in product, depends on variability of fibres

Poisson's distribution  $\lambda = \overline{x} = \sigma^2$ 

### **n-fibers** in yarn cross-section $\overline{x} = \sigma^2 = n; \ \sigma = \sqrt{n}$

**n** ... average number of fibres:

#### Martindales expression

Derived for ideal fiber tow

$$CV_{lim} = rac{\sigma}{\overline{x}} \cdot 100 = rac{\sqrt{n}}{n} \cdot 100 \ [\%]$$

Fibres are straight, parallel to yarn axis, and equal in cross-section

Fibres are randomly distributed and their distribution

corresponds to Poisson's distribution



| <b>Martindale expression</b>                                                                       | Fibres              | t<br>[tex] | v <sub>p</sub> [%]   |
|----------------------------------------------------------------------------------------------------|---------------------|------------|----------------------|
|                                                                                                    | VS - cotton<br>type |            | 19                   |
| 100  100  T[tex]                                                                                   | VS - wool           |            | 15                   |
| $LV_{lim} = \frac{1}{\sqrt{n}} \begin{bmatrix} \% \end{bmatrix}$ $n = \frac{1}{\overline{t[ter]}}$ | PAD                 | 0,39       | 26 - 28              |
| Vie elecal                                                                                         |                     | 0,67       | 30 - 33              |
| Martindale extension:                                                                              |                     | 1,3        | 1                    |
| $CV_{lim} = \frac{100}{\sqrt{2}} \left( 1 + \left(\frac{v_p}{100}\right)^2 \right)$                | PES                 | 0,28       | 25 - 27              |
|                                                                                                    |                     | 0,31       |                      |
|                                                                                                    |                     | 0,33       |                      |
| $\sqrt{n}$ $\sqrt{100}$                                                                            |                     | 0,36       |                      |
| V coefficient of variation                                                                         |                     | 0,44       |                      |
| of fibro crocc costion [0/]                                                                        | PAN                 | 0,34       | 16 - 20              |
| or fibre cross-section [%]                                                                         |                     | 0,44       | ]                    |
| $100 \left( \frac{v_d}{2} \right)^2$                                                               | POP                 | 0,28       | 0,28 29 - 32<br>0,39 |
|                                                                                                    |                     | 0,39       |                      |
| $UV_{lim} = \sqrt{n} \sqrt{1 + (100)}$                                                             |                     | 0,67       | 32 - 33              |
| V <sub>d</sub> coefficient of variation of fill                                                    | per diam            | neter      | [%]                  |



# **Development of ME II.**

2. Variable fibre cross-section, resp. linear density of individual fibers  $\Rightarrow$  Random behavior of fibres





# **Development of ME III.**

3. Imperfections of staple fibre ends due to uneven fibre length



**!!! Manufacturing errors – we can modify it** 



## **Parameters of ME**

linear mass unevenness U [%]

### quadratic mass unevenness CV [%]

CV, U – var. coeff., standard deviation of unevenness

level of unevenness is standardized

### limit mass unevenness CV<sub>lim</sub>, U<sub>lim</sub> [%]

deviation rate DR (x,y) [%]

index of irregularity I

production unevenness CV<sub>f</sub>, U<sub>f</sub> [%]

machine unevenness CV<sub>m</sub>, U<sub>m</sub> [%]



## Linear unevenness

standard deviation of average mass





# **Quadratic unevenness**

## variation coefficient of mass

mostly practically used

$$CV [\%] = \frac{100}{\overline{m}} \cdot \sqrt{\frac{1}{L} \int_0^L (m(l) - \overline{m})^2 dl}$$
$$\frac{CV}{U} = \sqrt{\frac{\pi}{2}} \cong 1,25 \quad \text{valid for normal distribution}$$



20

10



# **Quadratic unevenness**



30

40



**Diagram Mass** 

90

100 m



50



-50 -100

0

60

70

80



# Index of irregularity

- ratio between measured CV<sub>ef</sub> a limit CV<sub>lim</sub> unevenness
- deviation of product from ideal assembly (I=1)





## **Measurement of ME**

### **Discrete:**

- Linear textile (yarn, tow) divided on p-number of similar length of Yarn, that are weighed
- Result mean, variance, standard deviation and variation coefficient

### **Continuous:**

- Mostly used method change of capacitor capacity
- ZELLWEGER přístroj Uster Tester

### Mehtods for non-direct measurement:

- Capacity e.g. Uster Tester
- Optical e.g. Zweigle, QQM-3



## **Continuous measurement of ME**















## **Outputs II.**





# **Graphical presentation of ME**



Variance-length curve (VLC)

Spectrogram (CV)







## **Spectrogram I.**





**Spectrogram II.** 



Spectrum wavelength  $\lambda$  [m]

- $1 \Rightarrow$  Ideal spectrum **limit unevenness**
- 2 ⇒ Real spectrum without non-periodic errors
- $3 \Rightarrow$  Real spectrum with periodic errors
  - ch chimney, df drafting wave

#### FACULTY OF TEXTILE ENGINEERING TUL

7. Lecture on Textile Testing



## **Uster Statistics**



#### Ing. Blanka Tomková, Ph.D.

#### **Dpt. of Material Engineering**



## **Oasys measurement system (co Zweigle)**





# **Output from OASYS (Zweigle)**





## QQM system

#### Czech cotton research institute, and OTTO STÜBER GmbH & Co KG



#### FACULTY OF TEXTILE ENGINEERING <u>TUL</u>

#### 7. Lecture on Textile Testing







# **Unevenness of fabric**

#### Moiré effect

**Unevennes in short length**  $\lambda = 1 - 50$  cm









## **Stripiness**

#### periodic unevenness in long distance l > 5m



Defects causing stripiness in yarn spektrogramm

Stripiness



# **Cloudy fabric**

#### Drafting wave

|                 |               | T [tex] | U [%]                                                  | SPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|---------------|---------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Combed Cotton | Combed Cotton | 14,5    | 10,1                                                   | Drafting Wave - short length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |               | 12.2    | 30 Mar 2 4 3 42 10 100 100 100 100 100 100 100 100 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |               |         | 13.9                                                   | ten (s 2 ) s 6 6 7 8 fam (6 20 ) 20 4 5 6 7 8 fam (6 20 ) 20 m (s 2 ) s 4 5 6 7 8 cm (6 20 m (s 2 ) m |
|                 |               |         | 16                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### **Disturbing appearance - Cloudiness**







Woven fabric Fig. 4-25



- Intensity of the stripy or moiré appearance
- $\lambda$  = wave-length of the periodic fault
- = Weave width

- = Intensity of the stripy or moiré appearance
- = wave-length of the λ periodic fault
- U = Yarn length of thestretched out yarn with respect to the circumference of the knitted fabric.