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461  

Simulate 1:  Biology 
This unit discusses the concept of software simulation and the topics of cellular automata 
and autonomous agents.

Simulation is used within physics, economics, the social sciences, and other fi elds to gain 
insight into the complicated systems that comprise our world. Software simulations 
employ the most powerful computers to model aspects of the world such as weather and 
traffi c patterns. A tremendous amount of intellectual energy in the fi eld of computer 
graphics has been dedicated to accurate simulation of lighting, textures, and the 
movement of physical materials such as cloth and hair. An entire genre of computer 
games exists that simulate city planning, military campaigns, and even everyday life. 
Computers constitute a powerful medium for simulating the processes of the world, and 
increasing computer speeds offer more sophisticated possibilities.
 Within the arts, new technologies have often been used to represent and simulate 
nature. In ancient Greece, pneumatics animated sculptures. In the eighteenth century, 
precise gears provided the technical infrastructure for lifelike sculptures such as 
Vaucanson’s Duck, which could “open its wings and fl ap them, while making a perfectly 
natural noise as if it were about to fl y away.”1 In our contemporary world, computers and 
precision motors enable dancing robots and realistic children’s toys that speak and move. 
One of the most fascinating simulations in recent art history is Wim Delvoye’s Cloaca 
machine, which chemically and physically simulates the human digestive system.

Cellular automata

A cellular automaton (CA) is a self-operating system comprised of a grid of cells and 
rules stating how each cell behaves in relation to its neighbor. CAs were fi rst considered 
by John von Neumann in the 1940s; they became well known in the 1970s after the 
publication of John Conway’s Game of Life CA in a Scientifi c American article by Martin 
Gardner. CAs are intriguing because of their apparent simplicity in relation to the 
unexpected results they produce.
 Steven Wolfram made important innovations in CA research in the early 1980s. 
Wolfram’s one-dimensional CAs, each consisting of a single line of cells with rules, 
determine the value of each cell at each frame. The value of each cell is determined by 
its own value and those of its two neighbors. For example, if the current cell is white 
and its neighbors are black, it may also become black in the next frame. A set of rules 
determines when cells change their values. Since there are three cells with only two 
possible values (black or white), there are eight possible rules. In the diagram below, the 
three rectangles on the top are the three neighboring cells. The cell in the top middle 
is the current cell being evaluated, and those on the left and right are its neighbors. 

Reas_08_395-518.indd   Sec5:461Reas_08_395-518.indd   Sec5:461 5/23/07   5:00:02 PM5/23/07   5:00:02 PM



462  Simulate 1: Biology

Depending on the current cell’s value and that of its neighbors, the cell beneath the 
current cell is changed to black or white. The rules give rise to a number of possible 
variations and produce diverse results. One potential set of rules follows:

The CA starts with an initial state and is then updated to the next frame based on 
its rules. Each cell in the row is evaluated in relation to its two adjacent cells. Visual 
patterns begin to emerge from the minimal confi guration of all white cells with one 
black cell in the middle:

The new one-dimensional image at each frame refers only to the previous frame. 
Because each frame is one-dimensional, it can be combined with the others to create a 
two-dimensional image, revealing the history of each frame of the CA within a single 
image that can be read from top to bottom:

The rules for this one-dimensional CA can be encoded as an array of 0s and 1s. Using the 
image at the top of this page as reference, if the confi guration in the top row stays the 
same, the resulting bottom row can be defi ned as an array of 8 values, each a 1 or 0. This 
confi guration can be coded as 0, 0, 0, 1, 1, 1, 1, 0 where 0 is white and 1 is black. Each of the 
other 256 possible confi gurations can be coded as a sequence of 8 numbers. Changing 
these numbers in the following example of a one-dimensional CA creates different 
images. The images on page 464 present some of the possible rules and their results.

int[] rules = { 0, 0, 0, 1, 1, 1, 1, 0 };   

int gen = 1;  // Generation

color on = color(255);

color off = color(0);

void setup() {

  size(101, 101);

  frameRate(8);  // Slow down to 8 frames each second

Condition

Result

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

49-01
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463  Simulate 1: Biology

  background(0);

  set(width/2, 0, on);  // Set the top middle pixel to white 

}

void draw() {

  // For each pixel, determine new state by examining current 

  // state and neighbor states and ignore edges that have only 

  // one neighbor

  for (int i = 1; i < width-1; i++) {

    int left = get(i-1, gen-1);         // Left neighbor

    int me = get(i, gen-1);             // Current pixel

    int right = get(i+1, gen-1);        // Right neighbor

    if (rules(left, me, right) == 1) {

      set(i, gen, on); 

