
Processing:
a programming
handbook for
visual designers
and artists

Casey Reas
Ben Fry

The MIT Press
Cambridge, Massachusetts
London, England

Reas_00_i-xxvi.indd Sec1:iiiReas_00_i-xxvi.indd Sec1:iii 5/23/07 1:11:18 PM5/23/07 1:11:18 PM

© 2007 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from
the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales@mitpress.mit.edu or write to Special Sales Department, The MIT Press,
55 Hayward Street, Cambridge, MA 02142.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Reas, Casey.
 Processing : a programming handbook for visual designers and artists / Casey Reas & Ben Fry ;
 foreword by John Maeda.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-262-18262-1 (hardcover : alk. paper)
 1. Computer programming. 2. Computer graphics—Computer programs. 3. Digital art—Computer programs.
 4. Art—Data processing. 5. Art and technology. I. Fry, Ben. II. Title.

QA76.6.R4138 2007

005.1—dc22

 2006034768

10 9 8 7 6 5 4 3 2 1

Reas_00_i-xxvi.indd Sec1:ivReas_00_i-xxvi.indd Sec1:iv 5/23/07 1:11:19 PM5/23/07 1:11:19 PM

461

Simulate 1: Biology
This unit discusses the concept of software simulation and the topics of cellular automata
and autonomous agents.

Simulation is used within physics, economics, the social sciences, and other fi elds to gain
insight into the complicated systems that comprise our world. Software simulations
employ the most powerful computers to model aspects of the world such as weather and
traffi c patterns. A tremendous amount of intellectual energy in the fi eld of computer
graphics has been dedicated to accurate simulation of lighting, textures, and the
movement of physical materials such as cloth and hair. An entire genre of computer
games exists that simulate city planning, military campaigns, and even everyday life.
Computers constitute a powerful medium for simulating the processes of the world, and
increasing computer speeds offer more sophisticated possibilities.
 Within the arts, new technologies have often been used to represent and simulate
nature. In ancient Greece, pneumatics animated sculptures. In the eighteenth century,
precise gears provided the technical infrastructure for lifelike sculptures such as
Vaucanson’s Duck, which could “open its wings and fl ap them, while making a perfectly
natural noise as if it were about to fl y away.”1 In our contemporary world, computers and
precision motors enable dancing robots and realistic children’s toys that speak and move.
One of the most fascinating simulations in recent art history is Wim Delvoye’s Cloaca
machine, which chemically and physically simulates the human digestive system.

Cellular automata

A cellular automaton (CA) is a self-operating system comprised of a grid of cells and
rules stating how each cell behaves in relation to its neighbor. CAs were fi rst considered
by John von Neumann in the 1940s; they became well known in the 1970s after the
publication of John Conway’s Game of Life CA in a Scientifi c American article by Martin
Gardner. CAs are intriguing because of their apparent simplicity in relation to the
unexpected results they produce.
 Steven Wolfram made important innovations in CA research in the early 1980s.
Wolfram’s one-dimensional CAs, each consisting of a single line of cells with rules,
determine the value of each cell at each frame. The value of each cell is determined by
its own value and those of its two neighbors. For example, if the current cell is white
and its neighbors are black, it may also become black in the next frame. A set of rules
determines when cells change their values. Since there are three cells with only two
possible values (black or white), there are eight possible rules. In the diagram below, the
three rectangles on the top are the three neighboring cells. The cell in the top middle
is the current cell being evaluated, and those on the left and right are its neighbors.

Reas_08_395-518.indd Sec5:461Reas_08_395-518.indd Sec5:461 5/23/07 5:00:02 PM5/23/07 5:00:02 PM

462 Simulate 1: Biology

Depending on the current cell’s value and that of its neighbors, the cell beneath the
current cell is changed to black or white. The rules give rise to a number of possible
variations and produce diverse results. One potential set of rules follows:

The CA starts with an initial state and is then updated to the next frame based on
its rules. Each cell in the row is evaluated in relation to its two adjacent cells. Visual
patterns begin to emerge from the minimal confi guration of all white cells with one
black cell in the middle:

The new one-dimensional image at each frame refers only to the previous frame.
Because each frame is one-dimensional, it can be combined with the others to create a
two-dimensional image, revealing the history of each frame of the CA within a single
image that can be read from top to bottom:

The rules for this one-dimensional CA can be encoded as an array of 0s and 1s. Using the
image at the top of this page as reference, if the confi guration in the top row stays the
same, the resulting bottom row can be defi ned as an array of 8 values, each a 1 or 0. This
confi guration can be coded as 0, 0, 0, 1, 1, 1, 1, 0 where 0 is white and 1 is black. Each of the
other 256 possible confi gurations can be coded as a sequence of 8 numbers. Changing
these numbers in the following example of a one-dimensional CA creates different
images. The images on page 464 present some of the possible rules and their results.

int[] rules = { 0, 0, 0, 1, 1, 1, 1, 0 };

int gen = 1; // Generation

color on = color(255);

color off = color(0);

void setup() {

 size(101, 101);

 frameRate(8); // Slow down to 8 frames each second

Condition

Result

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

49-01

Reas_08_395-518.indd Sec5:462Reas_08_395-518.indd Sec5:462 5/23/07 5:00:03 PM5/23/07 5:00:03 PM

463 Simulate 1: Biology

 background(0);

 set(width/2, 0, on); // Set the top middle pixel to white

}

void draw() {

 // For each pixel, determine new state by examining current

 // state and neighbor states and ignore edges that have only

 // one neighbor

 for (int i = 1; i < width-1; i++) {

 int left = get(i-1, gen-1); // Left neighbor

 int me = get(i, gen-1); // Current pixel

 int right = get(i+1, gen-1); // Right neighbor

 if (rules(left, me, right) == 1) {

 set(i, gen, on);

 }

 }

 gen++; // Increment the generation by 1

 if (gen > height-1) { // If reached the bottom of the screen,

 noLoop(); // stop the program

 }

}

// Implement the rules

int rules(color a, color b, color c) {

 if ((a == on) && (b == on) && (c == on)) { return rules[0]; }

 if ((a == on) && (b == on) && (c == off)) { return rules[1]; }

 if ((a == on) && (b == off) && (c == on)) { return rules[2]; }

 if ((a == on) && (b == off) && (c == off)) { return rules[3]; }

 if ((a == off) && (b == on) && (c == on)) { return rules[4]; }

 if ((a == off) && (b == on) && (c == off)) { return rules[5]; }

 if ((a == off) && (b == off) && (c == on)) { return rules[6]; }

 if ((a == off) && (b == off) && (c == off)) { return rules[7]; }

 return 0;

}

John Conway’s Game of Life predates Wolfram’s discoveries by more than a decade.
Gardner’s article in Scientifi c American describes Conway’s invention as “a fantastic
solitaire pastime he calls ‘life.’ Because of its analogies with the rise, fall and alternations
of a society of living organisms, it belongs to a growing class of what are called
‘simulation games’—games that resemble real-life processes.”2 Life was not originally
run with a computer, but early programmers rapidly became fascinated with it, and
working with the Game of Life in software enabled new insight into the patterns that
emerge as it runs.

49-01
cont.

Reas_08_395-518.indd Sec5:463Reas_08_395-518.indd Sec5:463 5/23/07 5:00:03 PM5/23/07 5:00:03 PM

Wolfram’s one-dimensional cellular automata
Use the numbers below each image as the data for the rules[] array in code
49-01 to watch each pattern generate.

0,0,0,1,1,1,1,0

0,0,1,1,0,1,1,0 0,1,0,1,1,0,1,0 1,0,1,1,0,1,1,0

0,1,0,0,1,0,0,1 0,1,0,0,1,1,0,1

0,0,1,0,1,0,0,1 0,0,1,0,1,1,1,1 0,0,1,1,1,0,1,1

0,0,1,0,1,1,0,1 1,0,1,0,0,1,0,1 0,1,1,0,1,0,1,1

0,1,0,0,1,1,1,0 0,1,0,1,0,1,0,1 1,0,0,1,1,0,1,1

Reas_08_395-518.indd Sec5:464Reas_08_395-518.indd Sec5:464 5/23/07 5:00:04 PM5/23/07 5:00:04 PM

