9.6 Population growth and technological progress 249

The steady-state and transition dynamics are obtained along reasoning analo-
gous to the one employed above. In equilibrium, income per efficiency unit
remains constant. Since efficiency units of labour grow faster than labour, due
to technological progress, output (and capital) per worker must be growing,.
To show this mathematically, we may start by noting that in the steady state
income per efficiency units of labour does not change, Ay = 0. From the def-
inition y = % we obtain per capita income y by multiplying by E:
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Finally, we recall that the growth rate of the product X E can be approxi-
mated by the sum of the growth rates of y and E:

Ay _Ay  AE_ 43

Y5 E

+e=0+e=c¢

This shows that even though income per efficiency units of labour does not
change in the steady state, Ay = 0, income per capita nevertheless does. It
grows at the rate of technological progress €. So we finally have a model that
explains income growth in the conventional meaning of the term.

As regards comparative statics, a faster rate of technological progress
turns the requirement curve upwards, thus lowering capital and income per
efficiency unit. Does this mean that faster technological progress is bad?
With regard to per capita income, the answer is no. Remember that the
one-off technology improvement analyzed in section 9.4 raised capital and
output per worker. The same result must apply here, where the one-off
technological improvement simply occurs period after period. Therefore,

faster technological progress raises the level and the growth rate of output
per worker.
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3 Note that the vertical distance between the production function
requirement line measures consumption available at different st
states.

4 Consumption is maximized where a line parallel to the requiremen
just touches the production function. This point defines golden-rule oy
and the golden-rule capital stock.

5 Since the actual savings curve must intersect the requirement line at
golden-rule capital stock, this identifies the golden-rule savings rate.

Dynamic efficiency

If the actual savings rate does not correspond with the savings rate reco
mended by the golden rule, should the government try to move it towa
Sgold> say by offering tax incentives? Well, that depends. -

Assume first that the savings rate is too high, and that this led t
steady-state capital stock K7 and a level of consumption C7Y that falls sh
maximum steady-state consumption Cj, 4 (see Figure 9.14). When ci
change their behaviour, lowering the savings rate from s, to Sgolds consum
tion rises immediately to Cj. Subsequent|
capital stock begins to melt away,

¥> consumption gradually falls as

but it will always remain higher than €
The time path of consumption looks as displayed in the left panel of Figy
9.15. To reduce the savings rate f

rom s to sgo1g would provide individua
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Figure 9.14 When the savings rate exceeds Sgold: @ steady state capital stock such as Kt
results, and consumption is Ci. When lowering the savings rate to Sgold: the immediate
effect on consumption is a drop to G. While the capi

towards K314, consumption is always given by th
tion function and the savings function. It exeeds

ings rate falls short of Sgold: @ steady state capital stock such as K3 results, and consump-
tion is C%. After raising the savings rate to Sgold: CONsUMption initially falls to G. While
the higher savings rate makes the capital stock grow towards K3oid, consumption remains
as given by the vertical distance between the p

roduction function and the savings func-
tion. It is initially smaller than C3, but later surpasses it and remains higher for good.
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9.15 Savings rates smaller or larger than that required by the golden rule restrict the country to lower steady-
nsumption. Paths of adjustment from the old, suboptimal steady state to the new, golden-steady state differ
Wo cases shown in Figure 9.15, panels (a) and (b). If s > sgq/q, reducing the savings rate to Sgold improves con-
on now and forever (panel (a)). The country would gain all the consumption indicated by the area tinted blue
opted sqo/. Sticking to sq is dynamically inefficient. If s < sgo14, the country faces a dilemma (panel (b)). Raising
only pays off later in the form of consumption gains tinted blue. Before consumption improves, the country
rough a period of reduced consumption. These losses are tinted grey.

with higher consumption today and during all future periods — at no cost.
The sum of all consumption gains, compared to the initial steady state, is
represented by the area shaded blue. Not to jump at the opportunity to reap
this costless gain would be foolish or irrational — or inefficient. This is why a
steady state like Ki, or any other steady-state capital stock that exceeds the
golden one, is called dynamically inefficient.

Things are different when the savings rate is too low, say, at s,. Then the
steady-state capital stock K3 obtains, and, again, the accompanying level of
consumption C3 falls short of C¥,q (Figure 9.14). To put the economy on a
path towards the golden steady state, the savings rate needs to increase from
$2 10 Sgold- While this will succeed in raising consumption in the long run, the
price to pay is an immediate drop in consumption from C3 to C5. Only as the
higher savings rate leads to capital accumulation and growing income does
consumption recover and, at some point in time, surpass its initial level
(Figure 9.15, panel (b)). Consumption in the more distant future can only be
raised at the cost of reduced consumption in the short and medium run. The
consumption loss incurred in the early periods (shaded grey) is the price for
the longer-run consumption gains (shaded blue). So the question boils down
to how much weight we want to put on today’s (or this generation’s) con-
sumption as compared to tomorrow’s (or future generation’s) consumption.
This is not for the economist to decide. His or her proper task is to set out the
options. But when future benefits are being discounted heavily compared to
current costs, it is not necessarily irrational not to raise the savings rate from
$2 10 Sgold. This is why a steady state like K3, or any other steady-state capital
stock that falls short of the golden one, is called dynamically efficient.
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. Output Y = F(K,L)

Figure 9.3 The 3D production function
shows how, for a given production technol-
ogy, output rises as greater and greater
quantities of capital and/or labour are

being employed. As a reminder, for first and
Capital stock K second derivatives we assume Fg, F, >0 and
Fxk, Fri < 0.

the output added by
 unit of capital.

