

Ultimate mechanical characteristics

- □ Strength
- Tensile load
- □ Specific strength
- Elongation
- □ Strain
- □ Moduli
- Breaking length
- Special types of load

Ultimate mechanical properties

Physical quantity		Symbol		Unit	
Breaking strength		F		Z	
Specific strength		σ		Pa	
Elongation		ΔΙ		m	
Strain		3		%	
Moduli (materiál resistence to deformation)					
E [GPa]	G [GPa]		K [GPa]		
tensile	shear		compressive		

Special types of load

Physical quantity	Symbol	Unit		
Specific force (yarns, fibers)	Fr f	[N/tex] [cN/dtex]		
Breaking length	L _T	km		
Strength in wet state Strength in knot	f _m , f _u [% z F _{suchá}]			
Tear and tear strength	F _{střední} [N]			
Seam strength Layer adhesion	F _{šev} [N] η _s [%]			
Tensile strength for nonwovens and geotextiles				

Tensile load

Pre-tension F₀

Force (specific) strength

 \square Specific strength σ [Pa] \iff Specific force F_r [N/tex]

units for fibers:

[cN/dtex], [cN/tex], [mN/dtex]

Relation between σ a F_r : $\sigma = F[N] / S[m^2] = F[N] / (T[tex] \cdot 10^{-6} / \rho [kg \cdot m^{-3}]) =$ $= F_r[N/tex] \cdot \rho [kg \cdot m^{-3}] \cdot 10^6 [Pa]$

Strain

Elongation

$$\Delta I = I - I_0$$
 [mm], [m]

Deformation

$$\varepsilon = \Delta I \text{ [mm] / } I_0 \text{ [mm] [-]}$$

$$\varepsilon = \Delta I / I_0 \cdot 100 [\%]$$

- Strain ε [%]
 - Elongation in break!!!

Breaking length

!!! Unit conversion !!!

Tensile strength of fibres

■ Standard EN ISO 5079 "Textiles-Fibres-Determination of breaking force and elongation at break of individual fibres"

- Initial length $l_0 = 10 \text{ mm}$ (20 mm)
- □ 50 % initial length/min minimum strain < 8%
- 100 % initial length/min minimum strain ≥ 8%

Tensile strength of yarns

- □ ISO 2062:2009 "Textiles Yarns from packages Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester"
- Standard atmosphere:
 - \Box T = 20 °C, ϕ = 65 %
- □ Initial length $I_0 = 500 \text{ mm}$
 - □ 250 mm range of device frame
- ☐ Test speed 100 500 mm/min
- Pre-stress
 - □ Conditioned specimen 0,5 ± 0,1 cN/tex
 - \square Wet specimen 0,25 \pm 0,05 cN/tex

Special tensile tests for linear textiles

- Tensile load on dry specimen
 - □ Strength in dry state $f_s = F_s/F \cdot 10^2$ [%]
- Tensile load on wet specimen
 - □ Strength in wet state $f_m = F_m/F \cdot 10^2$ [%]
 - □ ba, ln, kn (+ up to 120 %), Vs (- 50%) syn (- 10%)

Strength in loop

$$f_{sm} = F_{sm}/(2F) \cdot 10^2 [\%]$$

Strength in knot

$$f_u = F_u/F \cdot 10^2 [\%]$$

- Speed of deformation
- Influence of temperature

Influence of temperature

Testing of fabrics

- ISO 13934-1:2013 "Textiles Tensile properties of fabrics
 - Part 1: Determination of maximum force and elongation at maximum force using the Strip method"
- □ ISO 13934-2:2014 "Textiles Tensile properties of fabrics
 - Part 2: Determination of maximum force using the Grab

Special tensile load for fabrics

- □ Tear and tear strength
- Rupture strength
- Seam strength
- Layer adhesion

- Rubber- or plastics-coated fabrics ⇒
 Determination of tensile strength and elongation at break
- Geotextiles ⇒ Tensile strength on wide stripe
- Tensile strength for nonwovens
- □ Fishing nets ⇒ Determination of mesh breaking force of netting

Tear and tear strength

ISO 13937 (Part 1 – Part 4)

"Textiles — Tear properties of fabrics 1-4"

Rupture strength

Seam strength – parallel direction

Seam strength – cross direction

- □ Seam efficiency η_s [%]
 - ☐ It is recomended to be up to 80 %

ISO 13935-1:2014 "Textiles — Seam tensile properties of fabrics and made-up textile articles — Part 1: Determination of maximum force to seam rupture using the strip method

T-Peel

Strength of adhesion

□ ISO 2411:2017 "Rubber- or plasticscoated fabrics — Determination of coating adhesion"

- Strength of coated fabrics:
 - coating of fabric with PUR, PVC etc.
 - coating of fabric with adhesive textile insert
 - other coatings adhesion

9. - 10. Lecture on Textile Testing

Cyclic, semi-cyclic and dynamic load

multiaxial load (torsion, bending)

Simple deformation (non-cycle)

Cyklic load

Static (time-independent) deformation

Dynamic (time-dependent) deformation

■ Impact (extremely short time)

Ultimative deformation (rupture)

Non-destructive deformation

Isothermal deformation

Thermally dependant deformation

Cyclic load I.

Cyclic load II.

Cyclic load - elasticity of yarn

Dynamical-Mechanical Analysis

Impact Strength

$$A_n = \frac{W}{b.h} [kJ. m^{-2}]$$

- W ... deformation energy used for breakage of specimen
- b ... width of specimen
- h ... thickness of specimen