    }

  }

  gen++;                 // Increment the generation by 1

  if (gen > height-1) {  // If reached the bottom of the screen,

    noLoop();            // stop the program 

  }

}

// Implement the rules

int rules(color a, color b, color c) {

  if ((a == on ) && (b == on ) && (c == on )) { return rules[0]; }

  if ((a == on ) && (b == on ) && (c == off)) { return rules[1]; }

  if ((a == on ) && (b == off) && (c == on )) { return rules[2]; }

  if ((a == on ) && (b == off) && (c == off)) { return rules[3]; }

  if ((a == off) && (b == on ) && (c == on )) { return rules[4]; }

  if ((a == off) && (b == on ) && (c == off)) { return rules[5]; }

  if ((a == off) && (b == off) && (c == on )) { return rules[6]; }

  if ((a == off) && (b == off) && (c == off)) { return rules[7]; }

  return 0;

}

John Conway’s Game of Life predates Wolfram’s discoveries by more than a decade. 
Gardner’s article in Scientifi c American describes Conway’s invention as “a fantastic 
solitaire pastime he calls ‘life.’ Because of its analogies with the rise, fall and alternations 
of a society of living organisms, it belongs to a growing class of what are called 
‘simulation games’—games that resemble real-life processes.”2 Life was not originally 
run with a computer, but early programmers rapidly became fascinated with it, and 
working with the Game of Life in software enabled new insight into the patterns that 
emerge as it runs.

49-01
cont.
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Wolfram’s one-dimensional cellular automata
Use the numbers below each image as the data for the rules[] array in code 
49-01 to watch each pattern generate.

0,0,0,1,1,1,1,0

0,0,1,1,0,1,1,0 0,1,0,1,1,0,1,0 1,0,1,1,0,1,1,0

0,1,0,0,1,0,0,1 0,1,0,0,1,1,0,1

0,0,1,0,1,0,0,1 0,0,1,0,1,1,1,1 0,0,1,1,1,0,1,1

0,0,1,0,1,1,0,1 1,0,1,0,0,1,0,1 0,1,1,0,1,0,1,1

0,1,0,0,1,1,1,0 0,1,0,1,0,1,0,1 1,0,0,1,1,0,1,1
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465  Simulate 1: Biology

 The Game of Life is a two-dimensional CA in which the rules for determining the 
value of each cell are defi ned by the neighboring cells in two dimensions. Each cell 
has eight neighboring cells, each of which can be named in relation to the directional 
orientation of the cell—north, northeast, east, southeast, south, southwest, west, 
northwest:

The rules for turning a cell on (alive) and off (dead) relate to the number of neighboring cells:

 1. Death from isolation: Each live cell with less than two live neighbors dies in the next generation

 2. Death from overpopulation: Each cell with four or more live neighbors dies in the next generation

 3. Birth: Each dead cell with exactly three live neighbors comes to life in the next generation

 4. Survival: Each live cell with two live neighbors survives in the next generation 

Applying these rules to a cell reveals how different confi gurations translate into 
survival, death, and birth. In the image below, the cell being currently evaluated is in the 
center and is black if alive; neighbor cells are gray if alive and white if empty: 

Different spatial confi gurations of cells create repeating patterns with each new 
generation. Some shapes are stable (do not change at each frame), some repeat, and 
some move across the screen: 

Death DeathDeath Death Death Birth Birth Survive Survive

NE

E

SE

N

S

NW

W

SW

Stable Configurations Periodic Configuration

Moving object (this configuration moves one unit right and down over three generations)
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466  Simulate 1: Biology

Shapes called gliders are arrangements of cells that move across the grid, go through 
frames of physical distortion, and then arrive back at the same shape shifted by one grid 
unit. Repeating this pattern propels them across the grid.
 The current state for the Game of Life is stored in a two-dimensional array of 
integers. A second grid hosts the next generation. At the end of each frame, the newly 
created generation becomes the old generation, and the process repeats. Cells are 
marked alive with the number 1 and and dead with 0. This makes it simple to count 
the number of neighbors by adding the values of neighboring cells. The neighbors() 
function looks at neighbors and counts the values of the adjacent cells. These numbers 
are used to set white or black pixels within draw().