465 Simulate 1: Biology

 The Game of Life is a two-dimensional CA in which the rules for determining the
value of each cell are defi ned by the neighboring cells in two dimensions. Each cell
has eight neighboring cells, each of which can be named in relation to the directional
orientation of the cell—north, northeast, east, southeast, south, southwest, west,
northwest:

The rules for turning a cell on (alive) and off (dead) relate to the number of neighboring cells:

 1. Death from isolation: Each live cell with less than two live neighbors dies in the next generation

 2. Death from overpopulation: Each cell with four or more live neighbors dies in the next generation

 3. Birth: Each dead cell with exactly three live neighbors comes to life in the next generation

 4. Survival: Each live cell with two live neighbors survives in the next generation

Applying these rules to a cell reveals how different confi gurations translate into
survival, death, and birth. In the image below, the cell being currently evaluated is in the
center and is black if alive; neighbor cells are gray if alive and white if empty:

Different spatial confi gurations of cells create repeating patterns with each new
generation. Some shapes are stable (do not change at each frame), some repeat, and
some move across the screen:

Death DeathDeath Death Death Birth Birth Survive Survive

NE

E

SE

N

S

NW

W

SW

Stable Configurations Periodic Configuration

Moving object (this configuration moves one unit right and down over three generations)

Reas_08_395-518.indd Sec5:465Reas_08_395-518.indd Sec5:465 5/23/07 5:00:04 PM5/23/07 5:00:04 PM

466 Simulate 1: Biology

Shapes called gliders are arrangements of cells that move across the grid, go through
frames of physical distortion, and then arrive back at the same shape shifted by one grid
unit. Repeating this pattern propels them across the grid.
 The current state for the Game of Life is stored in a two-dimensional array of
integers. A second grid hosts the next generation. At the end of each frame, the newly
created generation becomes the old generation, and the process repeats. Cells are
marked alive with the number 1 and and dead with 0. This makes it simple to count
the number of neighbors by adding the values of neighboring cells. The neighbors()
function looks at neighbors and counts the values of the adjacent cells. These numbers
are used to set white or black pixels within draw().

int[][] grid, futureGrid;

void setup() {

 size(540, 100);

 frameRate(8);

 grid = new int[width][height];

 futureGrid = new int[width][height];

 float density = 0.3 * width * height;

 for (int i = 0; i < density; i++) {

 grid[int(random(width))][int(random(height))] = 1;

 }

 background(0);

}

void draw() {

 for (int x = 1; x < width-1; x++) {

 for (int y = 1; y < height-1; y++) {

 // Check the number of neighbors (adjacent cells)

 int nb = neighbors(x, y);

 if ((grid[x][y] == 1) && (nb < 2)) {

 futureGrid[x][y] = 0; // Isolation death

 set(x, y, color(0));

 } else if ((grid[x][y] == 1) && (nb > 3)) {

 futureGrid[x][y] = 0; // Overpopulation death

 set(x, y, color(0));

 } else if ((grid[x][y] == 0) && (nb == 3)) {

 futureGrid[x][y] = 1; // Birth

 set(x, y, color(255));

 } else {

 futureGrid[x][y] = grid[x][y]; // Survive

 }

 }

 }

49-02

Reas_08_395-518.indd Sec5:466Reas_08_395-518.indd Sec5:466 5/23/07 5:00:05 PM5/23/07 5:00:05 PM

467 Simulate 1: Biology

 // Swap current and future grids

 int[][] temp = grid;

 grid = futureGrid;

 futureGrid = temp;

}

// Count the number of adjacent cells 'on'

int neighbors(int x, int y) {

 return grid[x][y-1] + // North

 grid[x+1][y-1] + // Northeast

 grid[x+1][y] + // East

 grid[x+1][y+1] + // Souteast

 grid[x][y+1] + // South

 grid[x-1][y+1] + // Southwest

 grid[x-1][y] + // West

 grid[x-1][y-1]; // Northwest

}

Changing the neighbors() function in code 49-02 to utilize the modulo operator (%)
makes it possible for the cells to wrap from one side of the screen to the other. The for
structures inside draw() also need to change to loop from 0 to width and 0 to height.

