12. Lecture on Textile Testing

Heat transfer

Air permeability

Water Vapour Permeability

Department of Material Engineering

Fabric handle

- Feeling while touching textile material
- Quality of textile
 - I "pleasant touch", "pleasant feeling", "comfortable to wear"

- Complex parameters linked to material properties
 - Bending, compression, flexibility, strength, density
 - Surface properties (roughness, smoothness)
 - Thermal characteristics

Methods for handle measurement

- KES FB (Kawabata Evaluation System - KES - System)
 - Complex measurement
 - mechanical properties (tensile, bending, shear, compression)
 - surface (friction, roughness)
 - fabric design (thickness, area mass density)
 - Japonsko -Tokio, Prof. Sueo Kawabata, Prof. Masako Niwa
 - 1974-1978, Kato TechCompany
 - 4 devices –16 properties
 - KES FB 1 tensile, shear
 - KES FB 2 bending
 - KES FB 3 compression
 - KES FB 4 surface

- □ FAST fabric assurance by simple testing ⇒ Evaluation:
 - mechanical properties (tensile, bending, shear, compression)
 - shape stability
 - drapability
- KTU Griff Tester
- UST universal surface tester

12. Lecture on Textile Testing

Saturated Cellophane film Air flow

Fabric

sample

Saturated porous plate

Heat transfer

□ Analysis of heat flow – device TP 2

- Analysis of energy necessary to stacionary heat flow
- Fabric is placed on heated plate, in tunel with flowing air of 3 m.s⁻¹ speed

Analysis of thermal conductivity – device ALAMBETA

- **u** Heat flow transfer $q_1(t)$, and $q_2(t)$
- □ Stacionary heat flow t₁ temperature of measuring head,
 - t₂ temperature of specimen
- Calculation of:
 - **u** thermal conductivity λ [W/m.K]
 - □ thermal capacity **b** [W.s^{1/2}/m²K]
 - area resistance to heat transfer r [m².K/W]
 - thickness of material h [mm]

Department of Material Engineering

Air permeability

- Volume of air [l/min]
 passed through fabric under
 defined pressure drop Δp = 100 Pa
 - $\Rightarrow p_1 > p_2$
- Size of measurement jaw

Water vapour permeability

 Analysis of water vapour transfer through fabric placed over water surface in exicator

$$M_V = \frac{m_1 - m_2}{m_1} \cdot 100 \, [\%]$$

- *M_v* amount of water vapour transfered through the fabric [%]
- m₁ mass of water before test [g]
- m₂ mass of water after test [g]
- ISO 15496:2018 Textiles Measurement of water vapour permeability of textiles for the purpose of quality control

12. Lecture on Textile Testing

- Measurement of contact angle O [°]
 O < 90°, textile is wettable

$$\sigma_{21} \cdot \cos \theta = \sigma_{31} - \sigma_{23}$$

- $\Box \sigma_{23}$ surface tension water textile
- $\Box \sigma_{21}$ surface tension water air
- $\Box \sigma_{3^{1}}$ surface tension textile air

Non-wettable

Good wetting

Ideal wetting

FACULTY OF TEXTILE ENGINEERING <u>TUL</u>

12. Lecture on Textile Testing

Grade	Description
1	Complete wetting of the whole of the sprayed surface
2	Wetting of more than half the sprayed surface
3	Wetting of the sprayed surface only at small discrete areas
4	No wetting of but adherence of small drops to the sprayed surface
5	No wetting of and no adherence of small drops to the sprayed surface

2

WICKING PHENOMENA

VERTICAL WICKING TESTER