int[][] grid, futureGrid;

void setup() {

  size(540, 100);

  frameRate(8);

  grid = new int[width][height];

  futureGrid = new int[width][height];

  float density = 0.3 * width * height;

  for (int i = 0; i < density; i++) {

    grid[int(random(width))][int(random(height))] = 1;

  }

  background(0);

}

void draw() {

  for (int x = 1; x < width-1; x++) {

    for (int y = 1; y < height-1; y++) {

      // Check the number of neighbors (adjacent cells)

      int nb = neighbors(x, y);

      if ((grid[x][y] == 1) && (nb <  2)) {              

        futureGrid[x][y] = 0;  // Isolation death  

        set(x, y, color(0));

      } else if ((grid[x][y] == 1) && (nb >  3)) {  

        futureGrid[x][y] = 0;  // Overpopulation death

        set(x, y, color(0));

      } else if ((grid[x][y] == 0) && (nb == 3)) {

        futureGrid[x][y] = 1;  // Birth

        set(x, y, color(255));

      } else {   

        futureGrid[x][y] = grid[x][y];  // Survive  

      }  

    }

  }

49-02
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467  Simulate 1: Biology

  // Swap current and future grids

  int[][] temp = grid;

  grid = futureGrid;

  futureGrid = temp;

}

// Count the number of adjacent cells 'on' 

int neighbors(int x, int y) { 

  return grid[x][y-1] +    // North

         grid[x+1][y-1] +  // Northeast

         grid[x+1][y] +    // East

         grid[x+1][y+1] +  // Souteast

         grid[x][y+1] +    // South

         grid[x-1][y+1] +  // Southwest

         grid[x-1][y] +    // West

         grid[x-1][y-1];   // Northwest

} 

Changing the neighbors() function in code 49-02 to utilize the modulo operator (%) 
makes it possible for the cells to wrap from one side of the screen to the other. The for 
structures inside draw() also need to change to loop from 0 to width and 0 to height.

int neighbors(int x, int y) { 

  int north = (y + height-1) % height;

  int south = (y + 1) % height;

  int east = (x + 1) % width;

  int west = (x + width-1) % width;

  return grid[x][north] +     // North

         grid[east][north] +  // Northeast

         grid[east][y] +      // East

         grid[east][south] +  // Southeast

         grid[x][south] +     // South

         grid[west][south] +  // Southwest

         grid[west][y] +      // West

         grid[west][north];   // Northwest

} 

Research into cellular automata did not stop with Conway and Wolfram. Others have 
developed continuous CAs that are not limited to on/off states. Probabilistic CAs, for 
example, can partially or totally determine their rules through probabilities rather 
than absolutes. CAs possess the ability to simulate lifelike phenomena in spite of their 
basic format. For example, the patterns created with a one-dimensional CA can mimic 
patterns found in the shells of organisms such as cone snails. Other CAs produce images 
similar to those created by biochemical reactions.

49-02
cont.

49-03
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468  Simulate 1: Biology

frameCount = 1

frameCount = 10

frameCount = 20

frameCount = 30

frameCount = 40

Conway's Game of Life
Using a few simple rules defi ned in code 49-02, the color relations between adjacent pixels 
create a dynamic ecosystem.
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469  Simulate 1: Biology

Autonomous agents

An autonomous agent is a system that senses and acts on its environment according 
to its own agenda. People, spiders, and plants are all autonomous agents. Each agent 
uses input from the environment as a basis for its actions. Each pursues it own goals, 
either consciously or through refl ex. In his book The Computational Beauty of Nature, 
Gary William Flake defi nes an autonomous agent as “a unit that interacts with its 
environment (which probably consists of other agents) but acts independently from 
all other agents in that it does not take commands from some seen or unseen leader.”3 
Agents aren’t a part of a coordinated global plan, but structure does emerge from 
their interactions with other agents and the environment. The seemingly coordinated 
behavior of an ant colony and the order within a school of fi sh illustrate structured 
behavior emerging from the collective actions of individual agents. 
 Like the examples of cellular automata presented above, autonomous agents can 
also exist in a grid world. Chris Langton’s ant is a fascinating example. The ant can face 
only one of four directions: north, south, east, or west. Like cellular automata, the ant 
moves one frame at a time, behaving according to the following rules:

 1. Move one frame forward

 2. If on a white pixel, change the pixel to black and turn 90 degrees right

 3. If on a black pixel, change the pixel to white and turn 90 degrees left

As the ant moves through the environment, it returns to the same pixel many times 
and each visit reverses the color of the pixel. Therefore, the future position of the ant 
is determined by its past movements. The remarkable thing about this ant is that with 
any starting orientation (north, south, east, or west), a sequence of actions that produce 
a straight path always emerges. From the seemingly chaotic mess upon which the ant 
embarks, an ordered path always develops. This program is not intended as a simulation 
of a real insect. It’s an example of a software agent with extremely simple rules behaving 
in an entirely unexpected but ultimately predictable and structured manner. The 
instruction to eventually construct a straight path is never given, but it emerges through 
the rules of the ant in relation to its environment. The environment contains the 
memory of the ant’s previous frames, which the ant uses to determine its next move. 
 In this example program, the ant’s world wraps around from each edge of the 
screen to the opposite edge. Wrapping around to the other side of the screen, the ant is 
disrupted by its previous path. The order eventually emerges and the ant begins a new 
periodic sequence producing linear movement. In the code, directions are expressed as 
numbers. South is 0, east is 1, north is 2, and west is 3. At each frame, the ant moves one 
pixel forward based on its current orientation and then checks the color of the pixel at its 
location. It turns right by subtracting 1 and turns left by adding 1. Run the code to see the 
sequence change through time.
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470  Simulate 1: Biology

  int SOUTH = 0;          // Direction numbers with names

  int EAST = 1;           // so that the code self-documents

  int NORTH = 2;

  int WEST = 3;

  int direction = NORTH;  // Current direction of the ant

  int x, y;               // Ant's current position

  color ON = color(255);  // Color for an 'on' pixel

  color OFF = color(0);   // Color for an 'off' pixel

  void setup() {

    size(100, 100);

    x = width/2;

    y = height/2;

    background(0);

 }

  void draw() {

    if (direction == SOUTH) {

      y++;

      if (y == height) {

        y = 0;

      }

    } else if (direction == EAST) {

      x++;

      if (x == width) {

        x = 0;

      }

    } else if (direction == NORTH) {

      if (y == 0) {

        y = height-1;

      } else {

        y--;

      }

    } else if (direction == WEST) {

      if (x == 0) {

        x = width-1;

      } else {

        x--;

      }

    }

    if (get(x, y) == ON) {

      set(x, y, OFF);

49-04
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471  Simulate 1: Biology

      if (direction == SOUTH) {

        direction = WEST;

      } else {

        direction--;

      }

    } else {

      set(x, y, ON);

      if (direction == WEST) {

        direction = SOUTH;

      } else {

        direction++;  // Rotate direction

      }

    }

  }

Mitchel Resnick’s termite is another example that demonstrates order emerging from 
extremely simple rules. Like Langton’s ant, this termite is not intended as a simulation of 
a real organism, but it exhibits remarkable behavior. The termite exists on a grid where a 
white unit represents open space and black represents a wood chip. The termite wanders 
through the space, and when it fi nds a wood chip it picks it up and wanders until it 
runs into another wood chip. Finding a wood chip causes it to drop its current load, turn 
around, and continue to wander. Over time, ordered piles emerge as a result of its effort.
 In the code that creates the termite and its environment, the angles[] array 
contains the possible directions in which the termite can move. At each frame the 
termite moves one space on the grid. The angles specify which neighboring pixel it can 
move into:

When space in front of the termite is open, it moves to the next space in the current 
direction or the next space in an adjacent direction. For example, if the current direction 
is south, it will move to the next space in the south, southeast, or southwest direction. If 
the current direction is northeast, it will move to the next space in the northeast, east, 
or north direction. When the termite does not have space in front and it’s carrying a 
wood chip, it will reverse its direction and move one space in the new direction. When it 
does not have a space in front and it’s not carrying a wood chip, it moves into the space 
occupied with the wood chip and picks it up.