int neighbors(int x, int y) {

 int north = (y + height-1) % height;

 int south = (y + 1) % height;

 int east = (x + 1) % width;

 int west = (x + width-1) % width;

 return grid[x][north] + // North

 grid[east][north] + // Northeast

 grid[east][y] + // East

 grid[east][south] + // Southeast

 grid[x][south] + // South

 grid[west][south] + // Southwest

 grid[west][y] + // West

 grid[west][north]; // Northwest

}

Research into cellular automata did not stop with Conway and Wolfram. Others have
developed continuous CAs that are not limited to on/off states. Probabilistic CAs, for
example, can partially or totally determine their rules through probabilities rather
than absolutes. CAs possess the ability to simulate lifelike phenomena in spite of their
basic format. For example, the patterns created with a one-dimensional CA can mimic
patterns found in the shells of organisms such as cone snails. Other CAs produce images
similar to those created by biochemical reactions.

49-02
cont.

49-03

Reas_08_395-518.indd Sec5:467Reas_08_395-518.indd Sec5:467 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

468 Simulate 1: Biology

frameCount = 1

frameCount = 10

frameCount = 20

frameCount = 30

frameCount = 40

Conway's Game of Life
Using a few simple rules defi ned in code 49-02, the color relations between adjacent pixels
create a dynamic ecosystem.

Reas_08_395-518.indd Sec5:468Reas_08_395-518.indd Sec5:468 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

469 Simulate 1: Biology

Autonomous agents

An autonomous agent is a system that senses and acts on its environment according
to its own agenda. People, spiders, and plants are all autonomous agents. Each agent
uses input from the environment as a basis for its actions. Each pursues it own goals,
either consciously or through refl ex. In his book The Computational Beauty of Nature,
Gary William Flake defi nes an autonomous agent as “a unit that interacts with its
environment (which probably consists of other agents) but acts independently from
all other agents in that it does not take commands from some seen or unseen leader.”3
Agents aren’t a part of a coordinated global plan, but structure does emerge from
their interactions with other agents and the environment. The seemingly coordinated
behavior of an ant colony and the order within a school of fi sh illustrate structured
behavior emerging from the collective actions of individual agents.
 Like the examples of cellular automata presented above, autonomous agents can
also exist in a grid world. Chris Langton’s ant is a fascinating example. The ant can face
only one of four directions: north, south, east, or west. Like cellular automata, the ant
moves one frame at a time, behaving according to the following rules:

 1. Move one frame forward

 2. If on a white pixel, change the pixel to black and turn 90 degrees right

 3. If on a black pixel, change the pixel to white and turn 90 degrees left

As the ant moves through the environment, it returns to the same pixel many times
and each visit reverses the color of the pixel. Therefore, the future position of the ant
is determined by its past movements. The remarkable thing about this ant is that with
any starting orientation (north, south, east, or west), a sequence of actions that produce
a straight path always emerges. From the seemingly chaotic mess upon which the ant
embarks, an ordered path always develops. This program is not intended as a simulation
of a real insect. It’s an example of a software agent with extremely simple rules behaving
in an entirely unexpected but ultimately predictable and structured manner. The
instruction to eventually construct a straight path is never given, but it emerges through
the rules of the ant in relation to its environment. The environment contains the
memory of the ant’s previous frames, which the ant uses to determine its next move.
 In this example program, the ant’s world wraps around from each edge of the
screen to the opposite edge. Wrapping around to the other side of the screen, the ant is
disrupted by its previous path. The order eventually emerges and the ant begins a new
periodic sequence producing linear movement. In the code, directions are expressed as
numbers. South is 0, east is 1, north is 2, and west is 3. At each frame, the ant moves one
pixel forward based on its current orientation and then checks the color of the pixel at its
location. It turns right by subtracting 1 and turns left by adding 1. Run the code to see the
sequence change through time.