Figure 9.3 displays this function again, which is called the extensive form
of the production function. Note, however, that the axes have been rela-
belled. This is because we now shift our perspective. In Chapter 6, when
deriving the labour demand curve, we asked how at any point in time,
with a given capital stock that could not be changed in the short run, dif-
ferent amounts of labour employed by firms would affect output pro-
duced.

Here we want to know why a country has the capital stock it has. To
obtain an unimpaired view on this issue, we now ignore the business cycle.
For a start we assume that employment is fixed at normal employment Ly, at
which the labour market clears. In order not to have to differentiate all the
time between magnitudes per capita or per worker, we even suppose that all
people work. So the number of workers equals the population. All our argu-
ments go through, however, if workers are a fixed share of the population. If
this share changes, the effects are analogous to what results from a changing
population as will be discussed in section 9.6.

The assumptions that economists make about the production function
shown in Figure 9.3 are (adding a third one) as follows:

m Output increases as either factor or both factors increase.

m If one factor remains fixed, increases of the other factor yield smaller and
smaller output gains.

m If both factors rise by the same percentage, output also rises by this per-
centage.

As we know from Chapter 6, the second assumption refers to partial pro-
duction functions. For our current purposes we place a vertical cut through
the production function parallel to the axis measuring the capital stock.
Figure 9.4 shows the obtained partial production function that fixes labour
at L().

What we said about the partial production function employed in
Chapter 6 applies in a similar way to the one displayed in Figure 9.4. The
output gain accomplished by a small increase in K (which is called the
marginal product of capital) is measured by the slope of the production
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Y = F(K,L)

Figure 9.5 This production function shows
how output increases as capital and labour
rise in proportion. F(K,L = K) is a straight
line, indicating that we assume constant

K=( | returns to scale: if capital and labour

2Ky =2L
! ! Capital, labour | increase by a given percentage, output

increases by the same percentage.

factors that enter the production function, without asking why those factors
developed the way they did. This question is left to growth theory, to which
we will turn below.

As the word ‘accounting’ implies, growth accounting wants to arrive at
some hard numbers. A general function like equation (9.1) is not useful for
this purpose. Economists therefore use more specific functional forms when
turning to empirical work. The most frequently employed form is the Cobb—
Douglas production function:

Y = AKe[1-= Cobb-Douglas production function (9.2)

As Box 9.1 shows, this function has the same properties assumed to hold
for the general production function discussed above, plus a few other proper-
ties that come in handy during mathematical operations and appear to fit the
data quite well.

Equation (9.2) states that income is related to the factor inputs K and L
and to the production technology as measured by the leading variable A.
This leaves two ways for economic growth to occur, as Figure 9.6 illustrates.
In panel (a) we keep technology constant between 1950 and the year 2000.
Income grows only because of an expanding capital stock and a growing
labour force. In panel (b) technology has improved, tilting the production
function upwards. As a consequence GDP rises at any given combination of
capital and labour employed.

The two motors of economic growth featured in the two panels of Figure
9.6 operate simultaneously. Growth accounting tries to identify their qualita-
tive contributions. This is tricky, since the three factors comprising the multi-
plicative term on the right-hand side of equation (9.2) interact, affecting each
other’s contribution. A first step towards disentangling this is to take natural
logarithms. This yields

InY = InA + alnK + (1 — @)InL (9.3)
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Maths note. An alternative meaning that the logarithm of income is a weighted sum of the loga
way to derive the growth- technology, capital and labour. Now take first differences on b
gcc;‘;?:“?heeq;::r" stats  (meaning that we deduct last period’s values) to obtain InY — In¥-
) i InA_; + a(InK — InK_q) + (1 — a)(InL — InL_;). Finally, makin

differential of the production ) : } ; ;
function Y=AK?L'“which  property (mentioned previously and derived in the appendix on log

'sg;;ﬁ‘jt_‘;ZT Chapter 1) that the first difference in the logarithm of a variable
a. . . ! s s fed

(1 — w)AKL 7L, Now approximation for this variable’s growth rate, we arrive at

divide by Y on the left-hand

side and by AK%L'~* on the AY L AA AK _ AL ; At
right-hand side to obtain Y 7 + « K +(1 - a) L Growth accounting equat
(after cancelling terms) ,
o _d o F stating that a country’s income growth is a weighted sum of

(1 — a)% whichis the technological progress AA/A, capital growth and employmen
continuous-time analogueto  we need to know now before we can do some calculations wil
equation (9.4). tion is the magnitude of a. This is not as hard as it may seem,
if we assume that our economy operates under perfect comp
competition ensures that each factor of production is paid tl
product it generates. As we already saw in Chapter 6 in the ¢