NE

E

SE

N

S

NW

W

SW

1,-1

1,0

1,1

0,-1

0,1

-1,-1

-1,0

-1,1

49-04
cont.
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472  Simulate 1: Biology

  int[][] angles = {{ 0, 1 }, { 1, 1 }, { 1, 0 }, { 1,-1 }, 

                    { 0,-1 }, {-1,-1 }, {-1, 0 }, {-1, 1 }};

  

  int numAngles = angles.length; 

  int x, y, nx, ny; 

  int dir = 0;

  color black = color(0);

  color white = color(255);

  void setup() {

    size(100, 100);

    background(255);

    x = width/2;

    nx = x;

    y = height/2;

    ny = y;

    float woodDensity = width * height * 0.5;

    for (int i = 0; i < woodDensity; i++) {

      int rx = int(random(width));

      int ry = int(random(height));

      set(rx, ry, black);

    }

  }

  void draw() {

   int rand = int(abs(random(-1, 2)));

    dir = (dir + rand + numAngles) % numAngles; 

    nx = (nx + angles[dir][0] + width) % width;

    ny = (ny + angles[dir][1] + height) % height;

  

    if ((get(x,y) == black) && (get(nx,ny) == white)) { 

         // Move the chip one space

      set(x, y, white);

      set(nx, ny, black);

      x = nx;

      y = ny;

    } else if ((get(x,y) == black) && (get(nx,ny) == black)) { 

      // Move in the opposite direction

      dir = (dir + (numAngles/2)) % numAngles;

      x = (x + angles[dir][0] + width) % width;

      y = (y + angles[dir][1] + height) % height;

    } else {     

      // Not carrying

      x = nx;

49-05
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473  Simulate 1: Biology

      y = ny;

    }

    nx = x;  // Save the current position

    ny = y;

  }

Other simulations of autonomous agents have been created without restrictive grids. 
These agents are allowed to move freely through their environment. Because they use 
fl oating-point numbers for position, they have more potential variations in location 
and orientation than the gridded CAs. Two of the best-known autonomous agents are 
Valentino Braitenberg’s Vehicles and Craig Reynolds’s Boids. 
 The neuroanatomist Valentino Braitenberg published Vehicles: Experiments in 
Synthetic Psychology in 1984. In this small, delightful book he presents conceptual 
schematics for fourteen unique synthetic creatures he calls Vehicles. Vehicle 1 has one 
sensor and one motor that are connected so that a strong stimulus will make the motor 
turn quickly and a weak stimulus will make the motor turn slowly. If the sensor registers 
nothing, the vehicle will not move. Vehicle 2 has two sensors and two motors. If they 
are correlated the same way as in Vehicle 1 they create Vehicle 2a and if they are crossed 
they create Vehicle 2b. If the sensor is attracted to light, for example, and there is a 
light in the room, Vehicle 2a will turn away from the light and Vehicle 2b will approach 
the light. Braitenberg characterizes these machines as correspondingly cowardly and 
aggressive to feature the anthropomorphic qualities we assign to moving objects:

Vehicle 3a and 3b are identical to Vehicle 2a and 2b but the correlation between the 
sensor and the motor is reversed—a weak sensor stimulus will cause the motor to turn 
quickly and a strong sensor stimulus causes the motors to stop. Vehicle 3a moves toward 
the light and stops when it gets too close, and 3b approaches the light but turns and 
leaves when it gets too close. If more than one stimulus is placed in the environment, 
these simple confi gurations can yield intricate paths of movement as they negotiate 
their attention between the competing stimuli.
 In 1986, Craig Reynolds developed the Boids software model to simulate coordinated 
animal motion like that of fl ocks of birds and schools of fi sh. To refute the common 
conception that these groups of creatures navigate by following a leader, Reynolds 
presented three simple behaviors that simulated a realistic fl ocking behavior without 

Vehicle 2a Vehicle 2b Vehicle 2a and 2b movement in relation to a stimulus

49-05
cont.
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474  Simulate 1: Biology

Braitenberg’s Vehicles
Five hundred vehicles move through the environment. Each gray value represents a different category of vehicles. 
The vehicles in each category share the same behavior (follow the same rules), so over time they form groups.
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475  Simulate 1: Biology

the need for a hierarchy. These behaviors defi ne how each creature behaves in relation to 
its neighbors:

 Separation:  Alignment:   Cohesion:  
 Steer to avoid crowding  Steer toward the average   Steer to move toward the average
 local fl ockmates  heading of local fl ockmates  position of local fl ockmates