Reas_08_395-518.indd Sec5:469Reas_08_395-518.indd Sec5:469 5/23/07 5:00:06 PM5/23/07 5:00:06 PM

470 Simulate 1: Biology

 int SOUTH = 0; // Direction numbers with names

 int EAST = 1; // so that the code self-documents

 int NORTH = 2;

 int WEST = 3;

 int direction = NORTH; // Current direction of the ant

 int x, y; // Ant's current position

 color ON = color(255); // Color for an 'on' pixel

 color OFF = color(0); // Color for an 'off' pixel

 void setup() {

 size(100, 100);

 x = width/2;

 y = height/2;

 background(0);

 }

 void draw() {

 if (direction == SOUTH) {

 y++;

 if (y == height) {

 y = 0;

 }

 } else if (direction == EAST) {

 x++;

 if (x == width) {

 x = 0;

 }

 } else if (direction == NORTH) {

 if (y == 0) {

 y = height-1;

 } else {

 y--;

 }

 } else if (direction == WEST) {

 if (x == 0) {

 x = width-1;

 } else {

 x--;

 }

 }

 if (get(x, y) == ON) {

 set(x, y, OFF);

49-04

Reas_08_395-518.indd Sec5:470Reas_08_395-518.indd Sec5:470 5/23/07 5:00:07 PM5/23/07 5:00:07 PM

471 Simulate 1: Biology

 if (direction == SOUTH) {

 direction = WEST;

 } else {

 direction--;

 }

 } else {

 set(x, y, ON);

 if (direction == WEST) {

 direction = SOUTH;

 } else {

 direction++; // Rotate direction

 }

 }

 }

Mitchel Resnick’s termite is another example that demonstrates order emerging from
extremely simple rules. Like Langton’s ant, this termite is not intended as a simulation of
a real organism, but it exhibits remarkable behavior. The termite exists on a grid where a
white unit represents open space and black represents a wood chip. The termite wanders
through the space, and when it fi nds a wood chip it picks it up and wanders until it
runs into another wood chip. Finding a wood chip causes it to drop its current load, turn
around, and continue to wander. Over time, ordered piles emerge as a result of its effort.
 In the code that creates the termite and its environment, the angles[] array
contains the possible directions in which the termite can move. At each frame the
termite moves one space on the grid. The angles specify which neighboring pixel it can
move into:

When space in front of the termite is open, it moves to the next space in the current
direction or the next space in an adjacent direction. For example, if the current direction
is south, it will move to the next space in the south, southeast, or southwest direction. If
the current direction is northeast, it will move to the next space in the northeast, east,
or north direction. When the termite does not have space in front and it’s carrying a
wood chip, it will reverse its direction and move one space in the new direction. When it
does not have a space in front and it’s not carrying a wood chip, it moves into the space
occupied with the wood chip and picks it up.

NE

E

SE

N

S

NW

W

SW

1,-1

1,0

1,1

0,-1

0,1

-1,-1

-1,0

-1,1

49-04
cont.

Reas_08_395-518.indd Sec5:471Reas_08_395-518.indd Sec5:471 5/23/07 5:00:07 PM5/23/07 5:00:07 PM

472 Simulate 1: Biology

 int[][] angles = {{ 0, 1 }, { 1, 1 }, { 1, 0 }, { 1,-1 },

 { 0,-1 }, {-1,-1 }, {-1, 0 }, {-1, 1 }};

 int numAngles = angles.length;

 int x, y, nx, ny;

 int dir = 0;

 color black = color(0);

 color white = color(255);

 void setup() {

 size(100, 100);

 background(255);

 x = width/2;

 nx = x;

 y = height/2;

 ny = y;

 float woodDensity = width * height * 0.5;

 for (int i = 0; i < woodDensity; i++) {

 int rx = int(random(width));

 int ry = int(random(height));

 set(rx, ry, black);

 }

 }

 void draw() {

 int rand = int(abs(random(-1, 2)));

 dir = (dir + rand + numAngles) % numAngles;

 nx = (nx + angles[dir][0] + width) % width;

 ny = (ny + angles[dir][1] + height) % height;

 if ((get(x,y) == black) && (get(nx,ny) == white)) {

 // Move the chip one space

 set(x, y, white);

 set(nx, ny, black);

 x = nx;

 y = ny;

 } else if ((get(x,y) == black) && (get(nx,ny) == black)) {

 // Move in the opposite direction

 dir = (dir + (numAngles/2)) % numAngles;

 x = (x + angles[dir][0] + width) % width;

 y = (y + angles[dir][1] + height) % height;

 } else {

 // Not carrying

 x = nx;