The fl ocking rules provide an evocative example of emergence, the phenomenon of a 
global behavior originating from the interactions of simple, local behaviors. The fl ocking 
behavior of the group is not overtly programmed, but emerges through the interaction 
of each software unit based on the simple rules. The Pond example on page 497 is an 
implementation of Boids.
 The autonomous agent simulations presented here were at the cutting edge of 
research over twenty years ago. They have since become some of the most popular 
examples for presenting the ideas of agency and emergence. The ideas from research 
in autonomous agents has been extended into many disciplines within art and science 
including sculpture, game design, and robotics.

 Exercises
1.  Increase the size of the grid for Wolfram’s one-dimensional CA. There are 256 possible   
 rule sets for this one program and only 13 are presented in this unit. Try some of the   
 other options. Which do you fi nd the most interesting? Can the diverse results be put   
 into categories?
2.  Increase the size of the grid for Conway’s Game of Life. Can you fi nd other stable,   
 periodic, or moving confi gurations?
3.  Extend the termite code to have more than one termite moving chips of wood.

 Notes

1.  Alfred Chapuis and Edmond Droz, Automata: A Historical and Technological Study, translated by Alec Reid   

 (Editions du Griffon, 1958).

2.  Martin Gardner, “Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game   

 ‘Life,’” Scientifi c American 223 (October 1970),  pp. 120 - 123. 

3.   Gary William Flake, The Computational Beauty of Nature (MIT Press, 1998), p. 261.
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495  

Synthesis 4:  Structure and Interface
This unit presents examples that synthesize concepts from Structure 4 to Simulate 2.

The previous units introduced object-oriented programming, saving and importing 
fi les, creating graphical user interfaces, and simulating biology and physics. This unit 
focuses on integrating these concepts with an emphasis on object-oriented thinking. 
As mentioned, object-oriented programming is an alternative way to think about 
structuring programs. Knowing when to use object-oriented programming and how to 
structure the objects is an ability that develops with time and experience. The programs 
in this unit apply object-oriented thinking to previously introduced topics. 
 It’s now possible to integrate elements of software including variables, control 
structures, arrays, and objects in tandem with visual elements, motion, and response to 
create exciting and inventive software. Because of space restrictions and our desire not 
to overwhelm the reader, this book omits discussion of many programming concepts, 
but the topics presented provide a solid foundation for diverse exploration. 
 The programs presented in this unit are the most challenging in the book, but they 
include only ideas and code that have been previously introduced. They’re challenging 
in their composition, but all of the components are built from the concepts discussed 
in this text. These programs include a game, drawing software, generative form, and 
simulations.  

The four programs presented here were written by different programmers. Unlike most of the other examples in the 
book, which have been written in a similar style, each of these programs refl ects the personal programming style of 
its author. Learning how to read programs written by other people is an important skill.
The software featured in this unit is longer than the brief examples that fi ll this book. It’s not practical to print it on 
these pages, but the code is included in the Processing code download at www.processing.org/learning.
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WithoutTitle. The images on this page were created with a sophisticated drawing 
program that combines elements of code from Motion 2 (p. 291), Structure 5 (p. 453), 
and Drawing 2 (p. 413). A dense thicket of lines circulates around the position of the 
cursor; moving the position of the cursor affects the epicenter and how the lines 
expand and contract.

Program written by Lia (http://lia.sil.at)
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Pond. These images were generated from an implementation of Craig Reynolds’s Boids 
rules, explained in Simulate 1 (p. 461). As each fi sh follows the rules, groups are formed 
and disperse. Clicking the mouse sends a wave through the environment and lures the 
creatures to the center. Each creature is an instance of the Fish class. The direction and 
speed of each fi sh is determined by the rules. The undulating tail is drawn with Bézier 
curves and moves from side to side in relation to the current direction and speed. 

Program written by William Ngan (www.metaphorical.net)
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Swingtree. This software simulates a tree swaying in the wind. Move the mouse left 
and right to change the direction and move it up and down to change the size. The 
connections between each branch are set by data stored in a text fi le. When the program 
starts, the fi le is read and parsed. The values are used to create instances of the Branch 
and Segment classes.

Program written by Andreas Schlegel (www.sojamo.de) at ART+COM (www.artcom.de) 
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