49-05

Reas_08_395-518.indd Sec5:472Reas_08_395-518.indd Sec5:472 5/23/07 5:00:08 PM5/23/07 5:00:08 PM

473 Simulate 1: Biology

 y = ny;

 }

 nx = x; // Save the current position

 ny = y;

 }

Other simulations of autonomous agents have been created without restrictive grids.
These agents are allowed to move freely through their environment. Because they use
fl oating-point numbers for position, they have more potential variations in location
and orientation than the gridded CAs. Two of the best-known autonomous agents are
Valentino Braitenberg’s Vehicles and Craig Reynolds’s Boids.
 The neuroanatomist Valentino Braitenberg published Vehicles: Experiments in
Synthetic Psychology in 1984. In this small, delightful book he presents conceptual
schematics for fourteen unique synthetic creatures he calls Vehicles. Vehicle 1 has one
sensor and one motor that are connected so that a strong stimulus will make the motor
turn quickly and a weak stimulus will make the motor turn slowly. If the sensor registers
nothing, the vehicle will not move. Vehicle 2 has two sensors and two motors. If they
are correlated the same way as in Vehicle 1 they create Vehicle 2a and if they are crossed
they create Vehicle 2b. If the sensor is attracted to light, for example, and there is a
light in the room, Vehicle 2a will turn away from the light and Vehicle 2b will approach
the light. Braitenberg characterizes these machines as correspondingly cowardly and
aggressive to feature the anthropomorphic qualities we assign to moving objects:

Vehicle 3a and 3b are identical to Vehicle 2a and 2b but the correlation between the
sensor and the motor is reversed—a weak sensor stimulus will cause the motor to turn
quickly and a strong sensor stimulus causes the motors to stop. Vehicle 3a moves toward
the light and stops when it gets too close, and 3b approaches the light but turns and
leaves when it gets too close. If more than one stimulus is placed in the environment,
these simple confi gurations can yield intricate paths of movement as they negotiate
their attention between the competing stimuli.
 In 1986, Craig Reynolds developed the Boids software model to simulate coordinated
animal motion like that of fl ocks of birds and schools of fi sh. To refute the common
conception that these groups of creatures navigate by following a leader, Reynolds
presented three simple behaviors that simulated a realistic fl ocking behavior without

Vehicle 2a Vehicle 2b Vehicle 2a and 2b movement in relation to a stimulus

49-05
cont.

Reas_08_395-518.indd Sec5:473Reas_08_395-518.indd Sec5:473 5/23/07 5:00:08 PM5/23/07 5:00:08 PM

474 Simulate 1: Biology

Braitenberg’s Vehicles
Five hundred vehicles move through the environment. Each gray value represents a different category of vehicles.
The vehicles in each category share the same behavior (follow the same rules), so over time they form groups.

Reas_08_395-518.indd Sec5:474Reas_08_395-518.indd Sec5:474 5/23/07 5:00:09 PM5/23/07 5:00:09 PM

475 Simulate 1: Biology

the need for a hierarchy. These behaviors defi ne how each creature behaves in relation to
its neighbors:

 Separation: Alignment: Cohesion:
 Steer to avoid crowding Steer toward the average Steer to move toward the average
 local fl ockmates heading of local fl ockmates position of local fl ockmates

The fl ocking rules provide an evocative example of emergence, the phenomenon of a
global behavior originating from the interactions of simple, local behaviors. The fl ocking
behavior of the group is not overtly programmed, but emerges through the interaction
of each software unit based on the simple rules. The Pond example on page 497 is an
implementation of Boids.
 The autonomous agent simulations presented here were at the cutting edge of
research over twenty years ago. They have since become some of the most popular
examples for presenting the ideas of agency and emergence. The ideas from research
in autonomous agents has been extended into many disciplines within art and science
including sculpture, game design, and robotics.

 Exercises
1. Increase the size of the grid for Wolfram’s one-dimensional CA. There are 256 possible
 rule sets for this one program and only 13 are presented in this unit. Try some of the
 other options. Which do you fi nd the most interesting? Can the diverse results be put
 into categories?
2. Increase the size of the grid for Conway’s Game of Life. Can you fi nd other stable,
 periodic, or moving confi gurations?
3. Extend the termite code to have more than one termite moving chips of wood.

 Notes

1. Alfred Chapuis and Edmond Droz, Automata: A Historical and Technological Study, translated by Alec Reid

 (Editions du Griffon, 1958).

2. Martin Gardner, “Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game

 ‘Life,’” Scientifi c American 223 (October 1970), pp. 120 - 123.

3. Gary William Flake, The Computational Beauty of Nature (MIT Press, 1998), p. 261.

Reas_08_395-518.indd Sec5:475Reas_08_395-518.indd Sec5:475 5/23/07 5:00:09 PM5/23/07 5:00:09 PM

Reas_08_395-518.indd Sec5:476Reas_08_395-518.indd Sec5:476 5/23/07 5:00:10 PM5/23/07 5:00:10 PM

495

Synthesis 4: Structure and Interface
This unit presents examples that synthesize concepts from Structure 4 to Simulate 2.

The previous units introduced object-oriented programming, saving and importing
fi les, creating graphical user interfaces, and simulating biology and physics. This unit
focuses on integrating these concepts with an emphasis on object-oriented thinking.
As mentioned, object-oriented programming is an alternative way to think about
structuring programs. Knowing when to use object-oriented programming and how to
structure the objects is an ability that develops with time and experience. The programs
in this unit apply object-oriented thinking to previously introduced topics.
 It’s now possible to integrate elements of software including variables, control
structures, arrays, and objects in tandem with visual elements, motion, and response to
create exciting and inventive software. Because of space restrictions and our desire not
to overwhelm the reader, this book omits discussion of many programming concepts,
but the topics presented provide a solid foundation for diverse exploration.
 The programs presented in this unit are the most challenging in the book, but they
include only ideas and code that have been previously introduced. They’re challenging
in their composition, but all of the components are built from the concepts discussed
in this text. These programs include a game, drawing software, generative form, and
simulations.

The four programs presented here were written by different programmers. Unlike most of the other examples in the
book, which have been written in a similar style, each of these programs refl ects the personal programming style of
its author. Learning how to read programs written by other people is an important skill.
The software featured in this unit is longer than the brief examples that fi ll this book. It’s not practical to print it on
these pages, but the code is included in the Processing code download at www.processing.org/learning.

Reas_08_395-518.indd Sec5:495Reas_08_395-518.indd Sec5:495 5/23/07 5:00:18 PM5/23/07 5:00:18 PM

496 Synthesis 4: Structure and Interface

WithoutTitle. The images on this page were created with a sophisticated drawing
program that combines elements of code from Motion 2 (p. 291), Structure 5 (p. 453),
and Drawing 2 (p. 413). A dense thicket of lines circulates around the position of the
cursor; moving the position of the cursor affects the epicenter and how the lines
expand and contract.

Program written by Lia (http://lia.sil.at)

Reas_08_395-518.indd Sec5:496Reas_08_395-518.indd Sec5:496 5/23/07 5:00:18 PM5/23/07 5:00:18 PM

497 Synthesis 4: Structure and Interface

Pond. These images were generated from an implementation of Craig Reynolds’s Boids
rules, explained in Simulate 1 (p. 461). As each fi sh follows the rules, groups are formed
and disperse. Clicking the mouse sends a wave through the environment and lures the
creatures to the center. Each creature is an instance of the Fish class. The direction and
speed of each fi sh is determined by the rules. The undulating tail is drawn with Bézier
curves and moves from side to side in relation to the current direction and speed.

Program written by William Ngan (www.metaphorical.net)

Reas_08_395-518.indd Sec5:497Reas_08_395-518.indd Sec5:497 5/23/07 5:00:20 PM5/23/07 5:00:20 PM

498 Synthesis 4: Structure and Interface

Swingtree. This software simulates a tree swaying in the wind. Move the mouse left
and right to change the direction and move it up and down to change the size. The
connections between each branch are set by data stored in a text fi le. When the program
starts, the fi le is read and parsed. The values are used to create instances of the Branch
and Segment classes.

Program written by Andreas Schlegel (www.sojamo.de) at ART+COM (www.artcom.de)

Reas_08_395-518.indd Sec5:498Reas_08_395-518.indd Sec5:498 5/23/07 5:00:20 PM5/23/07 5:00:20 PM

